TWI629523B - Adjustable wavelength receiver - Google Patents

Adjustable wavelength receiver Download PDF

Info

Publication number
TWI629523B
TWI629523B TW105142006A TW105142006A TWI629523B TW I629523 B TWI629523 B TW I629523B TW 105142006 A TW105142006 A TW 105142006A TW 105142006 A TW105142006 A TW 105142006A TW I629523 B TWI629523 B TW I629523B
Authority
TW
Taiwan
Prior art keywords
layer
grating
disposed
region
substrate
Prior art date
Application number
TW105142006A
Other languages
Chinese (zh)
Other versions
TW201823782A (en
Inventor
黃英勳
塗晟達
王海琳
許俸鳴
陳聰謀
李榮瑞
Original Assignee
中華電信股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中華電信股份有限公司 filed Critical 中華電信股份有限公司
Priority to TW105142006A priority Critical patent/TWI629523B/en
Publication of TW201823782A publication Critical patent/TW201823782A/en
Application granted granted Critical
Publication of TWI629523B publication Critical patent/TWI629523B/en

Links

Abstract

一種具光柵半導體濾波器的可調整波長之接收器,其係利用介質折射率改變傳輸波長之特性,當入射的光訊號進入到光柵半導體濾波器時,透過控制對光柵區輸入的電流,改變光柵區的折射率,以改變欲選擇的光訊號的波長,經過光柵半導體濾波器選擇的光訊號再經由檢光器轉成電訊號,本發明可調整波長之接收器可用於TWDM-PON ONU的接收器,滿足無色光源(Colorless)的使用需求。 An adjustable wavelength receiver with a grating semiconductor filter, which uses a refractive index of a medium to change a transmission wavelength characteristic. When an incident optical signal enters a grating semiconductor filter, the grating is changed by controlling a current input to the grating region. The refractive index of the region is changed to change the wavelength of the optical signal to be selected, and the optical signal selected by the grating semiconductor filter is converted into an electrical signal by the optical detector. The wavelength-adjustable receiver of the present invention can be used for receiving the TWDM-PON ONU. It meets the needs of colorless light source (Colorless).

Description

可調整波長之接收器 Adjustable wavelength receiver

本發明是有關於一種可調整波長之接收器,特別是一種運用具光柵半導體濾波器的可調整波長之接收器。 The present invention relates to a wavelength-adjustable receiver, and more particularly to an adjustable wavelength receiver using a grating semiconductor filter.

隨著時代的演進,人們的生活形態隨之改變,亦對生活娛樂有更多元的需求,許多新穎的影音服務模式如雨後春筍般蓬勃發展,如:行動網路、高畫質影視、OTT(Over The Top)服務、Live Stream等,這些影音服務背後都需要藉由固網寬頻來支撐,因此在FSAN組織中訂定了NG-PON2(Next Generation PON,下一代無源光網路)技術,來提高固網的傳輸速率。 With the evolution of the times, people's life style has changed, and there is more demand for life and entertainment. Many novel audio-visual service models have sprung up, such as mobile networks, high-definition video, OTT ( Over The Top) services, Live Stream, etc., these audio and video services need to be supported by fixed-line broadband, so NG-PON2 (Next Generation PON, Next Generation Passive Optical Network) technology has been set up in the FSAN organization. To increase the transmission rate of the fixed network.

在NG-PON2中,分時分波多工被動光網路(Time and Wavelength Division Multiplexing Passive Optical Network,TWDM-PON)為多波長系統,可於光網路單元(Optical Network Unit,ONU)使用多個波長進行傳輸。TWDM-PON的光網路單元端採用波長可調式光元件,包含波長可調式雷射及波長可調式接收器,滿足無色光源使用需求,簡化供裝及備料複雜度,並享有動態資源分配、通道切換保護、節能等優點。但習知的波長可調式光元件技術,其於接取網路的應用上,因製程門檻高及尚未成熟等因素,相應的使得成本過高,為目前TWDM-PON設備尚未商用化的主要原因。 In NG-PON2, the Time and Wavelength Division Multiplexing Passive Optical Network (TWDM-PON) is a multi-wavelength system that can be used in multiple optical network units (ONUs). The wavelength is transmitted. The optical network unit end of TWDM-PON adopts wavelength-adjustable optical components, including wavelength-adjustable laser and wavelength-adjustable receivers, which meet the needs of colorless light sources, simplify the supply and preparation complexity, and enjoy dynamic resource allocation and channel. Switch protection, energy saving and other advantages. However, the well-known wavelength-adjustable optical component technology, in the application of the access network, due to factors such as high process threshold and immaturity, the cost is too high, which is the main reason why the TWDM-PON equipment has not yet been commercialized. .

綜上所述,如何提供一種製程門檻低且具備量產特性的可調整波長接收器之技術方案,乃本領域亟需解決之技術問題。 In summary, how to provide a technical solution with an adjustable wavelength receiver with low process threshold and mass production characteristics is a technical problem that needs to be solved in the field.

為解決前揭之問題,本發明之目的係提供一種可調整波長之接收器,當作光網路單元之光接收器,並用於TWDM-PON設備中。 In order to solve the above problems, an object of the present invention is to provide a wavelength-adjustable receiver as an optical receiver of an optical network unit and used in a TWDM-PON device.

為達上述目的,本發明提出一種可調整波長之接收器,其包含一具光柵的半導體濾波器、一檢光器、一基板,基板上設有一光纖固定部、一第一波導區、一第二波導區及一第三波導區,具光柵的半導體濾波器是設置於第一波導區及第二波導區之間,檢光器則是設置於第二波導區及第三波導區之間。光纖固定部是用以固定外部之光纖,並以光纖導入外部之訊號光至第一波導區,訊號光通過第一波導區後,則進入具光柵的半導體濾波器,具光柵半導體結構濾波器之光柵區可藉由輸入電流,改變光柵區的折射率,以選擇訊號光中可通過的波長,濾波後之光訊號通過第二波導區,接著進入檢光器,讓檢光器接收濾波後之訊號光,並將其轉成電訊號。 In order to achieve the above object, the present invention provides a wavelength-adjustable receiver comprising a grating semiconductor filter, a photodetector, a substrate, a fiber fixing portion, a first waveguide region, and a first substrate. The second waveguide region and the third waveguide region have a grating semiconductor filter disposed between the first waveguide region and the second waveguide region, and the photodetector is disposed between the second waveguide region and the third waveguide region. The fiber fixing portion is used for fixing the external optical fiber, and the external signal light is introduced into the first waveguide region by the optical fiber. After the signal light passes through the first waveguide region, the semiconductor filter enters the grating, and the grating semiconductor structure filter is used. The grating region can change the refractive index of the grating region by inputting current to select a wavelength that can pass in the signal light, and the filtered optical signal passes through the second waveguide region, and then enters the optical detector, so that the optical detector receives the filtered signal. Signal light and turn it into a telecommunication signal.

為達上述目的,本發明另提出一種可調整波長之接收器,其包含一基板、一具光柵的半導體濾波器、一檢光器、一第一透鏡及一第二透鏡。具光柵的半導體濾波器、檢光器、第一透鏡及第二透鏡皆設置於基板上。基板上另設有一光纖固定部,其一側是用以固定外部之光纖,並以光纖導入外部之訊號光,光纖固定部的另一側則設置第一透鏡,第一透鏡遠離光纖固定部的一側設置具光柵的半導體濾波器,具光柵的半導體濾波器遠離第一透鏡的一側則設置第二透鏡,檢光器則是設置於第二透鏡之另 一側。訊號光被導入後,先通過第一透鏡,接著進入具光柵的半導體濾波器,具光柵半導體結構濾波器之光柵區可藉由輸入電流,改變光柵區的折射率,以選擇訊號光中可通過的波長,濾波後之光訊號通過第二透鏡,接著進入檢光器,讓檢光器接收濾波後之光訊號,並將其轉成電訊號。 To achieve the above object, the present invention further provides a wavelength-adjustable receiver comprising a substrate, a semiconductor filter with a grating, a photodetector, a first lens and a second lens. The semiconductor filter with grating, the photodetector, the first lens and the second lens are all disposed on the substrate. A fiber fixing portion is further disposed on the substrate, one side of which is used for fixing the external optical fiber, and the external signal light is introduced by the optical fiber, and the other side of the optical fiber fixing portion is provided with the first lens, and the first lens is away from the optical fiber fixing portion. a semiconductor filter with a grating is disposed on one side, a second lens is disposed on a side of the semiconductor filter with the grating away from the first lens, and the photodetector is disposed on the second lens One side. After the signal light is introduced, it passes through the first lens and then enters the semiconductor filter with the grating. The grating region of the grating semiconductor structure filter can change the refractive index of the grating region by input current to select the signal light to pass. The wavelength of the filtered optical signal passes through the second lens and then enters the optical detector, allowing the optical detector to receive the filtered optical signal and convert it into an electrical signal.

可調整波長之接收器的製造流程為:在基板上使用平面光波導(Planar Lightwave Circuit)技術以形成波導區,再使用微顯影技術及化學蝕刻,或是使用電子迴旋加速共振活性離子蝕刻(electron cyclotron resonance reactive ion ctch,簡稱ECR-RIE)的方法,在特定區域蝕刻光波導及基板,以形成金屬導電層區域,金屬導電層區域將波導區分成第一波導區、第二波導區、第三波導區。接著使用微顯影技術及薄膜技術在金屬導電層區域分別形成金屬導電層,再使用導電黏著劑將具光柵的半導體濾波器黏著於第一波導區與第二波導區之間的金屬導電層,將檢光器黏著於第二波導區與第三波導區之間的金屬導電層。 The manufacturing process of the wavelength-adjustable receiver is: using a Planar Lightwave Circuit technology on the substrate to form a waveguide region, using micro-developing technology and chemical etching, or using electron cyclotron resonance active ion etching (electron) The method of cyclotron resonance reactive ion ctch (ECR-RIE) etches an optical waveguide and a substrate in a specific region to form a metal conductive layer region, and the metal conductive layer region divides the waveguide into a first waveguide region, a second waveguide region, and a third Waveguide area. Then, using a micro-developing technique and a thin film technique, respectively forming a metal conductive layer in the metal conductive layer region, and then using a conductive adhesive to adhere the grating semiconductor filter to the metal conductive layer between the first waveguide region and the second waveguide region, The photodetector is adhered to the metal conductive layer between the second waveguide region and the third waveguide region.

綜上所述,波長調整速度快、製程門檻低且穩定,具備量產特性,降低接收器成本,具有顯著之實用效益和競爭力。 In summary, the wavelength adjustment speed is fast, the process threshold is low and stable, and the mass production characteristics are achieved, the receiver cost is reduced, and the utility model has significant practical benefits and competitiveness.

100‧‧‧基板 100‧‧‧Substrate

601‧‧‧基板 601‧‧‧Substrate

101‧‧‧基板 101‧‧‧Substrate

602‧‧‧N型披覆層 602‧‧‧N type coating

111‧‧‧第一波導區 111‧‧‧First waveguide area

603‧‧‧四元材料層 603‧‧‧ quaternary material layer

112‧‧‧第二波導區 112‧‧‧Second waveguide area

604‧‧‧主動層 604‧‧‧ active layer

113‧‧‧第三波導區 113‧‧‧ Third waveguide area

605‧‧‧初級P型披覆層 605‧‧‧Primary P-type coating

121‧‧‧第一金屬導電層 121‧‧‧First metal conductive layer

701‧‧‧主動區 701‧‧‧active area

122‧‧‧第二金屬導電層 122‧‧‧Second metal conductive layer

702‧‧‧光柵區 702‧‧‧Grating area

13‧‧‧具光柵的半導體濾波器 13‧‧‧Semiconductor filter with grating

703‧‧‧非光柵區 703‧‧‧Non-grating area

14‧‧‧檢光器 14‧‧‧ Detector

704‧‧‧P型披覆層 704‧‧‧P type coating

15‧‧‧光纖 15‧‧‧Fiber

705‧‧‧歐姆接觸電層 705‧‧‧ Ohmic contact layer

151‧‧‧光纖核心 151‧‧‧ fiber core

806‧‧‧圖案化絕緣層 806‧‧‧patterned insulation

16‧‧‧光纖固定部 16‧‧‧Fiber fixing department

807‧‧‧P型接觸金屬層 807‧‧‧P type contact metal layer

201‧‧‧基板 201‧‧‧Substrate

808‧‧‧N型接觸金屬層 808‧‧‧N type contact metal layer

202‧‧‧N型披覆層 202‧‧‧N type coating

907‧‧‧第一歐姆接觸電層 907‧‧‧First ohmic contact layer

203‧‧‧四元材料層 203‧‧‧ quaternary material layer

908‧‧‧第二歐姆接觸電層 908‧‧‧second ohmic contact layer

304‧‧‧光柵區 304‧‧‧Grating area

909‧‧‧第三歐姆接觸電層 909‧‧‧3 ohm contact layer

305‧‧‧非光柵區 305‧‧‧Non-grating area

910‧‧‧第一P型接觸金屬層 910‧‧‧First P-type contact metal layer

306‧‧‧P型披覆層 306‧‧‧P type coating

911‧‧‧第二P型接觸金屬層 911‧‧‧Second P-type contact metal layer

307‧‧‧歐姆接觸電層 307‧‧‧ Ohmic contact layer

912‧‧‧第三P型接觸金屬層 912‧‧‧ Third P-type contact metal layer

406‧‧‧圖案化絕緣層 406‧‧‧patterned insulation

913‧‧‧第一低反射層 913‧‧‧First low reflection layer

407‧‧‧P型接觸金屬層 407‧‧‧P type contact metal layer

914‧‧‧第二低反射層 914‧‧‧Second low reflection layer

408‧‧‧N型接觸金屬層 408‧‧‧N type contact metal layer

1000‧‧‧基板 1000‧‧‧Substrate

506‧‧‧第一歐姆接觸電層 506‧‧‧First ohmic contact layer

1001‧‧‧基板 1001‧‧‧Substrate

507‧‧‧第二歐姆接觸電層 507‧‧‧second ohmic contact layer

1010‧‧‧第一球型透鏡 1010‧‧‧First spherical lens

508‧‧‧第一P型接觸金屬層 508‧‧‧First P-type contact metal layer

1011‧‧‧第二球型透鏡 1011‧‧‧Second spherical lens

509‧‧‧第二P型接觸金屬層 509‧‧‧Second P-type contact metal layer

1020‧‧‧第一金屬導電層 1020‧‧‧First metal conductive layer

510‧‧‧第一低反射層 510‧‧‧First low reflection layer

1021‧‧‧第二金屬導電層 1021‧‧‧Second metal conductive layer

511‧‧‧第二低反射層 511‧‧‧Second low reflection layer

圖1係為本發明第一型可調整波長之接收器構造圖。 1 is a structural diagram of a receiver of a first type of adjustable wavelength according to the present invention.

圖2係為本發明第一種具光柵的半導體濾波器之製作流程圖I。 2 is a flow chart I of the fabrication of a first semiconductor filter with a grating according to the present invention.

圖3係為本發明第一種具光柵的半導體濾波器之製作流程圖II。 3 is a flow chart II of the fabrication of the first semiconductor filter with a grating according to the present invention.

圖4係為本發明第一種具光柵的半導體濾波器之製作流程圖III。 4 is a flow chart III of the fabrication of the first semiconductor filter with a grating according to the present invention.

圖5係為本發明第一種具光柵的半導體濾波器之製作流程圖IV。 FIG. 5 is a flow chart IV of the fabrication of the first semiconductor filter with grating according to the present invention.

圖6係為本發明第二種具光柵的半導體濾波器之製作流程圖I。 6 is a flow chart I of fabricating a second semiconductor filter with a grating according to the present invention.

圖7係為本發明第二種具光柵的半導體濾波器之製作流程圖II。 FIG. 7 is a flow chart II of manufacturing a second semiconductor filter with a grating according to the present invention.

圖8係為本發明第二種具光柵的半導體濾波器之製作流程圖III。 FIG. 8 is a flow chart III of manufacturing a second semiconductor filter with a grating according to the present invention.

圖9係為本發明第二種具光柵的半導體濾波器之製作流程圖IV。 FIG. 9 is a flow chart IV showing the fabrication of a second semiconductor filter having a grating according to the present invention.

圖10係為本發明第二型可調整波長之接收器構造圖。 Figure 10 is a structural view of a second type of adjustable wavelength receiver of the present invention.

以下將描述具體之實施例以說明本發明之實施態樣,惟其並非用以限制本發明所欲保護之範疇。 The specific embodiments are described below to illustrate the embodiments of the invention, but are not intended to limit the scope of the invention.

實施例1Example 1

請參閱圖1,其係為本發明第一型可調整波長之接收器構造圖,其製造方法及構造如下:在半導體的基板100(如:矽晶板)上使用平面光波導技術,利用化學氣相沈積(Chemical Vapor Deposition,簡稱CVD)將二氧化矽(SiO2)沈積到基板100上形成低折射率薄膜,再摻入矽化合物(SiO2-P2O5),形成高折射率薄膜,然後蓋上光阻,使用電子迴旋加速共振活性離子蝕刻的方法,將其他部分蝕刻掉,最後再蓋上覆蓋層,形成波導。 Please refer to FIG. 1 , which is a structural diagram of a receiver of a first type of adjustable wavelength according to the present invention. The manufacturing method and the structure thereof are as follows: planar optical waveguide technology is used on a substrate 100 of a semiconductor (eg, a crystal plate), and chemistry is utilized. Vapor Deposition (CVD) deposits cerium oxide (SiO 2 ) onto the substrate 100 to form a low refractive index film, and then incorporates a bismuth compound (SiO 2 -P 2 O 5 ) to form a high refractive index film. Then, the photoresist is covered, and the other portions are etched away by electron cyclotron resonance reactive ion etching, and finally the cover layer is covered to form a waveguide.

蝕刻特定區域的光波導及基板100,以形成二分開之金屬導電層區域,此二金屬導電層區域將波導區分成第一波導區111、第二波導區112、第三波導區113。使用微顯影技術及薄膜技術,利用電子蒸鍍器,將金或鉑鍍上前述二金屬導電層區域,以形成第一金屬導電層121及第二金屬導電層122,前述二金屬導電層是作為導電之用,並定義出擺放半導體濾波器及檢光器的位置。使用導電黏著劑分別將具光柵的半導體濾波器13及檢 光器14黏著於第一金屬導電層121及第二金屬導電層122上。 The optical waveguide of the specific region and the substrate 100 are etched to form two separate metal conductive layer regions, which divide the waveguide into the first waveguide region 111, the second waveguide region 112, and the third waveguide region 113. Using a micro-developing technique and a thin film technique, gold or platinum is plated with the above-mentioned two metal conductive layer regions by an electron vaporizer to form a first metal conductive layer 121 and a second metal conductive layer 122, and the second metal conductive layer is used as Conductive and define the location of the semiconductor filter and detector. Using a conductive adhesive to separately apply a semiconductor filter 13 with a grating The photoconductor 14 is adhered to the first metal conductive layer 121 and the second metal conductive layer 122.

外部的光纖15被一光纖固定部16固定在基板100(請參圖1,基板101為基板100之延伸)上,基板可為矽基板,光纖15的一端與第一波導區111之一端連接或靠近,以將光訊號引入到第一波導區111,接著光訊號被由第一波導區111引導注入設置於第一波導區另一側的具光柵的半導體濾波器13。 The outer optical fiber 15 is fixed on the substrate 100 by a fiber fixing portion 16 (refer to FIG. 1, the substrate 101 is an extension of the substrate 100), the substrate may be a germanium substrate, and one end of the optical fiber 15 is connected to one end of the first waveguide region 111 or Proximity is introduced to introduce the optical signal into the first waveguide region 111, and then the optical signal is guided by the first waveguide region 111 to inject the semiconductor filter 13 having the grating disposed on the other side of the first waveguide region.

在具光柵半導體濾波器13的光柵區輸入電流,即可選擇可通過的波長,被濾波後的訊號光再由第二波導區112引導注入設置於第二波導區另一側的檢光器14,由檢光器14將光訊號轉成電訊號。第三波導區113則僅為製程中留下之結構。 The input current is input to the grating region of the grating semiconductor filter 13, and the passable wavelength is selected, and the filtered signal light is guided by the second waveguide region 112 to inject the photodetector 14 disposed on the other side of the second waveguide region. The optical signal is converted into an electrical signal by the optical detector 14. The third waveguide region 113 is only the structure left in the process.

其中,光纖固定部16之材質可為玻璃,檢光器14可由正-本-負光二極體(Positive-Intrinsic-Negative Photodiode,P-I-N Photodiode)、雪崩光二極體(Avalanche Photodiode,APD)、或波導型正-本-負光二極體(P-I-N Photodiode)黏著在氮化鋁(AlN)基板上所組成。 The fiber fixing portion 16 may be made of glass, and the photodetector 14 may be a positive-negative photodiode (PIN Photodiode), an avalanche photodiode (APD), or a waveguide. A positive-negative-negative photodiode (PIN Photodiode) is adhered to an aluminum nitride (AlN) substrate.

實施例2Example 2

請合併參閱圖2至圖5,其為本發明第一種具光柵的半導體濾波器之製作流程圖,以下則將藉由說明本發明第一種具光柵的半導體濾波器之製作流程,以闡釋如何長成本發明具光柵的半導體濾波器之結構。其中,本實施例中所提供之具光柵的半導體濾波器可應用於實施例1中的可調整波長之接收器中。 Please refer to FIG. 2 to FIG. 5 , which are flowcharts for fabricating a semiconductor filter with a grating according to the present invention. The following is a description of the fabrication process of the first semiconductor filter with a grating according to the present invention. How to invent the structure of a semiconductor filter with a grating. The semiconductor filter with grating provided in the embodiment can be applied to the receiver of the adjustable wavelength in the first embodiment.

首先,請參閱圖2,在磷化銦(InP)材質之基板201的一面上,依序磊晶成長由N型磷化銦所組成的N型披覆層(N type cladding layer) 202,再成長由磷砷化鎵銦(InGaAsP)所組成的四元材料層(quaternary)203。其中,磷化銦基板是一般成長長波長ⅢV族半導體常用的基板,N型披覆層202是提供作為光的N型侷限層,四元材料層203是作為波導層之用。 First, referring to FIG. 2, a N-type cladding layer composed of N-type indium phosphide is sequentially epitaxially grown on one surface of a substrate 201 made of indium phosphide (InP) material. 202, further growing a quaternary 203 composed of indium gallium arsenide (InGaAsP). Among them, the indium phosphide substrate is a commonly used substrate for generally growing long-wavelength IIIV semiconductors, the N-type cladding layer 202 is provided as an N-type confinement layer of light, and the quaternary material layer 203 is used as a waveguide layer.

接著,請參閱圖3,在四元材料層203上,沿圖2之磊晶片的晶向[01],製作光柵區與非光柵區。其步驟如下:在四元材料層203上使用光學微影技術定義出光柵區域,用電子束蝕刻、相位光罩技術或全像干涉法定義出光柵,再經由化學蝕刻,將光柵轉移到四元材料層203上,使四元材料層203分成包含光柵的光柵區304與無光柵的非光柵區305。再於製作完光柵的四元材料層203上面,進行二次磊晶,成長由P型磷化銦所組成的P型披覆層(P type cladding layer)306,以及由磷砷化銦(InGaAs)所組成的歐姆接觸電層307。其中,P型披覆層306是提供作為光的P型侷限層,歐姆接觸電層307是提供作為元件的導電層。 Next, referring to FIG. 3, on the quaternary material layer 203, along the crystal orientation of the epitaxial wafer of FIG. 2 [01 ], making grating regions and non-grating regions. The steps are as follows: the grating region is defined by the optical lithography technique on the quaternary material layer 203, and the grating is defined by electron beam etching, phase mask technology or holographic interferometry, and the grating is transferred to the quaternary by chemical etching. On the material layer 203, the quaternary material layer 203 is divided into a grating region 304 containing a grating and a non-grating region 305 having no grating. Further, on the quaternary material layer 203 on which the grating is formed, secondary epitaxial growth is performed, and a P type cladding layer 306 composed of P-type indium phosphide is grown, and indium phosphorus indium arsenide (InGaAs) is grown. The ohmic contact layer 307 is formed. Among them, the P-type cladding layer 306 is a P-type confinement layer provided as light, and the ohmic contact electric layer 307 is a conductive layer provided as an element.

接著,要在圖3的結構上,製作出呈脊狀平台(ridge mesa)狀的脊型波導結構,其是作為光波導之用,使得訊號光能被侷限在此脊狀的區域,並沿脊型波導(即P型披覆層)延伸方向的光路徑傳播。其製作步驟如下:使用光學微影技術沿圖3的磊晶片的晶向[011]定義出條狀之波導,接著使用化學蝕刻,蝕刻P型披覆層306及歐姆接觸電層307,即完成脊型波導結構,脊型波導的正面圖可參閱圖4,其為相對於圖3轉90度角看入之視圖。 Next, in the structure of FIG. 3, a ridge-shaped waveguide structure in the form of a ridge mesa is formed, which is used as an optical waveguide, so that signal light can be confined to the ridge-like region and along The light path of the ridge waveguide (ie, the P-type cladding layer) extends in the direction of extension. The fabrication steps are as follows: a strip-shaped waveguide is defined along the crystal orientation [011] of the epitaxial wafer of FIG. 3 using optical lithography, and then the P-type cladding layer 306 and the ohmic contact layer 307 are etched using chemical etching, that is, For a ridge-shaped waveguide structure, a front view of the ridge-shaped waveguide can be seen in FIG. 4, which is a view taken at a 90-degree angle with respect to FIG.

接著,是在完成脊型波導結構的磊晶片上長成一圖案化絕緣層406,其是作為絕緣之用,透過此步驟,磊晶片將露出頂端的半導體,使用者可透過此露出之區域輸入電流。其步驟如下:利用電漿輔助化學氣相 沈積(Plasma-enhanced chemical vapor deposition,簡稱PECVD),在已完成脊型波導的整個磊晶片上成長氮化矽(SiNx),然後在氮化矽上鋪上光阻,使用氧離子體(Oxygen plasma)進行蝕刻,直到氮化矽被蝕刻到露出脊型波導的頂部,再用氟化碳離子體(CF4 plasma)蝕刻露出脊型波導頂部的氮化矽,直到半導體層(歐姆接觸電層)露出,接著去除光阻,即完成圖案化絕緣層406。 Then, a patterned insulating layer 406 is formed on the epitaxial wafer on which the ridge waveguide structure is completed, which is used for insulation. Through this step, the epitaxial wafer will expose the top semiconductor, and the user can input current through the exposed region. . The steps are as follows: using a plasma-assisted chemical vapor deposition (PECVD), a tantalum nitride (SiNx) is grown on the entire epitaxial wafer of the completed ridge waveguide, and then spread on the tantalum nitride. The upper photoresist is etched using an Oxygen plasma until the tantalum nitride is etched to the top of the exposed ridge waveguide, and then etched with a CF 4 plasma to expose the nitridation at the top of the ridge waveguide. Thereafter, until the semiconductor layer (ohmic contact layer) is exposed, and then the photoresist is removed, the patterned insulating layer 406 is completed.

接著,要在磊晶片上定義出元件之電極,以供電流輸入。首先,運用具有影像反轉(image reversal)的光阻,配合光學微影技術,將電極分離的圖案定義在脊型波導的頂部之區域上,再經紫外線曝光、顯影,露出歐姆接觸電層307,使用真空電子束蒸鍍系統在歐姆接觸電層307上長成P型接觸金屬層407,蒸鍍結束後,將磊晶片泡在丙酮中以掀離不要的金屬,便形成第一P型接觸金屬層508與第二P型接觸金屬層509。再以化學蝕刻歐姆接觸電層307,形成第一歐姆接觸電層506與第二歐姆接觸電層507,如圖5中所示的分開之結構,第一歐姆接觸電層是設置於P型披覆層上,且相對於光柵區處,第二歐姆接觸電層是設置於P型披覆層上,且相對於非光柵區處。 Next, the electrodes of the components are defined on the epitaxial wafer for current input. First, using an image reversal photoresist, combined with optical lithography, the electrode separation pattern is defined on the top of the ridge waveguide, and then exposed to ultraviolet light and developed to expose the ohmic contact layer 307. The P-type contact metal layer 407 is grown on the ohmic contact layer 307 by using a vacuum electron beam evaporation system. After the evaporation is completed, the epitaxial wafer is bubbled in acetone to remove the unnecessary metal, thereby forming the first P-type contact. The metal layer 508 and the second P-type contact metal layer 509. Then, the ohmic contact layer 307 is chemically etched to form a first ohmic contact layer 506 and a second ohmic contact layer 507, as shown in FIG. 5, the first ohmic contact layer is disposed on the P-type pleat. On the cladding, and relative to the grating region, the second ohmic contact layer is disposed on the P-type cladding layer and opposite to the non-grating region.

其中,前述的圖案化絕緣層406將覆蓋於第一歐姆接觸電層506、第二歐姆接觸電層507、第一P型接觸金屬層508與第二P型接觸金屬層509,且露出部分的第一歐姆接觸電層506與第二歐姆接觸電層507。第一P型接觸金屬508層是設置於第一歐姆接觸電層506上未被圖案化絕緣層406覆蓋的區域,第二P型接觸金屬層509是設置於第二歐姆接觸電層507上未被圖案化絕緣層406覆蓋的區域。 Wherein, the foregoing patterned insulating layer 406 will cover the first ohmic contact layer 506, the second ohmic contact layer 507, the first P-type contact metal layer 508 and the second P-type contact metal layer 509, and the exposed portion The first ohmic contact layer 506 and the second ohmic contact layer 507. The first P-type contact metal layer 508 is disposed on the first ohmic contact layer 506 and is not covered by the patterned insulating layer 406. The second P-type contact metal layer 509 is disposed on the second ohmic contact layer 507. The area covered by the patterned insulating layer 406.

接著,將完成上述步驟的磷化銦(InP)基板磨薄,並於磊晶片的另一面,即基板201相對於長成脊型波導的另一面上,蒸鍍上N型接觸金屬層408,經退火、切割得到具光柵半導體結構濾波器。然後,在磊晶片的兩側邊,即與訊號光的光路徑(脊型波導延伸方向)垂直的磊晶片之兩側,使用真空電子束蒸鍍系統蒸鍍上二低反射層(第一低反射層510、第二低反射層511),如圖5所示,其中低反射層至少須覆蓋P型披覆層。低反射層是用於降低光的反射率,以破壞共振腔之用,亦可提高入射訊號光的比例。 Next, the indium phosphide (InP) substrate which has completed the above steps is thinned, and the N-type contact metal layer 408 is vapor-deposited on the other side of the epitaxial wafer, that is, the other side of the substrate 201 with respect to the long ridge-shaped waveguide. After annealing and cutting, a grating semiconductor structure filter is obtained. Then, on both sides of the epitaxial wafer, that is, on both sides of the epitaxial wafer perpendicular to the optical path of the signal light (the ridge waveguide extending direction), a vacuum electron beam evaporation system is used to evaporate the second low reflection layer (the first low layer) The reflective layer 510 and the second low reflective layer 511) are as shown in FIG. 5, wherein the low reflective layer must cover at least the P-type cladding layer. The low reflection layer is used to reduce the reflectivity of light to destroy the resonant cavity, and also to increase the proportion of incident signal light.

於實際應用上,入射的光訊號是由第一低反射層510進入濾波器。當欲調整可通過之光訊號時,控制第一P型接觸金屬層508及第二P型接觸金屬層509輸入的電流,以選擇可通過的波長。當在第一P型接觸金屬層508輸入電流時,將改變光柵區304的折射率,便能改變可通過的波長。同樣地,在第二P型接觸金屬層509輸入電流,改變四元材料層203的非光柵區305的折射率,便能微調可通過的波長。最後,濾波後的光訊號由第二低反射層511離開濾波器。 In practical applications, the incident optical signal is entered into the filter by the first low reflection layer 510. When the optical signal that can pass is adjusted, the current input by the first P-type contact metal layer 508 and the second P-type contact metal layer 509 is controlled to select a passable wavelength. When a current is input to the first P-type contact metal layer 508, the refractive index of the grating region 304 will be changed to change the wavelength that can pass. Similarly, by inputting a current in the second P-type contact metal layer 509 and changing the refractive index of the non-grating region 305 of the quaternary material layer 203, the wavelength through which the pass can be fine-tuned. Finally, the filtered optical signal exits the filter by the second low reflection layer 511.

實施例3Example 3

請合併參閱圖6至圖9,其為本發明第二種具光柵的半導體濾波器之製作流程圖,以下則將藉由說明本發明第二種具光柵的半導體濾波器之製作流程,以闡釋如何長成本發明具光柵的半導體濾波器之結構。其中,本實施例中所提供之具光柵的半導體濾波器可應用於實施例1中的可調整波長之接收器中。 Please refer to FIG. 6 to FIG. 9 , which are flowcharts for fabricating a second semiconductor filter with a grating according to the present invention. Hereinafter, a description will be given of a second semiconductor chip filter with a grating according to the present invention. How to invent the structure of a semiconductor filter with a grating. The semiconductor filter with grating provided in the embodiment can be applied to the receiver of the adjustable wavelength in the first embodiment.

請參閱圖6,首先,在磷化銦材質之基板601之上依序磊晶成 長由N型磷化銦所組成的N型披覆層602、由磷砷化鎵銦組成的四元材料層603、主動層604、由P型磷化銦所組成的初級P型披覆層605。其中,磷化銦基板是一般成長長波長ⅢV族半導體常用的基板,N型披覆層602是提供作為光的N型侷限層,四元材料層603是作為波導層之用。 Referring to FIG. 6, first, epitaxially epitaxially formed on the substrate 601 of indium phosphide material. An N-type cladding layer 602 composed of N-type indium phosphide, a quaternary material layer 603 composed of gallium indium arsenide, an active layer 604, and a primary P-type coating layer composed of P-type indium phosphide 605. Among them, the indium phosphide substrate is a commonly used substrate for generally growing long-wavelength IIIV semiconductors, the N-type cladding layer 602 is provided as an N-type confinement layer of light, and the quaternary material layer 603 is used as a waveguide layer.

接著,請參閱圖7,首先,沿圖6中的磊晶片[01]之方向,使用光學微影技術定義出主動區701之範圍,再使用化學蝕刻,將初級P型披覆層605及主動層604中非主動區的部分去除,便完成了主動區701,並露出四元材料層603,其中,主動區701具有放大輸入之光信號的功效。 Next, please refer to FIG. 7, first, along the epitaxial wafer [01] in FIG. In the direction of the optical lithography, the active region 701 is defined by using the chemical lithography to remove the active P-type 605 and the active region 604 in the active region 701, and the active region 701 is completed. The quaternary material layer 603 is exposed, wherein the active region 701 has the effect of amplifying the input optical signal.

接著使用光學微影技術定義出光柵區域之範圍,使用電子束蝕刻、相位光罩技術或全像干涉法定義出光柵,經由化學蝕刻,將光柵轉移到四元材料層603上,四元材料層603便被劃分為有光柵的光柵區702與無光柵的非光柵區703。製作好光柵區後,即進行二次磊晶,成長由P型磷化銦所組成的P型披覆層(P type cladding layer)704,以及由磷砷化銦(InGaAs)所組成的歐姆接觸電層705。其中,P型披覆層704是提供作為光的P型侷限層,歐姆接觸電層705是提供作為元件的導電層。 The optical lithography technique is then used to define the extent of the grating region, the grating is defined by electron beam etching, phase mask technique or holographic interferometry, and the grating is transferred to the quaternary material layer 603 via chemical etching, the quaternary material layer 603 is divided into a raster region 702 having a grating and a non-grating region 703 having no grating. After the grating region is fabricated, secondary epitaxy is performed, and a P-type cladding layer 704 composed of P-type indium phosphide and an ohmic contact composed of indium phosphorus arsenide (InGaAs) are grown. Electrical layer 705. Among them, the P-type cladding layer 704 is a P-type confinement layer provided as light, and the ohmic contact electric layer 705 is a conductive layer provided as an element.

接著,要在圖7的結構上,製作出呈脊狀平台(ridge mesa)狀的脊型波導結構,其是作為光波導之用,使得訊號光能被侷限在此脊狀的區域,並沿脊型波導(即N型披覆層)延伸方向的光路徑傳播。其製作步驟如下:使用光學微影技術沿圖7的磊晶片[011]之方向定義出條狀之波導,然後使用化學蝕刻,蝕刻P型披覆層704及歐姆接觸電層705,即完成脊型波導結構,脊型波導的正面圖可參閱圖8,其為相對於圖7轉90度角看入之視圖。 Next, in the structure of FIG. 7, a ridge-shaped waveguide structure in the form of a ridge mesa is formed, which is used as an optical waveguide, so that signal light can be confined to the ridge-like region and along the edge. The light path of the ridge waveguide (ie, the N-type cladding layer) extends in the direction of extension. The fabrication steps are as follows: a strip-shaped waveguide is defined along the direction of the epitaxial wafer [011] of FIG. 7 using optical lithography, and then the P-type cladding layer 704 and the ohmic contact layer 705 are etched using chemical etching, ie, the ridge is completed. A front view of a ridge waveguide, see Fig. 8, is a view taken at a 90 degree angle with respect to Fig. 7.

接著,是在完成脊型波導結構的磊晶片上長成一圖案化絕緣層806,其是作為絕緣之用,透過此步驟,磊晶片將露出頂端的半導體,使用者可透過此露出之區域輸入電流。其步驟如下:利用電漿輔助化學氣相沈積(PECVD),在已完成脊型波導的整個磊晶片上成長氮化矽(SiNx),然後,在氮化矽上鋪上光阻,並使用氧離子體(Oxygen plasma)蝕刻光阻,直到露出脊型波導頂部的氮化矽,再用氟化碳離子體(CF4 plasma)蝕刻露出脊型波導頂部的氮化矽,直到半導體層露出後,接著去除光阻,即完成圖案化絕緣層806。 Then, a patterned insulating layer 806 is formed on the epitaxial wafer on which the ridge waveguide structure is completed, which is used for insulation. Through this step, the epitaxial wafer will expose the top semiconductor, and the user can input current through the exposed region. . The steps are as follows: using plasma-assisted chemical vapor deposition (PECVD) to grow tantalum nitride (SiNx) on the entire epitaxial wafer of the completed ridge waveguide, then depositing photoresist on the tantalum nitride and using oxygen Oxygen plasma etches the photoresist until the tantalum nitride on top of the ridge waveguide is exposed, and then the tantalum nitride on the top of the ridge waveguide is exposed by CF 4 plasma until the semiconductor layer is exposed. The photoresist is then removed, ie, the patterned insulating layer 806 is completed.

接著,要在磊晶片上定義出元件之電極,以供電流輸入。首先,運用具有影像反轉(image reversal)特性的光阻,配合光學微影技術,將電極分離的圖案定義在脊型波導的區域上,再經紫外線曝光、顯影,露出歐姆接觸電層705,接著使用真空電子束蒸鍍系統在歐姆接觸電層705上長成P型接觸金屬層807,蒸鍍結束後,將磊晶片泡在丙酮中以掀離不要的金屬,便形成第一P型接觸金屬層910、第二P型接觸金屬層911及第三P型接觸金屬層912。再以化學蝕刻歐姆接觸電層705,形成第一歐姆接觸電層907、第二歐姆接觸電層908與第三歐姆接觸電層909,如圖9中所示,第一歐姆接觸電層是設置於P型披覆層上,且相對於光柵區處,第二歐姆接觸電層是設置於P型披覆層上,且非相對於光柵區與主動區處,第三歐姆接觸電層是設置於P型披覆層上,且相對於主動層處。 Next, the electrodes of the components are defined on the epitaxial wafer for current input. First, a photoresist having image reversal characteristics is used, and an optical lithography technique is used to define an electrode separation pattern on a region of the ridge waveguide, and then exposed to ultraviolet light and developed to expose the ohmic contact layer 705. Then, a P-type contact metal layer 807 is grown on the ohmic contact layer 705 by using a vacuum electron beam evaporation system. After the evaporation is completed, the epitaxial wafer is bubbled in acetone to remove the unnecessary metal, thereby forming the first P-type contact. The metal layer 910, the second P-type contact metal layer 911, and the third P-type contact metal layer 912. Then, the ohmic contact layer 705 is chemically etched to form a first ohmic contact layer 907, a second ohmic contact layer 908 and a third ohmic contact layer 909. As shown in FIG. 9, the first ohmic contact layer is disposed. On the P-type cladding layer, and opposite to the grating region, the second ohmic contact layer is disposed on the P-type cladding layer, and is not opposite to the grating region and the active region, and the third ohmic contact layer is disposed On the P-type cladding layer, and relative to the active layer.

其中,前述的圖案化絕緣層806將覆蓋於第一歐姆接觸電層907、第二歐姆接觸電層908、第三歐姆接觸電層909、第一P型接觸金屬層910與第二P型接觸金屬層911,且露出部分的第一歐姆接觸電層910與第二 歐姆接觸電層911。第一P型接觸金屬層910是設置於第一歐姆接觸電層907上未被圖案化絕緣層806覆蓋的區域,第二P型接觸金屬層911是設置於第二歐姆接觸電層908上未被圖案化絕緣層806覆蓋的區域,第三P型接觸金屬層912是設置於第三歐姆接觸電層909上未被圖案化絕緣層806覆蓋的區域。 The foregoing patterned insulating layer 806 will cover the first ohmic contact layer 907, the second ohmic contact layer 908, the third ohmic contact layer 909, and the first P-type contact metal layer 910 and the second P-type contact. Metal layer 911, and exposed portion of first ohmic contact layer 910 and second The ohmic contact layer 911. The first P-type contact metal layer 910 is disposed on the first ohmic contact layer 907 and is not covered by the patterned insulating layer 806. The second P-type contact metal layer 911 is disposed on the second ohmic contact layer 908. The region covered by the patterned insulating layer 806, the third P-type contact metal layer 912 is a region disposed on the third ohmic contact layer 909 that is not covered by the patterned insulating layer 806.

接著,將完成上述步驟的磷化銦(InP)基板磨薄,並於磊晶片的另一面,即基板601相對於長成脊型波導的另一面上,蒸鍍上N型接觸金屬層808,經退火、切割得到具光柵半導體結構濾波器。然後,在磊晶片的兩側邊,即與訊號光的光路徑(脊型波導延伸方向)垂直的磊晶片之兩側,使用真空電子束蒸鍍系統蒸鍍上二低反射層(第一低反射層913、第二低反射層914),如圖9所示,其中低反射層至少須覆蓋P型披覆層。低反射層是用於降低光的反射率,以破壞共振腔之用,亦可提高入射訊號光的比例。 Next, the indium phosphide (InP) substrate that has completed the above steps is thinned, and the N-type contact metal layer 808 is vapor-deposited on the other side of the epitaxial wafer, that is, the other side of the substrate 601 with respect to the long ridge-shaped waveguide. After annealing and cutting, a grating semiconductor structure filter is obtained. Then, on both sides of the epitaxial wafer, that is, on both sides of the epitaxial wafer perpendicular to the optical path of the signal light (the ridge waveguide extending direction), a vacuum electron beam evaporation system is used to evaporate the second low reflection layer (the first low layer) The reflective layer 913 and the second low reflective layer 914) are as shown in FIG. 9, wherein the low reflective layer must cover at least the P-type cladding layer. The low reflection layer is used to reduce the reflectivity of light to destroy the resonant cavity, and also to increase the proportion of incident signal light.

於實際應用上,入射光訊號由第一低反射層913進入濾波器。當欲調整可通過波長之光訊號時,即藉由控制第一P型接觸金屬層910及第二P型接觸金屬層911輸入的電流,選擇可通過的波長。 In practical applications, the incident light signal enters the filter by the first low reflection layer 913. When the light signal of the passable wavelength is to be adjusted, that is, by controlling the current input by the first P-type contact metal layer 910 and the second P-type contact metal layer 911, the passable wavelength is selected.

當在第一P型接觸金屬層輸入電流910,將改變光柵區702的折射率,便能改變可通過的波長。同樣地,在第二P型接觸金屬層911輸入電流,改變四元材料層603的折射率,便能微調可通過的波長。而在第三P型接觸金屬層912輸入電流,藉由主動層可放大通過光柵區702、及四元材料層603的光訊號。最後,濾波後的光訊號由第二低反射層914離開濾波器。 When the current 910 is input to the first P-type contact metal layer, the refractive index of the grating region 702 will change, and the wavelength that can pass can be changed. Similarly, by inputting a current to the second P-type contact metal layer 911 and changing the refractive index of the quaternary material layer 603, the wavelength that can pass can be finely adjusted. The input current is input to the third P-type contact metal layer 912, and the optical signals passing through the grating region 702 and the quaternary material layer 603 can be amplified by the active layer. Finally, the filtered optical signal exits the filter by the second low reflection layer 914.

實施例4Example 4

請參閱圖10,其係為本發明第二型可調整波長之接收器構造 圖,其製造方法及構造如下:在半導體的基板1000(如:矽晶板)上使用平面光波導技術以形成波導區,使用微顯影技術及化學蝕刻,或是使用電子迴旋加速共振活性離子蝕刻的方法蝕刻半導體的基板1000以形成V型溝槽,使用黏著劑分別將第一球型透鏡1010、第二球型透鏡1011黏著於V型溝槽中,其中,透鏡之形狀並未限定僅能為球型透鏡,亦可為其它形狀但能達成同樣功能之透鏡。 Please refer to FIG. 10 , which is a second type of adjustable wavelength receiver structure of the present invention. The manufacturing method and structure are as follows: a planar optical waveguide technique is used on a semiconductor substrate 1000 (eg, a twinned plate) to form a waveguide region, using micro-developing techniques and chemical etching, or using electron cyclotron resonance active ion etching. The method etches the substrate 1000 of the semiconductor to form a V-shaped groove, and adheres the first spherical lens 1010 and the second spherical lens 1011 to the V-shaped groove by using an adhesive, wherein the shape of the lens is not limited to only It is a spherical lens, and it can also be a lens of other shapes but capable of achieving the same function.

接著,使用微顯影技術及薄膜技術在特定區域形成第一金屬導電層1020及第二金屬導電層1021,使用導電黏著劑分別將具光柵的半導體濾波器13及檢光器14黏著於第一金屬導電層1020及第二金屬導電層1021上。 Next, the first metal conductive layer 1020 and the second metal conductive layer 1021 are formed in a specific region by using a micro-developing technique and a thin film technique, and the semiconductor filter 13 and the photodetector 14 having the grating are adhered to the first metal by using a conductive adhesive, respectively. The conductive layer 1020 and the second metal conductive layer 1021.

外部的光纖15被一光纖固定部16固定在基板1000(請參圖10,基板1001為基板1000之延伸)上,其中基板可為矽基板,光纖固定部16之材質可為玻璃,光纖15將光訊號引入,光訊號經設置於光纖固定部一側的第一球型透鏡1010聚焦後,注入到設置於第一球型透鏡1010另一側的具光柵的半導體濾波器13。 The external optical fiber 15 is fixed on the substrate 1000 by a fiber fixing portion 16 (refer to FIG. 10, the substrate 1001 is an extension of the substrate 1000), wherein the substrate can be a germanium substrate, and the fiber fixing portion 16 can be made of glass, and the optical fiber 15 The optical signal is introduced, and the optical signal is focused by the first spherical lens 1010 disposed on the side of the optical fiber fixing portion, and then injected into the semiconductor filter 13 having the grating disposed on the other side of the first spherical lens 1010.

具光柵的半導體濾波器13的光柵區輸入電流,即可改變光柵區的折射率,以選擇可通過的波長,達成濾波的效果,被濾波後的光訊號再經由第二球型透鏡1011聚焦注入檢光器14,由檢光器14將光訊號轉成電訊號。檢光器14可由正-本-負光二極體(Positive-Intrinsic-Negative Photodiode,P-I-N Photodiode)、雪崩光二極體(Avalanche Photodiode,APD)、或波導型正-本-負光二極體(P-I-N Photodiode)黏著在氮化鋁(AlN)基板上所組成。 The input current of the grating region of the semiconductor filter 13 with the grating can change the refractive index of the grating region to select the passable wavelength to achieve the filtering effect, and the filtered optical signal is focused and injected through the second spherical lens 1011. The photodetector 14 converts the optical signal into an electrical signal by the photodetector 14. The photodetector 14 may be a Positive-Intrinsic-Negative Photodiode (PIN Photodiode), an Avalanche Photodiode (APD), or a waveguide-type positive-negative-negative diode (PIN Photodiode). Adhesively composed on an aluminum nitride (AlN) substrate.

本發明所提供的可調整波長之接收器,具有下列之優點:使用光柵半導體結構濾波器來選擇可通過的波長,其選擇波長的速度快。使用光柵半導體結構濾波器,製程穩定,可大量製造,降低製作成本。 The wavelength-adjustable receiver provided by the present invention has the advantage of using a grating semiconductor structure filter to select a wavelength that can pass, which is fast in selecting a wavelength. The use of a grating semiconductor structure filter, the process is stable, can be manufactured in large quantities, and the manufacturing cost is reduced.

上列詳細說明係針對本發明之一可行實施例之具體說明,惟該實施例並非用以限制本發明之專利範圍,凡未脫離本發明技藝精神所為之等效實施或變更,均應包含於本案之專利範圍中。 The detailed description of the preferred embodiments of the present invention is intended to be limited to the scope of the invention, and is not intended to limit the scope of the invention. The patent scope of this case.

Claims (10)

一種可調整波長之接收器,包含:一基板;一第一波導區,係設在該基板之一側,且該第一波導區之一側接收來自一光纖導入的光訊號,並導引該光訊號到該第一波導區之另側;一具光柵的半導體濾波器,係設置於該基板設有該第一波導區之一側,且該具光柵的半導體濾波器之一端係面對該第一波導區之另側,該具光柵半導體濾波器包括一四元材料層,該四元材料層之局部為一光柵區,其餘為一非光柵區,以選擇光訊號中可通過的波長,由該具光柵的半導體濾波器之另端輸出;一第二波導區,係設置該基板之一側,該第二波導區之一側面對該具光柵的半導體濾波器之另端,並導引被該具光柵的半導體濾波器所選擇的該光訊號到該第二波導區之另側;一檢光器,係設置該基板之一側,該檢光器之一側面對該第二波導區之另側,並將光訊號轉成電訊號。 A wavelength-adjustable receiver includes: a substrate; a first waveguide region disposed on one side of the substrate, and one side of the first waveguide region receives an optical signal from an optical fiber and guides the signal An optical signal is connected to the other side of the first waveguide region; a grating semiconductor filter is disposed on the substrate side of the first waveguide region, and one end of the grating semiconductor filter faces the On the other side of the first waveguide region, the grating semiconductor filter comprises a quaternary material layer, wherein the quaternary material layer is a grating region and the rest is a non-grating region to select a wavelength that can pass through the optical signal. Outputting from the other end of the grating semiconductor filter; a second waveguide region is disposed on one side of the substrate, and one side of the second waveguide region is opposite to the other end of the semiconductor filter with the grating The optical signal selected by the grating semiconductor filter is on the other side of the second waveguide region; a photodetector is disposed on one side of the substrate, and one side of the photodetector is opposite to the second waveguide region On the other side, and convert the optical signal into a signal 如請求項1所述之可調整波長之接收器,其中該檢光器為正-本-負光二極體(P-I-N)。 The receiver of the adjustable wavelength according to claim 1, wherein the photodetector is a positive-negative-negative photodiode (P-I-N). 如請求項1所述之可調整波長之接收器,其中該檢光器為雪崩光二極體。 The receiver of the adjustable wavelength according to claim 1, wherein the photodetector is an avalanche photodiode. 如請求項1所述之可調整波長之接收器,其中該檢光器為波導型正-本-負光二極體(P-I-N)。 The receiver of the adjustable wavelength according to claim 1, wherein the photodetector is a waveguide type positive-negative-negative photodiode (P-I-N). 一種可調整波長之接收器,包含:一基板;一第一透鏡,係設在該基板之一側,且該第一透鏡之一側接收來自一光纖導入的光訊號,並導引該光訊號到該第一透鏡之另側;一具光柵的半導體濾波器,係設置於該基板設有該第一透鏡之一側, 且該具光柵的半導體濾波器之一端係面對該第一透鏡之另側,該具光柵半導體濾波器包括一四元材料層,該四元材料層之局部為一光柵區,其餘為一非光柵區,以選擇光訊號中可通過的波長,由該具光柵的半導體濾波器之另端輸出;一第二透鏡,係設置該基板之一側,該第二透鏡之一側面對該具光柵的半導體濾波器之另端,並導引被該具光柵的半導體濾波器所選擇的該光訊號到該第二透鏡之另側;一檢光器,係設置該基板之一側,該檢光器之一側面對該第二透鏡之另側,並將光訊號轉成電訊號。 A wavelength-adjustable receiver includes: a substrate; a first lens disposed on one side of the substrate, and one side of the first lens receives an optical signal from an optical fiber and directs the optical signal To the other side of the first lens; a semiconductor filter with a grating disposed on a side of the substrate on which the first lens is disposed, And one end of the grating semiconductor filter faces the other side of the first lens, and the grating semiconductor filter comprises a quaternary material layer, wherein the quaternary material layer is a grating region, and the rest is a non- a grating region for selecting a wavelength that can pass through the optical signal, and outputting the other end of the semiconductor filter with the grating; a second lens is disposed on one side of the substrate, and one side of the second lens is opposite to the grating The other end of the semiconductor filter, and guiding the optical signal selected by the semiconductor filter with the grating to the other side of the second lens; a photodetector is disposed on one side of the substrate, the photodetection One side of the device is on the other side of the second lens and converts the optical signal into an electrical signal. 如請求項5所述之可調整波長之接收器,其中該檢光器為正-本-負光二極體(P-I-N)。 The receiver of the adjustable wavelength of claim 5, wherein the photodetector is a positive-negative-negative photodiode (P-I-N). 如請求項5所述之可調整波長之接收器,其中該檢光器為雪崩光二極體。 The receiver of the wavelength adjustable according to claim 5, wherein the photodetector is an avalanche photodiode. 如請求項5所述之可調整波長之接收器,其中該檢光器為波導型正-本-負光二極體(P-I-N)。 The receiver of the adjustable wavelength according to claim 5, wherein the photodetector is a waveguide type positive-negative-negative photodiode (P-I-N). 一種具光柵的半導體濾波器,包含:一基板;一N型披覆層,其係設置於該基板之一面;一四元材料層,其係設置於該N型披覆層上,該四元材料層之局部為一光柵區,其餘為一非光柵區;一P型披覆層,其係設置於該四元材料層上,該P型披覆層呈脊狀平台(ridge mesa)狀,其係作為光波導之用,使得訊號光沿該P型披覆層延伸方向的光路徑傳播;一第一歐姆接觸電層,其係設置於該P型披覆層上,且相對於該光柵區處;一第二歐姆接觸電層,其係設置於該P型披覆層上,且相對於該非光柵區處; 一圖案化絕緣層,其係覆蓋於該第一歐姆接觸電層、該第二歐姆接觸電層與該P型披覆層之上,且露出部分的該第一歐姆接觸電層與該第二歐姆接觸電層;一第一P型接觸金屬層,其係設置於該第一歐姆接觸電層上未被該圖案化絕緣層覆蓋的區域;一第二P型接觸金屬層,其係設置於該第二歐姆接觸電層上未被該圖案化絕緣層覆蓋的區域;一N型接觸金屬層,其係設置於該基板之另一面;二低反射層,其係分別設置於與該光路徑垂直的該P型披覆層之兩側。 A semiconductor filter with a grating comprises: a substrate; an N-type cladding layer disposed on one side of the substrate; and a quaternary material layer disposed on the N-type cladding layer, the quaternary The material layer is a grating region, and the rest is a non-grating region; a P-type coating layer is disposed on the quaternary material layer, and the P-type coating layer has a ridge mesa shape. It is used as an optical waveguide to transmit signal light along a light path extending in a direction in which the P-type cladding layer extends; a first ohmic contact electrical layer is disposed on the P-type cladding layer and opposite to the grating a second ohmic contact layer disposed on the P-type cladding layer and opposite to the non-grating region; a patterned insulating layer covering the first ohmic contact layer, the second ohmic contact layer and the P-type cladding layer, and exposing a portion of the first ohmic contact layer and the second An ohmic contact layer; a first P-type contact metal layer disposed on the first ohmic contact layer not covered by the patterned insulating layer; and a second P-type contact metal layer disposed on the second ohmic contact layer a region of the second ohmic contact layer that is not covered by the patterned insulating layer; an N-type contact metal layer disposed on the other side of the substrate; and two low-reflection layers respectively disposed on the light path Vertically on either side of the P-type cladding layer. 一種具光柵的半導體濾波器,包含:一基板;一N型披覆層,其係設置於該基板之一面;一四元材料層,其係設置於該N型披覆層上,該四元材料層之局部為一光柵區,其餘為一非光柵區;一主動層,其係設置於局部之該四元材料層上;一P型披覆層,其係設置於該四元材料層及該主動層上,該P型披覆層呈脊狀平台(ridge mesa)狀,其係作為光波導之用,使得訊號光沿該P型披覆層延伸方向的光路徑傳播;一第一歐姆接觸電層,其係設置於該P型披覆層上,且相對於該光柵區處;一第二歐姆接觸電層,其係設置於該P型披覆層上,且非相對於該光柵區與該主動區處;一第三歐姆接觸電層,其係設置於該P型披覆層上,且相對於該主動層處;一圖案化絕緣層,其係覆蓋於該第一歐姆接觸電層、該第二歐姆接觸電層、該第三歐姆接觸電層、該P型披覆層,且露出部分的該第一歐 姆接觸電層、該第二歐姆接觸電層、該第三歐姆接觸電層;一第一P型接觸金屬層,其係設置於該第一歐姆接觸電層上未被該圖案化絕緣層覆蓋的區域;一第二P型接觸金屬層,其係設置於該第二歐姆接觸電層上未被該圖案化絕緣層覆蓋的區域;一第三P型接觸金屬層,其係設置於該第三歐姆接觸電層上未被該圖案化絕緣層覆蓋的區域;一N型接觸金屬層,其係設置於該基板之另一面;二低反射層,其係分別設置於與該光路徑垂直的該P型披覆層之兩側。 A semiconductor filter with a grating comprises: a substrate; an N-type cladding layer disposed on one side of the substrate; and a quaternary material layer disposed on the N-type cladding layer, the quaternary The material layer is a grating region, and the rest is a non-grating region; an active layer is disposed on the local quaternary material layer; a P-type cladding layer is disposed on the quaternary material layer and In the active layer, the P-type cladding layer has a ridge mesa shape, which is used as an optical waveguide, so that signal light propagates along the optical path extending in the direction of the P-type cladding layer; a first ohm a contact layer disposed on the P-type cladding layer and opposite to the grating region; a second ohmic contact layer disposed on the P-type cladding layer and not opposite to the grating a region and the active region; a third ohmic contact layer disposed on the P-type cladding layer and opposite to the active layer; a patterned insulating layer covering the first ohmic contact An electric layer, the second ohmic contact layer, the third ohmic contact layer, the P-type cladding layer, and an exposed portion The first European a contact layer, the second ohmic contact layer, the third ohmic contact layer; a first P-type contact metal layer disposed on the first ohmic contact layer without being covered by the patterned insulating layer a second P-type contact metal layer disposed on the second ohmic contact layer not covered by the patterned insulating layer; a third P-type contact metal layer disposed on the first a region of the three-ohm contact electrical layer that is not covered by the patterned insulating layer; an N-type contact metal layer disposed on the other side of the substrate; and two low-reflection layers respectively disposed perpendicular to the optical path The sides of the P-type cladding layer.
TW105142006A 2016-12-19 2016-12-19 Adjustable wavelength receiver TWI629523B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW105142006A TWI629523B (en) 2016-12-19 2016-12-19 Adjustable wavelength receiver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW105142006A TWI629523B (en) 2016-12-19 2016-12-19 Adjustable wavelength receiver

Publications (2)

Publication Number Publication Date
TW201823782A TW201823782A (en) 2018-07-01
TWI629523B true TWI629523B (en) 2018-07-11

Family

ID=63640104

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105142006A TWI629523B (en) 2016-12-19 2016-12-19 Adjustable wavelength receiver

Country Status (1)

Country Link
TW (1) TWI629523B (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI261123B (en) * 2004-05-14 2006-09-01 En-Boa Wu Adjustable long period fiber grating structure and manufacturing method thereof
CN100394232C (en) * 2003-02-04 2008-06-11 富士通株式会社 Optical device with slab waveguide and channel waveguides on substrate
US7415175B2 (en) * 2005-02-11 2008-08-19 Analog Devices, Inc. High bit rate optical communication over multimode fibers
CN106164725A (en) * 2013-07-26 2016-11-23 尼奥弗托尼克斯公司 Adjustable grid follows the tracks of emitter and receptor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100394232C (en) * 2003-02-04 2008-06-11 富士通株式会社 Optical device with slab waveguide and channel waveguides on substrate
TWI261123B (en) * 2004-05-14 2006-09-01 En-Boa Wu Adjustable long period fiber grating structure and manufacturing method thereof
US7415175B2 (en) * 2005-02-11 2008-08-19 Analog Devices, Inc. High bit rate optical communication over multimode fibers
CN106164725A (en) * 2013-07-26 2016-11-23 尼奥弗托尼克斯公司 Adjustable grid follows the tracks of emitter and receptor

Also Published As

Publication number Publication date
TW201823782A (en) 2018-07-01

Similar Documents

Publication Publication Date Title
USRE48379E1 (en) Electronic-integration compatible photonic integrated circuit and method for fabricating electronic-integration compatible photonic integrated circuit
JP6048578B2 (en) Semiconductor light receiving element and manufacturing method thereof
JP6793786B1 (en) Manufacturing method of semiconductor light receiving element, photoelectric fusion module and avalanche photodiode
CN106129809B (en) Electroabsorption modulator and side-coupled grating laser method for integrating monolithic and device
KR20010113769A (en) Optical planar waveguide device and method of fabrication
KR100825723B1 (en) Optical device including gate insulator with edge effect
JP6560153B2 (en) Optical module and manufacturing method thereof
US20160025922A1 (en) Semiconductor optical device
US11415747B2 (en) Optical integrated device and production method therefor
US9742152B2 (en) Tunable semiconductor laser based on reconstruction-equivalent chirp and series mode or series and parallel hybrid integration, and preparation thereof
CN112290385A (en) Multi-wavelength silicon-based III-V group hybrid integrated laser array unit and manufacturing method thereof
TWI629523B (en) Adjustable wavelength receiver
JP6726248B2 (en) Semiconductor light receiving element and photoelectric fusion module
JP3104798B2 (en) Integrated optical coupler and method of manufacturing the same
Inoue et al. InP-based photodetector monolithically integrated with 90 hybrid for 100 Gbit/s compact coherent receivers
JP2015162571A (en) Ge-BASED SEMICONDUCTOR DEVICE, MANUFACTURING METHOD OF THE SAME AND OPTICAL INTERCONNECT SYSTEM
CN108808442B (en) Multi-wavelength distributed feedback semiconductor laser array and preparation method thereof
Hiraki et al. Heterogeneous integration of III-V semiconductors on Si photonics platform
TWI646742B (en) Laser chip and laser diode for mobile fronthaul
CN108051972B (en) Silicon photon modulator with wavelength irrelevant high extinction ratio
TWI581401B (en) Reflective Semiconductor Optical Amplifier
US11886003B2 (en) Optical waveguide
CN114664959B (en) Multichannel detector based on photonic crystal
JPH07142699A (en) Semiconductor optical integrated device and manufacture thereof
CN116107103B (en) High resolution vertical optical phase modulation array