JPH03292395A - 炭化水素供給原料からカルシウムを除去する方法 - Google Patents

炭化水素供給原料からカルシウムを除去する方法

Info

Publication number
JPH03292395A
JPH03292395A JP2406962A JP40696290A JPH03292395A JP H03292395 A JPH03292395 A JP H03292395A JP 2406962 A JP2406962 A JP 2406962A JP 40696290 A JP40696290 A JP 40696290A JP H03292395 A JPH03292395 A JP H03292395A
Authority
JP
Japan
Prior art keywords
catalyst
angstroms
metal
alumina
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2406962A
Other languages
English (en)
Inventor
Chi-Wen Hung
チ−ウェン ハング
Bruce E Reynolds
ブルース イー.レイノルズ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chevron USA Inc
Original Assignee
Chevron Research and Technology Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chevron Research and Technology Co filed Critical Chevron Research and Technology Co
Publication of JPH03292395A publication Critical patent/JPH03292395A/ja
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/02Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the alkali- or alkaline earth metals or beryllium
    • B01J23/04Alkali metals
    • B01J35/613
    • B01J35/615
    • B01J35/647

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。

Description

【発明の詳細な説明】
[0001] 〔発明の背景〕 本発明は炭化水素供給原料からカルシウムを除去する方
法に関する。それは概括的に言えば固定床触媒系を使用
する水素化脱金属プロセスであり、そしてより詳細には
、その細孔容積の高い容積パーセントをマクロ細孔の形
で有し、また低い値の表面積および低い水素化活性を有
することを特徴とする触媒粒子の層を用いることから成
る前記のプロセスである。 少数の、しかしますます重要な、石油未精製供給原料、
残油、およびそれらから出る脱アスファルト油はある濃
度のカルシウムとナトリウムを含んでおり、それの金属
は従来慣用の精製技術を用いて前記の油を加工すること
を、不可能ではないとしても、困難にする。これら特別
の問題を惹き起す金属汚染物は一般に、例えば金属ナフ
テン酸塩のような、油溶性の有機金属結合化合物の形を
している。これらの化学種は天然に生ずる金属錯体、ま
たは原油と接触する回収水からの可溶化された金属化合
物のいずれかに帰せられた。これらの化合物は通常の方
法(例えば、脱塩)により供給原料から分離されないし
、また従来の精製技術においてそれらは水素化加工触媒
の非常に急速な失活を起すことがある。 [0002] 不快なほど高い含量のカルシウム化合物を示す供給原料
の例は中国産の原油(例えば、ジエングリ2号)、およ
びカルフォルニアのサン・ショアキン・バレー産の原油
(一般にサン・ショアキン・バレー原油または残油と呼
ばれるパイプラン混合物中に含まれる)である。 [0003] 石油供給原料中の油溶性カルシウムおよびナトリウムに
より提起される問題およびそれらの除去の必要は最近や
っと認識されるようになったので、従来の技術文献はそ
の除去についての言及が比較的少ない。米国特許第4,
741,821号(Hungら)はニッケルを含む触媒
を使用してカルシウムの除去を容易ならしめる方法を教
示している。米国特許第4,830,736号(Hun
gら)はている。米国特許第4,744,888号はナ
トリウム除去を容易にする触媒系を開示している。 [0004] 米国特許第4,853,109号、第4,778,58
9号、第4,778゜591号、第4,789,463
号、第4,778,590号、第4.778゜592号
および米国出願第222,472号、および第239,
152号(すべて共通に本発明譲受人に譲渡されている
)はいろいろな金属イオン封鎖剤(アミノカルボン酸、
ハイドキソカルボン酸、二基基カルボン酸、炭酸、−塩
基カルボン酸、硫酸、およびそれらの塩を含む)を開示
しており、炭化水素系供給原料から非ポルフィリン有機
金属汚染物の水抽出のため使用される。すべて上記の特
許の開示および適用は引用によりここに組み入れられる
。 [0005] 近年において、金属除去の分野における研究者たちは、
より活性な水素化脱硫水素化脱窒、または水素化分解触
媒を保護するため水素化脱金属(HDM)触媒を開発し
た。一般に、HDM触媒は汚染した供給原料と接触し、
そして金属はその供給原料が続いて活性な触媒と接触し
ながら触媒床を通過する前に析出される。特に、細孔の
大きさ、担体組成、および金属添加量において異なるい
ろいろな触媒の複雑な方式の段階付けが個々の触媒のよ
り有効な使用を結果としてもたらすことができる。 [0006] 大抵の段階付は方式は炭化水素供給原料を、金属受容力
に応じて設計された大きな細孔を有する触媒と、次によ
り/J1さな細孔およびより大きな触媒性能のある金属
を含む触媒と接触させて硫黄およびその他の有機金属を
除くことを含む。この方法において汚染した供給原料は
初めに比較的活性の低い触媒と接触し、それにより供給
原料を、金属の析出が起る前に触媒をより十分に浸透さ
せる。その汚染のより少なくなった供給原料は触媒床を
通過し続けるに従って、硫黄およびその他の有機金属の
析出を促進する、より活性の大きい触媒とそれは接触す
る。かくして、触媒の内部に浸透する金属(例えば、ニ
ッケルおよびバナジウム)を含むある与えられた供給原
料について、反応器の頂上から底までこれらの触媒の最
も効果的な使用を結果として生じさせる理想的な触媒の
段階付けが存在するであろう。 [0007] 当分針の研究者らは、カルシウムまたは鉄のような金属
が油溶性の形で存在する場合には、より一層複雑な問題
に出合う。触媒粒子の外部表面の近くに析出するニッケ
ルとバナジウムに対照的に、これらの金属は好んで触媒
粒子の間の隙間(すなわち、空隙)に、特に水素化触媒
床の頂部で、析出することがある。これは結果として触
媒床を通して圧力低下の甚だしい増加をもたらし、そし
て反応器をつまらせる効果がある。 [0008] ニッケル、バナジウム、および鉄を除去する従来の方法
は一般に段階付き触媒床を通して供給原料の流れの方向
に減少するマクロ細孔率および増加するメソ細孔率を有
する。用語「マクロ細孔」は当技術分野において使用さ
れており、そしてここでは触媒粒子内で約1000オン
グストロームより大きい直径の触媒細孔または導管また
は開口を意味するために用いられる。そのような細孔は
一般に形が不規則であり、そして細孔直径は単に細孔の
開口の大きさの近似値を与えるために用いられる。用語
「メソ細孔」は当技術分野において使用されており、こ
こでは直径1000オングストローム以下の開口を有す
る細孔を意味するために用いられる。しかしメソ細孔は
直径1000オングストロームより小さい範囲内にある
。 [0009] 従来の研究者らはマクロ細孔率が、汚染した炭化水素供
給原料から除かれた重金属を保持する触媒粒子の性能に
強く関係していることを発見した。それに続く触媒ゾー
ンに、彼らは使先的にメソ細孔の触媒を好む。彼らはこ
れらの触媒が、より低い値の表面積および実質的にマク
ロ細孔構造を有する触媒に比較して水素化のため実質的
により高い触媒活性を有することを発見した。かくして
、彼らはこれら2つの現象を、段階付き触媒系において
重質供給原料から重金属を除くために利用した。 [0010] 一般に、カルシウムは選択的に触媒粒子の間の空隙内に
析出することが従来判った。これは触媒床を通して圧力
低下を大いに増加させ、その結果として甚だしい反応器
の非能率をもたらす。それに加えて、ナトリウムは、意
外にも、従来他の金属が出合った場合とは違う仕方で行
動することが判った。特に、それは触媒粒子に深く浸透
する。かくしてカルシウム析出物は触媒床を通して圧力
低下を増加させるが、他方ナトリウムは触媒粒子内の活
性部位をふさぐ働きをしてそれらを失活させる。発明者
らの研究の結果、カルシウムとナトリウムを、これら両
金属を含む炭化水素供給原料から除去するために従来の
段階付き触媒系を使用しても成功することができないこ
とが明らかになった。従って、炭化水素供給原料からカ
ルシウムとナトリウムの両者を除去するためには、触媒
粒子の形、大きさ、気孔率、および表面活性のような因
子を考慮に入れて段階付き触媒系を考案することが必要
であった。本発明の1つの目的は炭化水素供給原料から
カルシウムを除去するための触媒系を提供することであ
る。もしその触媒系が油溶性のナトリウム化合物もまた
除くならば、それは有利であろう。 [0011] 〔発明の要約〕 本発明は少なくとも1 ppmの油溶性カルシウムを含
む炭化水素供給原料から、固定床触媒系を用いて、カル
シウムを除去する方法に関するものであり、その際前記
の系の触媒粒子は、(a)その細孔容積の少なくとも5
容積%を直径1000オングストローム以上のマクロ細
孔の形で有し、または100〜800オングストローム
の平均メソ細孔直径を有し、(b)約25m2/gより
約200m2/gまでの範囲の表面積、および(c)0
.2と10.0重量%の間の第I族金属を含む。好まし
い第工族金属はカリウムであり、そして好ましい触媒担
体は転移アルミナ、特に、ガンマ−アルミナである。 [0012] また本発明によって、少なくとも1 ppmのカルシウ
ムおよび少なくとも1 ppmのナトリウムを含む炭化
水素供給原料からカルシウムとナトリウムを除くことの
できる段階付き固定床触媒系を開示する。この系は、段
階付き触媒系を通して原[0013、 発明の詳細な説明〕 本発明によれば、カルシウムを含む炭化水素供給原料は
水素化脱金属条件下に固定床触媒系と接触させられる。 触媒系は、その細孔容積の高い容積%をマクロ細孔の形
で有し、低い値の表面積、低い水素化活性を有し、およ
び第I族金属、好ましくはカリウム、を10重量%以下
の濃度に含むことを特徴とする触媒粒子から成る。好ま
しくは、触媒床は異なる平均的特性の触媒粒子から成る
複数の触媒ゾーンにより重なっている。 [0014] 〔供給原料〕 本発明の供給原料は、溶解したカルシウムを含有するす
べての炭化水素系供給原料であることができる。かなり
の量のニッケル、バナジウム、および鉄もまた存在して
いてよい。通例として、好ましい供給原料は1 ppm
以上のカルシウムを含むもの、そしてより好ましくは3
 ppm以上を含む、最も好ましくは20ppm以上を
含むものである。それらは通常20ppm以上の他の金
属、例えばニッケル、バナジウム、および鉄もまた含ん
でいるであろう。その上、それらは一般に1゜0重量%
以上の硫黄および2.0重量%以上を含む。本発明に適
当な供給原料であることのできるものは原油、抜頭原油
、常圧および減圧蒸留残油、減圧軽油および合成原料プ
ロセスからの液、例えば、石炭、タールサンド、または
貢炭油からの液などである。例えば、約57ppmのカ
ルシウムおよび約65ppmのその他の重金属を含む、
中華人民共和国から得られた二重脱塩したジエングリ2
号原油からの2種の減圧蒸留残油を、発明者らは試、験
した。 [0015] 〔触媒〕 供給原料中に存在するカルシウムの含量の一つ一つにつ
いて、所望のカルシウムの除去および触媒の利用を得る
ために触媒粒子の気孔率および水素化活性のようなパラ
メーターを慎重に選択しなければならない。 [0016] 触媒粒子内部の細孔径分布は水銀多孔度針により測定さ
れる。水銀侵入技術はある与えられた孔が小さいほどそ
の孔の中へ水銀を押し込むため必要な水銀圧はそれだけ
大きくなるという原理に基づく。従って、もし真空にし
た試料を水銀にさらしてから、圧力を次第に増してかけ
ながら、各圧力増加における水銀容積の消失量を読むな
らば、細孔径分布を測定することができる。圧力と、そ
の圧力で水銀が通過する最小の孔との間の関係は次の方
程式により与えられる。
【数1】 γ=−2σCOSθ/P 上式中、 γ=細孔の半径 σ=表面張力 θ=接触角 P=正圧 力0017] 60、OOOpsigまでの圧力および140℃の接触
角を用いると、包含される細孔直径の範囲は35〜10
,000オングストロームである。 [0018] 本発明の方法に使用される触媒は、その細孔容積の少な
くとも5%、好ましくは少なくとも15%、そして最も
好ましくは20%が1000オングストロームより大き
い直径を有する細孔内にある細孔径分布、または100
〜800オングストローム、好ましくはZOO〜400
オングストローム、の範囲の平均メソ細2/gより約1
50m  /gまで、そして最も好ましくは約100m
27gより約150m27gまで、の範囲の表面積を有
するものとして特徴づけられる。 [0019] さらに加えて、これらの触媒担体の上に積載された金属
が含まれる。特に、触媒上に第I族金属を含むことが好
ましい。好まれる第I族金属はナトリウムおよびカリウ
ムを含む。特に好まれる金属はカリウムである。本発明
の触媒は、100重量%以下、好ましくは0. 2〜1
0.0重量%、さらに好ましくは1.0〜5.0重量%
、そして最も好ましくは2.0重量%と4.0重量%の
間の、担体上に含浸された第1族金属を含むものとして
特徴づけられる。 [0020] 〔触媒の調製〕 本発明の触媒を調製する際にアルミナ担体を使用する。 それらはすべて従来の方法により製造することができる
。例えば、本発明に有用なアルミナ担体の調製法の詳細
は米国特許第4,392,987号(Laineら、1
983年7月12日発行)および米国特許第4,179
,408号(S a n c h e zら、1979
年12月18日発行)に十分に説明されている。両者は
引用によりここに組み入れられる。 [0021] 本発明に有用な好ましい担体は転移アルミナである。用
語「転移アルミナ」によりガンマアルミナ同族の各員が
意味される。これらのアルミナはアルファアルミナ程に
か焼度が高くなく、そして例えば、ガンマアルミナ、デ
ルタアルミナ、カイアルミナ、およびイータアルミナを
含む。ガンマアルミナは最も好ましく、び高容積パーセ
ントの大きな細孔を有するガンマアルミナが好ましい。 高容積パーセントの大きな細孔により1000オングス
トローム以上のマクロ細孔、または100〜800オン
グストロームの範囲の平均メソ細孔直径が意味される。 [0022] 平均メソ細孔直径は次式により計算される。 表面積、m2/g OOオングストロームより大きな細孔と定義される。 [0023] 代表的な触媒のため使用される第1族触媒主剤はいずれ
か適当な方法、特に触媒製造技術において通常用いられ
る含浸法によりアルミナ担体内に取り入れられればよい
。本発明のため好まれる触媒主剤は第I族金属であり、
リチウム、ナトリウム、カリウム、ルビジウムおよびセ
シウムを含む。好ましい金属はカリウムである。第I族
金属の量(純金属として計算された)は組成の約0.2
から約10.0重量%までの範囲内にあるべきである。 それらは金属塩(例えば、硝酸塩塩酸塩、および炭酸塩
)として取り入れられることができる。一般に、それら
の塩はか焼の際にまたは反応器の条件の下でそれぞれの
酸化物に分解することになる。 [0024] 触媒主剤をアルミナ担体内に取り入れる方法の詳細は米
国特許第4,341゜625号、1982年7月27日
発行、同第4,113,661号、1978年9月12
日発行、および同第4,066.574号、1978年
1月3日発行(すべてTammに与えられた)に十分に
説明されている。これらの特許は引用によりここに組み
入れられる。 [0025] 〔段階付き触媒ゾーン〕 本発明の好まれる触媒は多ゾーン固定床触媒系の一つの
ゾーンを構成することがある。その他のゾーン内の触媒
は石油供給原料から他の金属を除去するために選択され
ることがある。除去すべきそのような金属はナトリウム
、バナジウム、ニッケルおよび鉄を含む。ナトリウム除
去のため好まれる触媒がHungらの米国特許第4,7
44,888号に記載されており、それは引用によりこ
こに組み入れられる。多ゾーン触媒系内に他のゾーンの
触媒は、硫黄、窒素、およびその他の非金属を除くため
に選択されることもまたある。 [0026] 多ゾーン系のそのような触媒ゾーンの中の段階付き触媒
床もまた意図される。 そのような触媒ゾーンは、水素化処理される供給原料が
一連のますます活性の高くなる水素化触媒の存在で水素
と接触するように段階付けられる。従って、段階付けは
、所望の触媒活性に到達するため、前述のパラメーター
 すなわち、気孔率、表面活性、形、または大きさの一
つ以上についてなされる。少なくとも二つの触媒ゾーン
が必要であるが、しかし二つより多くが望ましいことも
ある。例えば、高活性の触媒を低活性の触媒と混合して
中級の活性を有する中間層を作ることもできるであろう
。そのような方式において、第1のゾーンは第1の流出
液流を生み、それは第2のゾーンに接触し、第2ゾーン
はこんどは第2流出液流を生み、それは第3ゾーンと接
触し、そして第3ゾーンは脱金属された流出液を生成す
る。任意に、この系はまた、その脱金属された流出液に
より接触される脱硫触媒のゾーンを含むこともできる。 [0027] カルシウムとナトリウムを除去するための本発明のニゾ
ーン系実施態様において、第1ゾーンの触媒はその細孔
容積の高い容積パーセントをマクロ細孔の形で低い値の
表面積、および低い水素化活性を有すると特徴づけられ
る。さらに詳しくは、この触媒は細孔中に存在するその
細孔容積の少なくとも5%、好ましくは少なくとも15
%、そして最も好ましくは20%が1000オングスト
ロームより大きな直径を有する、または100〜800
オングストロームの範囲の平均メソ細孔直径を有する細
孔容積分布、および約25m/gから約200m2/g
まで、好ましくは約80m/gから約150m2/gま
で、そして最も好ましくは約100m2/gから約15
0m2/gまでの範囲の表面積を有する。 第2ゾーンのための触媒は、細孔中に存在するその細孔
容積の30%以下、好ましくは20%以下、そして最も
好ましくは10%以下が1000オンダストロームより
大きな直径を有する細孔容積分布および約80オングス
トロームから約400オングストロームまで、好ましく
は約100オングストロームから約300オングストロ
ームまで、そして最も好ましくは約180オングストロ
ームから約250オングストロームまでの平均細孔直径
、および約80m2/gから約300m  /getで
、好ましくは約100m/gから約200m2/gまで
そして最も好ましくは約100m/gから約130m2
/gまでの範囲の表面積を有すると特徴づけられる。 [0028] 第2ゾーンにおいて、触媒金属は国際純正および応用化
学連合(I n t e r national  U
nion  of  Pure  &  Applie
d  Chemistry)の1970年規則による週
期表からの第VIB族または第VIII族であることが
できる。特に、第VIII族金属としてコバルトとニッ
ケル、第VIB族金属としてモリブデンとタングステン
が好ましい。 [0029] 本発明の第2の触媒は、少なくとも0.7重量%、好ま
しくは少なくとも1゜0重量%、そして最も好ましくは
少なくとも1.3重量%の第VIII族金属、および少
なくとも3.0重量%、好ましくは少なくとも4.0重
量%、そして最も好ましくは少なくとも6.0重量%の
第VIB族金属を含むと特徴づけられる。 [0030] 〔水素化脱金属条件〕 一般に、水素化脱金属条件に含まれるものは、約500
’Fから約900°Fまで、好ましくは約600’Fか
ら約900°Fまで、最も好ましくは約650Fから約
770°Fまでの範囲の温度、約500psigから約
3500psigまで、好ましくは約1200psig
から約3000psigまで、最も好ましくは約160
0psigから約2800psigまでの範囲の全圧、
約800psigから約2800ps i gまで、好
ましくは約1000ps i gから約2500psi
gまで、最も好ましくは約1500psigから約22
00psig迄の範囲の水素分圧、および約0.1から
約6.0まで、好ましくは約0゜5から約6.0まで、
最も好ましくは約0.5から約1.7までの空間速度で
ある。 [0031]
【実施例】
本発明を以下に例証する。この例は本発明において使用
される触媒の代表的な実施態様、および実、験室の分析
において得られた結果を例示するために意図されたもの
である。当技術分野に精通した人々は、本発明の他の実
施態様が本発明の本質的特徴を逸脱することなく同様な
結果を与えることを理解するであろう。 [0032] ここに述べる試験に使用された触媒はその細孔容積の4
0%を直径1000オングストロームより大きなマクロ
細孔の形で有しカリ134m27gの表面積を有してい
た。それはまた2、8重量%のカリウムを含み、そして
その粒子は1/16インチ直径の球であった。 [0033] 構成された固定触媒床はそれぞれ異なる反応のための異
なる種類の触媒を含んでいた。それからその触媒を水素
の存在で、中華人民共和国から得られた二重脱塩された
ジエングリ2号原油からの減圧蒸留残油留分と接触させ
た。従来の方法を用いて測定されたその油の緒特性は表
1に要約されている。 [0034]
【表1】 (1000’ F  ) LV%538℃“ 硫黄、w t 、% 窒素、w t 、% MCRTSwt、% ホットC7アルフアルテン、w t 、%粘度、C31
00℃、 API比重 金属−四1 i e a a 2、8       2.7 0.84      0.85 16.0      16.0 5、7       5.6 9、9       9.5 [0035] これらの条件で、本発明により具現された、この系は前
記減圧蒸留残油留分中に初めに存在したカルシウムの4
0%以上を除くことが判る。 [0036] 例 1  カリウム1 触  触 A の調制御50g
の、41%マクロ細孔(1000オングストロームより
大きな細孔)および134m27g (BET)の表面
積を有する無水ガンマアルミナをプラスチック袋の中に
入れた。12.1gのKNO3を148ccの蒸留水に
溶解させたが、その水はアルミナの細孔容積を充填する
ために必要だった。この溶液をプラスチック袋の中のア
ルミナの上に細かい霧として吹きつけながら混合した。 その混合物を回転させてから、次に16時間放置した。 かくして得られた湿潤触媒をふるい底の皿の上に薄い層
(最大172インチ)にして置き、1時間250°Fに
加熱した。乾燥した触媒をマツフル炉の中で2cfhの
乾燥空気で6時間200Fに、4時間750’Fにそし
て5時間950°Fにおいてか焼した。 [0037] かくして生成した触媒は触媒Aと名づけられ、そして蛍
光X線分析により測定すると約2.8重量%のカリウム
を含んでいた。 [0038] 例 2  比 用ニッケル触  触 B の調料例1と
殆ど同じ方法で、1470gの同じアルミナを、149
gのNiNO36H20を1450ccの水に溶解した
溶液と混合した。乾燥とか焼の後、得られた触媒を触媒
Bと名づけな。この触媒は、ICPにより測定すると、
約2. 0重量%のNiを含んでいた。マクロ細孔百分
率は41%(水銀多孔度針)でありそして表面積は14
4m27g (BET)であった。この種の触媒は米国
特許第4,741,821号に記載されている。この特
許は引用によりここに組み入れられる。 [0039] 例 3  原゛′:1からカルシウムの除去57ppm
のカルシウムを含む原料1を、減圧残油脱硫(VRDS
)触媒系の前に、固定床パイロットプラント中の脱カル
シウム触媒混合物を通過させた。(例配置し、そして前
記反応器入口から37および47容積%において二つの
触媒B試料(例2の)により囲ませた。1300時間流
通させた後、使用済み触媒を取り出して、マイクローブ
・インターバル・スキャン法を用いてカルシウムについ
て分析した。その結果を図1に示す。操作条件は、床の
脱金属部分につき、398〜403℃において、500
0scf /bbl、2500psig全圧(〜200
0psia水素分圧)  0.58LH3Vであった。 [0040] 図1に見ることができるように、触媒A(カリウム−ア
ルミナ触媒)は触媒B(比較用Niアルミナ触媒)より
も、触媒球体内へのカルシウムのより深くかつより均一
な浸透を許した。 [0041] 例 4  原″:2からカルシウムの除去20ppmの
カルシウムを含む原料2を例3におけるものと同様の固
定床パイロットプラント中の触媒混合物を通過させた。 触媒Aと触媒Bの混合物が(反応器の入口から)初めの
8容量%内に配置された。2000時間流通させた後、
使用済み触媒を取り出して、マイクローブ・インターバ
ル・スキャン法を用いてカルシウムにつき分析した。図
2に示された結果は、脱金属反応器の入口から18%に
配置された触媒試料についてのものである。操作条件は
、触媒床につき367−374℃、5000scf /
bbl、2500全圧(〜2050psia水素分圧)
 および脱金属床につき1.57LH3Vであった。 [0042] 図2に見ることができるように、例えば、2本の曲線の
下の面積を比較することにより、カリウム−アルミナ触
媒は触媒粒子全体を通して比較上高いカルシウム含量を
有していた。すなわち、それは原料からカルシウムの除
去においてより有効であった。 [0043] 原 からカルシウムおよびナトリウムの除去触媒Cは2
10オングストロームの平均メソ細孔直径および120
m27gの含み、そして1/32インチ直径の円筒形で
ある。 [0044] 原料1と同様の供給原料を等容積の触媒Aと触媒Cから
成る固定触媒床を次の条件で通過させた。すなわち、1
.68LH3V、2500psig全圧、1950ps
ia水素分圧、5000SCF /bbl 、および7
60°F0触媒Cは良好なナトリウム分布を示し、そし
て触媒Aよりも高い水準のナトリウム析出を示す。触媒
Aについてのカルシウム析出は触媒Cについてのそれよ
りも著しく低い。 [0045] 図1と2は、カルシウム濃度に対する、本発明の触媒お
よび比較用の非第工族金属を含む触媒の触媒表面内への
浸透のグラフ式表示であり、そして本発明の触媒の優れ
たカルシウム集積効果並びに触媒本体内部への改良され
た浸透を説明する。

Claims (22)

    【特許請求の範囲】
  1. 【請求項1】少なくとも1ppmの油溶性カルシウムを
    含む炭化水素供給原料から、固定床触媒系を使用して、
    油溶性カルシウムを除去する方法であり、前記供給原料
    を、水素の存在で、前記の触媒系を水素化脱金属条件で
    通過させることから成り、その際前記の系は、触媒粒子
    が(a)その細孔容積の少なくとも5容積%を直径10
    00オングストローム以上のマクロ細孔の形で有し、ま
    たは100〜800オングストロームの平均メソ細孔直
    径を有し、 (b)約25m^2/gより約200m^2/gまでの
    範囲の表面積、および(c)0.2と10.0重量%の
    間の第 I 族金属、を含むことを特徴とする触媒ゾーン
    から成る、前記の方法。
  2. 【請求項2】触媒粒子が、 (a)その細孔容積の少なくとも15容積%を直径10
    00オングストローム以上のマクロ細孔の形で有し、ま
    たは200〜400オングストロームの平均メソ細孔直
    径を有し、 (b)約80m^2/gから約150m^2/gまでの
    範囲の表面積、および(c)1.0と5.0重量%の間
    の第 I 族金属、を含む請求項1記載の方法。
  3. 【請求項3】触媒粒子が、 (a)その細孔容積の少なくとも20容量%を直径10
    00オングストローム以上のマクロ細孔の形で有し、ま
    たは200〜400オングストロームの平均メソ細孔直
    径を有し、 (b)約100m^2/gから約150m^2/gまで
    の範囲の表面積、および(c)2と4重量%の間の第
    I 族金属、 を含む請求項2記載の方法。
  4. 【請求項4】第 I 族金属はカリウムから成る、請求項
    1、2または3のいずれか1項に記載の方法。
  5. 【請求項5】触媒はアルミナから成る担体の上にある、
    請求項1、2、または3のいずれかに記載の方法。
  6. 【請求項6】アルミナはトランジションアルミナから成
    る、請求項5記載の方法。
  7. 【請求項7】アルミナは、ガンマアルミナ、デルタアル
    ミナ、カイアルミナ、およびイータアルミナから成る群
    より選択されるアルミナから成る、請求項6記載の方法
  8. 【請求項8】アルミナはガンマアルミナから成る、請求
    項7記載の方法。
  9. 【請求項9】プロセス条件は、 (a)約650°Fから約770°Fまでの範囲の温度
    、(b)約1600psigから約2800psigま
    での範囲の全圧、(c)約1500psigから約22
    00psigまでの範囲の水素分圧、および (d)約0.5から約6.0までの範囲の空間速度、か
    ら成る、請求項1、2または3のいずれかに記載の方法
  10. 【請求項10】プロセス条件は、 (a)約650°Fから約770°Fまでの範囲の温度
    、(b)約1600psigから約2800psigま
    での範囲の全圧、(c)約1500psigから約22
    00psigまでの範囲の水素分圧、および (d)約0.5から約6.0までの範囲の空間速度、か
    ら成る、請求項11、12または13のいずれかに記載
    の方法。
  11. 【請求項11】少なくとも1ppmの油溶性カルシウム
    および少なくとも1ppmの油溶性ナトリウムを含む炭
    化水素供給原料を、段階付き固定床触媒を使用して、水
    素化脱金属する方法であり、前記供給原料を、水素の存
    在で、前記の触媒系を水素化脱金属条件で通過させるこ
    とから成り、その際前記の系の触媒粒子は少なくとも第
    1と第2の触媒ゾーンから成り、(a)前記第1ゾーン
    は、前記供給原料から前記の油溶性カルシウムを含む金
    属成分を除去するため、その細孔容積の少なくとも5容
    積%を直径1000オングストローム以上のマクロ細孔
    の形で有し、または100〜800オングストロームの
    平均メソ細孔直径を有し、約25m^2/gより約20
    0m^2/gまでの範囲の表面積、および0.2と10
    .0重量%の間の第 I 族金属を含む触媒粒子の固定床
    から成り、 (b)前記第2ゾーンは、前記供給原料からさらに前記
    の油溶性ナトリウムを含む金属成分を除去するため、そ
    の細孔容積の20容積%以下を直径1000オングスト
    ロームより大きいマクロ細孔の形で、約80オングスト
    ロームより約400オングストロームまでの範囲の平均
    メソ細孔直径、約80m^2/gより約300m^2/
    gの範囲の表面積、および少なくとも0.7重量%の第
    VIII族金属、および/または少なくとも3.0重量%の
    第VIB族金属を含む触媒粒子の固定床から成る、 前記の方法。
  12. 【請求項12】第1および第2の触媒ゾーンが、(a)
    前記第1ゾーンは、その細孔容積の少なくとも15容積
    %を直径1000オングストローム以上で有し、または
    200〜400オングストロームの平均メソ細孔直径を
    有し、約80m^2/gより約150m^2/gの範囲
    の表面積、および1.0と5.0重量%の間の第 I 族
    金属を含む触媒粒子の固定床から成ること、および (b)前記第2ゾーンは、その細孔容積の20容量%以
    下を直径1000オングストローム以上のマクロ細孔の
    形で、約100オングストロームより約300オングス
    トロームまでの範囲の平均メソ細孔直径、約100m^
    2/gより約200m^2/gまでの範囲の表面積、お
    よび少なくとも1.0重量%の第VIII族金属、および/
    または少なくとも4.0重量%の第VIB族金属を含む触
    媒粒子の固定床から成ること、 を特徴とする請求項11記載の方法。
  13. 【請求項13】第1および第2の触媒ゾーンが、(a)
    前記第1ゾーンは、その細孔容積の少なくとも20容積
    %を直径1000オングストローム以上で有し、または
    200〜400オングストロームの平均メソ細孔直径を
    有し、約100m^2/gより約150m^2/gの範
    囲の表面積、および2と4重量%の間の第 I 族金属を
    含む触媒粒子の固定床から成ること、および (b)前記第2ゾーンは、その細孔容積の10容量%以
    下を直径1000オングストローム以上のマクロ細孔の
    形で、約180オングストロームより約250オングス
    トロームまでの範囲の平均メソ細孔直径、約100m^
    2/gより約130m^2/gまでの範囲の表面積、お
    よび少なくとも1.3重量%の第VIII族金属、および/
    または少なくとも6.0重量%の第VIB族金属を含む触
    媒粒子の固定床から成ること、 を特徴とする請求項12記載の方法。
  14. 【請求項14】さらに第3の触媒ゾーンを含み、前記第
    3ゾーンが脱硫活性を有する触媒粒子の固定床から成る
    ことを特徴とする請求項11記載の方法。
  15. 【請求項15】第1ゾーンの第 I 族金属触媒はカリウ
    ムから成る請求項11、12、13、または14のいず
    れかに記載の方法。
  16. 【請求項16】第1ゾーンの触媒がアルミナから成る担
    体上にある請求項11、12、13、または14のいず
    れかに記載の方法。
  17. 【請求項17】アルミナがガンマアルミナから成る請求
    項16記載の方法。
  18. 【請求項18】炭化水素供給原料は少なくとも20pp
    mの油溶性カルシウムを含む請求項11、12、13、
    14、15、16、または18のいずれかに記載の方法
  19. 【請求項19】炭化水素供給原料は少なくとも3ppm
    の油溶性カルシウムを含む請求項18記載の方法。
  20. 【請求項20】炭化水素供給原料は少なくとも3ppm
    の油溶性ナトリウムを含む請求項11、12、13、1
    4、15、16、または17のいずれかに記載の方法。
  21. 【請求項21】炭化水素供給原料は少なくとも20pp
    mの油溶性ナトリウムを含む請求項20記載の方法。
  22. 【請求項22】第1ゾーンの触媒粒子が、第VIII族金属
    を含む追加の触媒粒子と物理的に混合されている請求項
    11、12、または13に記載の方法。
JP2406962A 1989-12-28 1990-12-26 炭化水素供給原料からカルシウムを除去する方法 Pending JPH03292395A (ja)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US45812889A 1989-12-28 1989-12-28
US45799689A 1989-12-28 1989-12-28
US458128 1989-12-28
US457996 1989-12-28
US56102190A 1990-08-01 1990-08-01
US561021 1990-08-01

Publications (1)

Publication Number Publication Date
JPH03292395A true JPH03292395A (ja) 1991-12-24

Family

ID=27412719

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2406962A Pending JPH03292395A (ja) 1989-12-28 1990-12-26 炭化水素供給原料からカルシウムを除去する方法

Country Status (2)

Country Link
JP (1) JPH03292395A (ja)
KR (1) KR910012198A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007522269A (ja) * 2003-12-19 2007-08-09 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ 原油生成物を製造するためのシステム、方法及び触媒

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007522269A (ja) * 2003-12-19 2007-08-09 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ 原油生成物を製造するためのシステム、方法及び触媒

Also Published As

Publication number Publication date
KR910012198A (ko) 1991-08-07

Similar Documents

Publication Publication Date Title
US4431525A (en) Three-catalyst process for the hydrotreating of heavy hydrocarbon streams
US4082695A (en) Catalyst for residua demetalation and desulfurization
US3898155A (en) Heavy oil demetallization and desulfurization process
US3891541A (en) Process for demetalizing and desulfurizing residual oil with hydrogen and alumina-supported catalyst
US7169294B2 (en) Hydroprocessing catalyst and use thereof
US4395328A (en) Catalyst and support, their methods of preparation, and processes employing same
US3766058A (en) Process for hydroprocessing heavy hydrocarbon feedstocks
US3931052A (en) Alumina-supported catalyst for residua demetalation and desulfurization
US4456699A (en) Catalyst and support, and their methods of preparation
US7922894B2 (en) HPC process using a mixture of catalysts
US4404097A (en) Residua demetalation/desulfurization catalyst and methods for its use
JP6773384B2 (ja) 重質炭化水素油の水素化処理方法
JPH0772273B2 (ja) 炭化水素油の水素化処理方法
US4411824A (en) Method of making a catalyst suitable for hydrometalation of hydrocarbonaceous feedstocks
ES2890477T3 (es) Hidroprocesamiento de hidrocarburos con el uso de una mezcla de catalizadores
JP4369871B2 (ja) 触媒の混合物を使用する重質原料のhpc法
US7186329B2 (en) High-macropore hydroprocessing catalyst and its use
TW201443216A (zh) 新穎的重油加氫處理觸媒
US4560466A (en) Hydrodemetallization of heavy oils in the presence of water
CA2449646C (en) Two-stage hpc process
WO1996004073A1 (en) Low macropore resid conversion catalyst
US3322666A (en) Chemical process for hydrocracking and hydrorefining of hydrocarbon oils
US5164078A (en) Process for removal of calcium from a hydrocarbon feedstock
JP3692207B2 (ja) 水素化処理用触媒およびそれを用いる炭化水素油の水素化処理方法
US4741821A (en) Catalyst system for removal of calcium from a hydrocarbon feedstock