JPH03292701A - Non-linear resistance element - Google Patents

Non-linear resistance element

Info

Publication number
JPH03292701A
JPH03292701A JP2094531A JP9453190A JPH03292701A JP H03292701 A JPH03292701 A JP H03292701A JP 2094531 A JP2094531 A JP 2094531A JP 9453190 A JP9453190 A JP 9453190A JP H03292701 A JPH03292701 A JP H03292701A
Authority
JP
Japan
Prior art keywords
metal
film
resistance element
resistance
large area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2094531A
Other languages
Japanese (ja)
Inventor
Hideyuki Nakano
秀之 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2094531A priority Critical patent/JPH03292701A/en
Publication of JPH03292701A publication Critical patent/JPH03292701A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent generation of film exfoliation when a microscopic work is conducted, to make it possible to use a wiring material adaptable to the formation of a large area element, and to prevent the deterioration of display characteristics caused by the delay of a data signal by a method wherein an oxidizable metal oxide film, which is different from the upper and lower metal, is used for a non-linear resistor. CONSTITUTION:The title resistance element is composed of four sections consisting of a lower electrodes 3, a non-linear resistor 4, an upper electrode 5 and a picture element electrode 6; the resistance element is constructed in such a manner that a piece of low resistance metal, having excellent workability can be used for the lower electrode, and that the use of a piece of metal of low resistance and low stress such as the high melting point metals of Cr, Ti, Mo and the like or aluminum can be made possible. It is unnecessary to use chemically-formed metal for a data line, and wiring material suitable for liquid crystal display can arbitrarily be selected. Also, a film of large area uniformly formed on the whole surface of a substrate can be obtained, and its display characteristics can also be made uniform.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、アクティブマトリックス型液晶デイスプレィ
のスイッチング素子として用いられる非線形抵抗素子に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a nonlinear resistance element used as a switching element of an active matrix liquid crystal display.

〔従来の技術〕[Conventional technology]

非線形抵抗素子の中の一つに、陽極酸化膜を非線形抵抗
体として用いた構造があり、このような従来i造て′は
第3図に示すように、下部電極3となるデータ線、その
表面には陽極酸化TaOx膜7の非線形抵抗体、さらに
その上に、下部電極3と交差するように位置したCr等
の上部型8i5の3部からなる素子構造をとっている。
One type of nonlinear resistance element is a structure that uses an anodic oxide film as a nonlinear resistance element.As shown in Figure 3, such a conventional structure uses a data line that becomes the lower electrode 3, and The device has a three-part structure including a nonlinear resistor made of an anodized TaOx film 7 on the surface, and an upper mold 8i5 made of Cr or the like placed above the nonlinear resistor to intersect with the lower electrode 3.

なお、図において、1はガラス基板、2はスパッタTa
Ox膜、6は画素電極である。このような素子構造を持
つものでTaの陽極酸化膜が非線形抵抗体として広く用
いられており、既にこれを用いた素子が市場に小型TV
用として投入されている。このように従来構造では、非
線形抵抗体である陽極酸化膜は、必ず下部電極と同じ金
属の酸化物となる構造であった。
In the figure, 1 is a glass substrate, 2 is a sputtered Ta
Ox film 6 is a pixel electrode. A Ta anodic oxide film with such an element structure is widely used as a nonlinear resistor, and elements using this are already on the market for small TVs.
It has been put in for use. As described above, in the conventional structure, the anodic oxide film, which is a nonlinear resistor, is always an oxide of the same metal as the lower electrode.

一方、CVD法、あるいはスパッタ法で形成したSiN
x、5iCxなどを非線形抵抗体として用いた構造では
、この非線形抵抗体の上下をCr等の金属で挟んだ素子
構造の場合もある。
On the other hand, SiN formed by CVD method or sputtering method
In a structure using .

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

液晶デイスプレィのスイッチング素子として非線形抵抗
素子を応用する場合、素子面積の大型化にともない、配
線材料の信頼性が表示特性に太きく起因するようになる
。つまり、配線抵抗やガラス基板との密着性、あるいは
耐熱性が解決すべき課題となってくる。現在、広く用い
られているTaの陽極酸化膜を非線形抵抗体とする場合
、Taスパッタ膜の固有抵抗値が高く、大面積に配線を
行うと、その配線抵抗の増加が原因となる表示不良が発
生する可能性があり、この配線抵抗を下げる工夫が必要
である。
When a nonlinear resistance element is used as a switching element in a liquid crystal display, as the area of the element becomes larger, the reliability of the wiring material becomes more dependent on the display characteristics. In other words, issues to be solved include wiring resistance, adhesion to the glass substrate, and heat resistance. When using a Ta anodic oxide film, which is currently widely used, as a nonlinear resistor, the specific resistance of the Ta sputtered film is high, and when wiring is performed over a large area, display defects may occur due to an increase in wiring resistance. This may occur, and it is necessary to take measures to reduce this wiring resistance.

また、Taはガラス基板との密着性が悪く、微細加工を
行う場合、膜はがれを生じる欠点がある。そこで密着性
を向上するために、ガラス基板上にスパッタTaOxを
成膜したり、あるいはスパッタTa膜を熱酸化しTaO
xを形成し、その上にTaを成膜する素子構造が必要で
ある。
Further, Ta has a drawback that it has poor adhesion to a glass substrate, and when microfabrication is performed, the film may peel off. Therefore, in order to improve the adhesion, sputtered TaOx is deposited on the glass substrate, or the sputtered Ta film is thermally oxidized to produce TaOx.
An element structure is required in which x is formed and Ta is deposited thereon.

そこで、本発明の構造では下部電極にガラスとの密着性
が良く、低抵抗の配線材料として優れた金属を任意に選
択することにより、微細加工を精密に行い、表示不良を
なくす構造を提供することにある。
Therefore, in the structure of the present invention, a metal that has good adhesion to glass and is an excellent low-resistance wiring material is arbitrarily selected for the lower electrode, thereby providing a structure in which fine processing is performed precisely and display defects are eliminated. There is a particular thing.

一方、非線形抵抗体としてCVD法、あるいはスバ・シ
タ法で作製したSiNx、5iCxを用いた非線形抵抗
素子では、配線材料に適した金属を配線材料に用いるこ
とができるが、大面積の基板上に均一な膜厚、組成でこ
れらを成膜することは非常に困難である。そのために、
大面積に均一な素子特性を得ることは困難となり、表示
特性にばらつきが生じる。そこで本発明の構造では、ど
の様な基板サイズでも面内に均一な非線形抵抗体を得る
ことが可能な陽極酸化膜を用い、均一な表示特性を提供
する構造である。
On the other hand, in nonlinear resistance elements using SiNx or 5iCx manufactured by the CVD method or the Suba-Shita method as a nonlinear resistor, metals suitable for the wiring material can be used as the wiring material, but It is extremely difficult to form these films with uniform thickness and composition. for that,
It becomes difficult to obtain uniform device characteristics over a large area, resulting in variations in display characteristics. Therefore, the structure of the present invention uses an anodic oxide film that can obtain a uniform nonlinear resistor in the plane regardless of the substrate size, and provides uniform display characteristics.

以上のように本発明の素子構造では、下部電極にガラス
との密着性、固有抵抗を考慮した材料を任意に選択でき
、大面積に均一な非線形抵抗体を提供することである。
As described above, in the element structure of the present invention, a material can be arbitrarily selected for the lower electrode in consideration of adhesion with glass and specific resistance, and a uniform nonlinear resistor can be provided over a large area.

また、製造工程においても微細加工が困難なTaあるい
はTaOxのエツチング工程が省略でき、非線形抵抗体
を挟んだ上下金属の加工のみで素子を完成できる構造で
ある。
Further, in the manufacturing process, the etching process of Ta or TaOx, which is difficult to microfabricate, can be omitted, and the device can be completed by simply machining the upper and lower metal parts sandwiching the nonlinear resistor.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、非線形抵抗体を金属で挟んだ非線形抵抗素子
において、非線形抵抗体に前記の上下金属と異なる酸化
可能な金属の酸化膜を用いたことを特徴とする。
The present invention is characterized in that, in a nonlinear resistance element in which a nonlinear resistor is sandwiched between metals, an oxide film of an oxidizable metal different from the above-mentioned upper and lower metals is used for the nonlinear resistor.

〔作用〕[Effect]

配線材料として、高融点金属であるC r 、T i、
Ni、Moが広く用いられており、これらは耐熱性、ガ
ラスとの密着性を考慮にいれた結果である。
As wiring materials, high melting point metals C r , T i ,
Ni and Mo are widely used, and these are the result of taking into account their heat resistance and adhesion to glass.

本発明の素子構造をとることにより、下部配線に化成金
属、あるいは熱酸化膜を形成する金属のみを用いる必要
がないため、ガラスとの密着性がよく、低抵抗、かつ低
応力の配線材に適した金属を用いることが可能となる。
By adopting the element structure of the present invention, there is no need to use only a chemically formed metal or a metal that forms a thermal oxide film for the lower wiring, so it can be used as a wiring material with good adhesion to glass, low resistance, and low stress. It becomes possible to use a suitable metal.

その結果、素子形成時に微細加工を行った場合、膜はが
れは発生しなくなり、大面積化に対応した配線材料を用
いることができ、データ信号の遅延による表示劣化を防
ぐことができる。
As a result, when microfabrication is performed during element formation, film peeling does not occur, wiring materials compatible with larger areas can be used, and display deterioration due to data signal delay can be prevented.

更に本発明の構造では、大面積に均一な非線形抵抗体を
形成することができる陽極酸化膜を用いるため、スパッ
タ法あるいはPCVD法で成膜した膜と比較して、均一
な膜を得ることも可能となる。その結果、大面積に均一
な特性の素子を実現できる。
Furthermore, since the structure of the present invention uses an anodic oxide film that can form a uniform nonlinear resistor over a large area, it is possible to obtain a more uniform film than a film formed by sputtering or PCVD. It becomes possible. As a result, an element with uniform characteristics over a large area can be realized.

また製造工程においても、非線形抵抗体としてTaの陽
極酸化膜を用いた本素子構造では、大面積での微細加工
が困難なTa、あるいはTaOxのエツチング工程が省
略でき、非線形抵抗体を挟んだ上下金属の加工のみとな
り、容易で量産に適した素子構造となる。
In addition, in the manufacturing process, this device structure, which uses a Ta anodic oxide film as the nonlinear resistor, can omit the etching process for Ta or TaOx, which is difficult to microfabricate over a large area, and Only metal processing is required, resulting in an element structure that is easy and suitable for mass production.

〔実施例〕〔Example〕

以下、本発明について図面を参照して説明する。 Hereinafter, the present invention will be explained with reference to the drawings.

第1図は本発明の一実施例の断面図である。本実施例の
非線形抵抗素子は、下部電極3、非線形抵抗体4、上部
電8ii5.及び画素ti6の4部からなっている。
FIG. 1 is a sectional view of an embodiment of the present invention. The nonlinear resistance element of this embodiment includes a lower electrode 3, a nonlinear resistor 4, an upper electrode 8ii5. and pixel ti6.

二のような素子構造においては、必ずしも非線形抵抗体
4は下部電極3の陽極酸化膜である必要はなく、下部電
極に低抵抗で、加工性6)良い金属を用いることのでき
る構造である。例えば、信号線となる下部電極に、配線
材料として広く用いられている高融点金属のCr、Ti
、Mo等、あるいはAlのような低抵抗かつ低応力の金
属を用いることが可能となる。
In the element structure shown in 2, the nonlinear resistor 4 does not necessarily have to be the anodic oxide film of the lower electrode 3, and the structure is such that a metal with low resistance and good workability can be used for the lower electrode. For example, the lower electrode, which becomes the signal line, is made of high-melting point metals such as Cr and Ti, which are widely used as wiring materials.
, Mo, etc., or metals with low resistance and low stress such as Al can be used.

非線形抵抗体にはTa金属を陽極酸化したTaOxを用
いており、400〜100OAの膜厚で基板面内に均一
な膜を形成している。Taを陽極酸化した場合は、陽極
酸化電圧IV毎に6.3A厚の下部金属が消費されて、
16Aの酸化膜となるので、100OAの酸化膜を得る
時は、400AのTa金属が必要である。本素子構造で
は化成金属が残ると素子間での短絡の原因となるので、
化成金属は全て酸化する必要がある。
TaOx, which is obtained by anodizing Ta metal, is used for the nonlinear resistor, and a uniform film with a thickness of 400 to 100 OA is formed on the substrate surface. When Ta is anodized, 6.3 A of the lower metal is consumed for each anodizing voltage IV.
Since the oxide film is 16A, 400A of Ta metal is required to obtain an oxide film of 100A. In this device structure, if chemical metal remains, it may cause a short circuit between devices.
All chemical metals need to be oxidized.

上部電極のCrは下部電極と交差するように形成され、
画素電極とコンタクトをとる素子構造である。
Cr of the upper electrode is formed to intersect with the lower electrode,
This is an element structure that makes contact with the pixel electrode.

この様な構造をとることで、素子を大面積に配置しアレ
イ化した場合、配線抵抗は20インチクラスの表示画面
に対応できる材料を適応でき、かつ均一な素子特性を得
ることが可能となり表示特性が向上できた。
By adopting this structure, when the elements are placed in a large area and arranged into an array, the wiring resistance can be made from a material that can support a 20-inch class display screen, and it is possible to obtain uniform element characteristics, making it possible to The characteristics were improved.

第2図は本発明素子構造の電流−電圧特性を従来の下部
電極を陽極酸化した素子と比較して示している。この図
から本発明は従来と同等の特性が得られることがわかる
。また、本素子構造では陽極酸化膜中の酸素が下部金属
へ熱拡散する熱劣化を防止でき、耐熱的にも優れた素子
が得られた。
FIG. 2 shows the current-voltage characteristics of the device structure of the present invention in comparison with a conventional device in which the lower electrode is anodized. From this figure, it can be seen that the present invention can obtain characteristics equivalent to the conventional one. In addition, with this device structure, thermal deterioration caused by thermal diffusion of oxygen in the anodic oxide film to the underlying metal could be prevented, and a device with excellent heat resistance was obtained.

〔発明の効果〕〔Effect of the invention〕

本発明の非線形抵抗素子は、従来の素子構造と比較して
、データ線に化成金属を用いる必要がなく、液晶デイス
プレィに適した配線材料を任意に選択できる効果がある
。また、非線形抵抗体にPCVD膜や、スパッタ膜など
の堆積膜でなく陽極酸化膜を用いるため、大面積の基板
全面に均一な膜が得られ、表示特性も均一になる。
Compared to conventional element structures, the nonlinear resistance element of the present invention has the effect that it is not necessary to use a chemically formed metal for the data lines, and that a wiring material suitable for a liquid crystal display can be arbitrarily selected. Furthermore, since an anodic oxide film is used for the nonlinear resistor instead of a deposited film such as a PCVD film or a sputtered film, a uniform film can be obtained over the entire large area of the substrate, and display characteristics can also be made uniform.

一方、製造面においても本発明の構造を用いることによ
り、非線形抵抗体となる化成金属として広く用いられて
いるTa、あるいはこれの陽極酸化膜TaOxのエツチ
ングを行う必要がなく、量産に適した素子構造となる。
On the other hand, in terms of manufacturing, by using the structure of the present invention, there is no need to etch Ta, which is widely used as a chemical metal that becomes a nonlinear resistor, or its anodic oxide film TaOx, making it suitable for mass production. It becomes a structure.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、この発明の一実施例を説明するための非線形
抵抗素子の構造を示す断面図、第2図は、上記実施例に
より得られた非線形抵抗素子を従来例と比較して示す電
圧−電流特性図、第3図は、従来の非線形抵抗素子の構
造を示す断面図である。 1・・・ガラス基板、2・・・スパッタTaOx膜、3
・・・下部電極(走査線)、4・・・非線形抵抗素子、
5・・・上部電極(データ線)、6・・・画素電極、7
・・・陽極酸化T a Ox膜。 5工舒′@締
FIG. 1 is a sectional view showing the structure of a nonlinear resistance element for explaining an embodiment of the present invention, and FIG. 2 is a voltage diagram showing the nonlinear resistance element obtained by the above embodiment in comparison with a conventional example. -Current characteristic diagram, FIG. 3 is a cross-sectional view showing the structure of a conventional nonlinear resistance element. 1... Glass substrate, 2... Sputtered TaOx film, 3
... lower electrode (scanning line), 4 ... nonlinear resistance element,
5... Upper electrode (data line), 6... Pixel electrode, 7
...Anodized T a Ox film. 5.

Claims (1)

【特許請求の範囲】[Claims]  非線形抵抗体を金属で挟んだ非線形抵抗素子において
、非線形抵抗体に前記の上下金属と異なる酸化可能な金
属の酸化膜を用いたことを特徴とする非線形抵抗素子。
A nonlinear resistance element in which a nonlinear resistance element is sandwiched between metals, characterized in that the nonlinear resistance element uses an oxide film of an oxidizable metal different from the above-mentioned upper and lower metals.
JP2094531A 1990-04-10 1990-04-10 Non-linear resistance element Pending JPH03292701A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2094531A JPH03292701A (en) 1990-04-10 1990-04-10 Non-linear resistance element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2094531A JPH03292701A (en) 1990-04-10 1990-04-10 Non-linear resistance element

Publications (1)

Publication Number Publication Date
JPH03292701A true JPH03292701A (en) 1991-12-24

Family

ID=14112916

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2094531A Pending JPH03292701A (en) 1990-04-10 1990-04-10 Non-linear resistance element

Country Status (1)

Country Link
JP (1) JPH03292701A (en)

Similar Documents

Publication Publication Date Title
TWI249070B (en) Electronic device, method of manufacture of the same, and sputtering target
JP4355743B2 (en) Cu alloy wiring film, TFT element for flat panel display using the Cu alloy wiring film, and Cu alloy sputtering target for producing the Cu alloy wiring film
KR20080114573A (en) Method for manufacturing display apparatus
JPH04253342A (en) Thin film transistor array substrate
KR20010082837A (en) Liquid Crystal Display Device And Method for Fabricating the same
KR20020012757A (en) Liquid Crystal Display Device And Method for Fabricating the same
JPH03292701A (en) Non-linear resistance element
TWI283074B (en) TFD LCD panel
US5539549A (en) Active matrix substrate having island electrodes for making ohmic contacts with MIM electrodes and pixel electrodes
JPH01120068A (en) Thin-film transistor
KR100364650B1 (en) Thin-film two-terminal elements, method of production thereof, and liquid crystal display
JPH02257123A (en) Thin film type nonlinear element
JP2000199912A (en) Active matrix type liquid crystal display device and its production
JPH0349274A (en) Two-terminal type non-linear element
JP2812720B2 (en) Method of manufacturing reflective MIM active matrix substrate
JPS62297892A (en) Driving circuit board for display unit
JPS6260240A (en) Multilayer interconnection
JP3327146B2 (en) Liquid crystal panel, method of manufacturing the same, and electronic equipment using the same
KR19980015706A (en) TFT substrate having a source / drain electrode made of an alloy
JP3341346B2 (en) Manufacturing method of nonlinear element
JPH0335223A (en) Display device
JPH02137826A (en) Active matrix substrate
JPH01281435A (en) Liquid crystal display device
JPH0854648A (en) Liquid crystal display device
JPH0730118A (en) Thin film transistor for liquid crystal display device