JPH03291867A - Heat radiating device for storage battery system - Google Patents

Heat radiating device for storage battery system

Info

Publication number
JPH03291867A
JPH03291867A JP2092508A JP9250890A JPH03291867A JP H03291867 A JPH03291867 A JP H03291867A JP 2092508 A JP2092508 A JP 2092508A JP 9250890 A JP9250890 A JP 9250890A JP H03291867 A JPH03291867 A JP H03291867A
Authority
JP
Japan
Prior art keywords
storage battery
battery
single storage
temperature
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2092508A
Other languages
Japanese (ja)
Other versions
JP2931361B2 (en
Inventor
Sanehiro Furukawa
古川 修弘
Kazuo Moriwaki
森脇 和郎
Mitsuzo Nogami
光造 野上
Seiji Kameoka
亀岡 誠司
Mikiaki Tadokoro
田所 幹朗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP9250890A priority Critical patent/JP2931361B2/en
Publication of JPH03291867A publication Critical patent/JPH03291867A/en
Application granted granted Critical
Publication of JP2931361B2 publication Critical patent/JP2931361B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/64Heating or cooling; Temperature control characterised by the shape of the cells
    • H01M10/647Prismatic or flat cells, e.g. pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6551Surfaces specially adapted for heat dissipation or radiation, e.g. fins or coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6561Gases
    • H01M10/6562Gases with free flow by convection only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/258Modular batteries; Casings provided with means for assembling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/20Fuel cells in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE:To enhance charging efficiency by providing an air ventilating space of specified width between single cells. CONSTITUTION:A single storage battery 1 is made up out of a positive electrode 2 made of metal oxide and of a negative electrode 4 made of a hydrogen storage alloy, which is provided while a separator 3 is being held. When the width of the battery 1 is D, and the interval between the respective batteries 1 is L, it is desirable that L/D is set 0.1 to 1.0. By this constitution, charging efficiency can thereby be enhanced.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は、水素吸蔵合金を負極に用いた蓄電池のように
充電時に蓄電池温度が上昇する蓄電池を多数個組み合わ
せた蓄電池システムの放熱装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to a heat dissipation device for a storage battery system that combines a large number of storage batteries whose temperature increases during charging, such as a storage battery using a hydrogen storage alloy for the negative electrode. .

(ロ)従来の技術 水素吸蔵合金を負極に用いた蓄電池は、ニッケルーカド
ミウム電池に代わるものとして注目を浴びており、商品
化の域に達している。
(b) Conventional technology Storage batteries using hydrogen storage alloys as negative electrodes are attracting attention as an alternative to nickel-cadmium batteries, and have reached the stage of commercialization.

一方、この水素l&蔵金合金負極に用いた蓄電池の電池
容量はニッケルーカドミウム電池に比べるとその蓄電池
温度に大きく影響を受けることが知られている。ところ
が一般に蓄電池は充電時に発熱するのでその熱を効率よ
く放熱する必要がある。
On the other hand, it is known that the battery capacity of a storage battery used for this hydrogen/metal alloy negative electrode is more greatly affected by the battery temperature than that of a nickel-cadmium battery. However, since storage batteries generally generate heat when being charged, it is necessary to efficiently dissipate that heat.

また最近この水素吸蔵合金を用いた蓄電池を複数個組み
合わせて数+AH〜数百AH程度の中規模の蓄電池シス
テムを構成しようとする試みが為されている。
Recently, attempts have been made to construct a medium-sized storage battery system of several + AH to several hundred AH by combining a plurality of storage batteries using this hydrogen storage alloy.

(ハ)発明が解決しようとする課題 ところがこのような規模の蓄電池システムとなると、そ
の充電時の発熱を無視することはできなくなり、蓄電池
の放熱について考慮しなければならないが、現在のとこ
ろこの種蓄電池システムの放熱に関する具体的な提案は
為されていない。
(c) Problems to be solved by the invention However, when it comes to storage battery systems of this scale, the heat generated during charging cannot be ignored, and heat dissipation from the storage batteries must be considered. No specific proposals regarding heat dissipation from storage battery systems have been made.

(ニ)課題を解決するための手段 本発明は、並置した多数個の蓄電池間に空気が流通する
空間を設けると共に、その空間幅/単蓄電池幅が、0.
1−1.0の範囲に設定しており、また本発明は、密着
並置した多数個の蓄電池の外装に少なくとも外装下面か
ら上面に達する熱対流用の溝を設けたものであり、更に
本発明は、並置した多数個の蓄電池の内側位置の電池容
量を、最外位置の電池容量より並置位置の違いによる温
度差に起因する容量低下分だけ多く設定しており、また
本発明は、単晶電池の温度、内部圧力、並びに/又は端
子電圧を検知する手段を設け、その検知手段による検知
結果が予め定められた規定値以上になった時に作動する
強制冷却手段を設けており、更に本発明は、並置した蓄
tmra+に、常温では固体であるが蓄電池の充電時の
昇温時には融解して液体となる溶解物質を配置したもの
である。
(d) Means for Solving the Problems The present invention provides a space through which air flows between a large number of storage batteries arranged side by side, and the space width/single storage battery width is 0.
1-1.0, and the present invention provides grooves for heat convection reaching at least from the lower surface to the upper surface of the exterior of a large number of storage batteries closely arranged side by side. In this method, the battery capacity at the inner position of a large number of storage batteries arranged side by side is set to be larger than the battery capacity at the outermost position by the amount of capacity reduction caused by the temperature difference due to the difference in the arrangement position. A means for detecting the temperature, internal pressure, and/or terminal voltage of the battery is provided, and a forced cooling means is provided that is activated when the detection result by the detection means exceeds a predetermined value, and furthermore, the present invention In this case, a dissolved substance is placed in the juxtaposed storage tmra+, which is solid at room temperature but melts and becomes liquid when the temperature rises during charging of the storage battery.

(ホ)作用 本発明によれば、蓄電池の発熱、特に充電の際に発生す
る熱を効率良く放熱するので、蓄電池の温度上昇に伴う
充放電効率の低下を防ぐことができる。
(E) Effects According to the present invention, heat generated by the storage battery, particularly heat generated during charging, is efficiently radiated, so that it is possible to prevent a decrease in charging and discharging efficiency due to a rise in the temperature of the storage battery.

(へ)実施例 第1図に本発明の第1の実施例が示されており、1  
は金属酸化物を正極2とし、セパレータ3を挟んで設け
られた水素吸蔵合金を負極4とする単晶電池で、これら
の単晶電池l ・・は所定の間隔りを設けて#、置され
ている。尚、5は正極端子、6は負極端子、7・・は各
単晶電池1・・・間の連結端子、8・・は蓄電池内圧が
異常に上昇して爆発の危険が生じた時にその内圧力を外
部に漏らす安全弁である。ここで本発明の特徴とすると
ころは各単晶電池l ・・の幅りと単蓄電池同幅りどの
関係にある。
(f) Example A first example of the present invention is shown in FIG.
is a single-crystal battery having a metal oxide as a positive electrode 2 and a hydrogen-absorbing alloy provided with a separator 3 as a negative electrode 4. ing. In addition, 5 is a positive terminal, 6 is a negative terminal, 7... is a connecting terminal between each single crystal battery 1..., and 8... is a terminal used when the internal pressure of a storage battery rises abnormally and there is a risk of explosion. It is a safety valve that leaks pressure to the outside. Here, the feature of the present invention lies in the relationship between the width of each single crystal battery l... and the same width of the single storage battery.

即ち本発明においては、単晶電池1 ・・の幅りと単蓄
電池同幅りどの関係、L/Dを0.1〜1.0の範囲に
設定している。L/Dが小さいと、即ち単晶電池l・・
・間隔が狭くなると、第2図の実線で示すように、放熱
量が小さくなり充電効率が低下する。
That is, in the present invention, the relationship between the width of the single crystal battery 1 and the width of the single storage battery, L/D, is set in the range of 0.1 to 1.0. If L/D is small, that is, single crystal battery l...
- When the interval becomes narrower, as shown by the solid line in FIG. 2, the amount of heat dissipated becomes smaller and the charging efficiency decreases.

一方、L/Dが大きくなればなるほど放熱の点からは好
ましいが、inシステムが占めるスペースが増大し、第
2図の@腺で示すように、体積エネルギー密度指数が低
下する。従ってこの両ファクターの条件を満たす範囲と
しては、上記したように、L/Dが0.1〜1.0であ
るのが望ましい。
On the other hand, the larger the L/D, the better from the standpoint of heat dissipation, but the space occupied by the in system increases, and the volumetric energy density index decreases, as shown by @gland in FIG. Therefore, as described above, it is desirable that L/D be in the range of 0.1 to 1.0 as a range that satisfies the conditions of both factors.

第3図は本発明の第2の実施例を示しており、この実施
例においては単晶電池l・・は第1図の実施例のように
間隔を置かずに密着並置されている。そして各単it池
1・・の電槽には電槽の下面から上面に達する溝9・・
を設けている。より具体的に説明すると、各単晶電池l
 ・・の電槽の下面全面に渡って溝9−1が設けられ、
その溝9−11から電槽の上面に達する溝9−2・・・
が設けられている。このように各単晶電池1・・・の電
槽に溝9・・・を設けることによって、この溝9・・・
に熱対流が生じ、結果的に蓄電池1・・・を冷却するこ
とになる。従って蓄電池1・・・の温度上昇を抑え得、
充電効率の低下を防止することができる。
FIG. 3 shows a second embodiment of the invention, in which the single crystal cells l... are arranged closely side by side without any spacing as in the embodiment of FIG. The battery case of each single battery 1... has a groove 9 that reaches from the bottom to the top of the battery case.
has been established. To explain more specifically, each single crystal battery l
A groove 9-1 is provided across the entire bottom surface of the battery case,
A groove 9-2 that reaches the top surface of the battery case from the groove 9-11...
is provided. By providing the grooves 9 in the case of each single crystal battery 1 in this way, the grooves 9...
Heat convection occurs, and as a result, the storage battery 1... is cooled down. Therefore, the temperature rise of the storage battery 1 can be suppressed,
Deterioration in charging efficiency can be prevented.

第4図は本発明の第3の実施例を示しており、複数の単
晶電池1・・・を密着並置するに際し、内側に位置する
単晶電池1−1・・・の電池容量を、最外側に位置する
単晶電池1−2.1−2の電池容量より、並置位置の違
いによる温度差に起因する容量低下分だけ多く設定して
いる。第5図に蓄電池温度と電池容量との関係を示して
おり、この第5図から明らかなように電池温度が40℃
の時をピークにそれより温度が上昇すると急激に電池容
量が低下する。ここで用いられている水素吸蔵合金を使
用した単晶電池1・・・の場合、室温25℃においてそ
の充電末期には電池温度は40℃程度になる。従って第
4図に示す並置された単晶電池のうち、最外側の単晶電
池1−2.1−2の温度は40℃程度であるが、放熱効
果の違いにより、内側の単晶電池1−1・・・の温度は
最外側の単晶電池]−2,1−2のそれより10〜15
℃高くなってしまう。
FIG. 4 shows a third embodiment of the present invention, in which when a plurality of single crystal batteries 1... are closely arranged side by side, the battery capacity of the single crystal batteries 1-1... located inside is determined as follows: The battery capacity is set to be larger than the battery capacity of the single crystal battery 1-2.1-2 located at the outermost side by an amount corresponding to the decrease in capacity caused by the temperature difference due to the difference in the juxtaposed position. Figure 5 shows the relationship between storage battery temperature and battery capacity, and as is clear from Figure 5, the battery temperature is 40°C.
When the temperature peaks at , the battery capacity decreases rapidly as the temperature rises above that point. In the case of the single-crystal battery 1 using the hydrogen storage alloy used here, the battery temperature becomes about 40°C at the end of charging at a room temperature of 25°C. Therefore, among the single crystal batteries arranged side by side as shown in Fig. 4, the temperature of the outermost single crystal battery 1-2. The temperature of -1... is 10 to 15 higher than that of the outermost single crystal battery] -2, 1-2
The temperature will rise.

従って内側の単晶電池1−1・・・の電池容量は最外側
の単晶電池1−2.1−2のそれの0.9〜0.8とな
るので、その容量低下分を単晶電池l ・・そのものの
電池容量を高く設定して補償している。具体的には内側
に位置する単晶電池1=1・・・の電池容量を、最外側
の単晶電池1−2.1−2のそれより10〜25%高く
設定している。このような構成を採ることによって、複
数の単晶電池1・ を密着並置してシステム化した場合
においても、温度上昇分を補償してトータルとしてのエ
ネルギー出力を一定に保つことができる。
Therefore, the battery capacity of the inner single crystal battery 1-1... is 0.9 to 0.8 of that of the outermost single crystal battery 1-2. Battery l: The battery capacity itself is set high to compensate. Specifically, the battery capacity of the inner single crystal battery 1=1... is set to be 10 to 25% higher than that of the outermost single crystal battery 1-2.1-2. By adopting such a configuration, even when a plurality of single crystal batteries 1 are closely arranged in a system, it is possible to compensate for the temperature increase and keep the total energy output constant.

第6図に本発明の第4の実施例を示す。この実施例にお
いては第1の実施例で示したように単晶電池1・・・を
間隔を置いて並置すると共に、箱体10内に配置し、そ
の箱体10内を常温では固体であるが単晶電池l・・・
の昇温時には融解して液体となる融解物質11で満たし
ている。この融解物質11としては、融点が51℃で融
解エンタルピーがI 7 、3 KJ/ molのチモ
ール(C、。o 110 )、融点63℃で融解エンタ
ルピーが42 、3 KJ/m。
FIG. 6 shows a fourth embodiment of the present invention. In this embodiment, as shown in the first embodiment, single crystal batteries 1 are arranged side by side at intervals, and are also arranged in a box 10, and the inside of the box 10 is solid at room temperature. is a single crystal battery...
It is filled with a molten substance 11 that melts and becomes liquid when the temperature rises. The melting substance 11 includes thymol (C, .o 110 ) having a melting point of 51° C. and a melting enthalpy of I 7 and 3 KJ/mol, and a melting point of 63° C. and a melting enthalpy of 42 and 3 KJ/m.

のパルミチン酸EC)(、(CH、)、、COOH) 
、融点76℃で融解エンタルピーが69 、9 KJ/
 molのエイコサン酸(CH、(CH、)1.c 0
0 T−1)が用いられる。これらの他に、融点44℃
のラウリン酸CCH、(CH、)、。C00H) 、融
点58℃のミリスチン酸ECH,(CH,)、、C00
H) 、−点70℃のステアリン酸[CH,(CHI)
IIcOOH]なども用い得るであろう。
Palmitic acid EC) (, (CH,),, COOH)
, the melting point is 76°C and the enthalpy of fusion is 69, 9 KJ/
mol of eicosanoic acid (CH, (CH,) 1.c 0
0 T-1) is used. In addition to these, melting point 44℃
lauric acid CCH, (CH,),. C00H), myristic acid ECH, (CH,), melting point 58°C, C00
H) , - stearic acid [CH, (CHI) at 70°C
IIcOOH] and the like could also be used.

このように単晶電池1 ・の周囲を昇温時には融解して
液体となる融解物質l】で満たすことによって蓄電池l
 ・・の温度が融解物質11の融点より高くなるとその
融解物質11は解けだすが、その時の潜熱によって単晶
電池1・・・が冷却され、融解物質11の融点より温度
が高くなることが抑制される。
In this way, by filling the area around the single crystal battery 1 with a molten substance that melts into liquid when the temperature rises, the storage battery can be
When the temperature of... becomes higher than the melting point of the molten substance 11, the molten substance 11 begins to melt, but the latent heat at that time cools the single crystal battery 1..., suppressing the temperature from rising above the melting point of the molten substance 11. be done.

第7図に本発明の第5の実施例を示す。この実施例にお
いては単晶電池1・ をケース12内に並置すると共に
、各単晶電池1・・・にその温度を検知する熱電対など
の検知手段13・ を設け、史にこの検知手段13・・
からの信号をリード線14を介して受けて作動するブロ
アーなどの強制冷却手段15をケース12に関連付けて
いる。即ち単晶電池l  の温度が電池作用を引1害す
る規定値より上昇した時はその温度を検知手段13が検
知して強制冷却手段15を作動せしめ、ケース12内に
冷却風を送り込んで単晶電池l  を冷却せしめている
FIG. 7 shows a fifth embodiment of the present invention. In this embodiment, the single crystal batteries 1 are arranged side by side in the case 12, and each single crystal battery 1 is provided with a detection means 13 such as a thermocouple for detecting its temperature.・・・
A forced cooling means 15, such as a blower, is associated with the case 12, and is operated by receiving a signal from the air conditioner via a lead wire 14. That is, when the temperature of the single crystal battery l rises above a specified value that would impair the battery's operation, the detection means 13 detects the temperature and activates the forced cooling means 15, which blows cooling air into the case 12 to remove the single crystal battery. It cools the battery l.

また単晶電池1  を充電状態に置くと上記したように
電池温度が上昇すると同時に、電池内圧も高まる。従っ
て第8図に示すように各単晶電池にその内圧を検知する
圧力センサーなどの圧力検知手段16  を設け、この
圧力検知手段16  が単晶電池1  の内圧が規定以
上に上昇したことを検知した場合に上記強制冷却手段1
5を作動せしめる。
Furthermore, when the single crystal battery 1 is placed in a charged state, the battery temperature increases as described above, and at the same time, the battery internal pressure also increases. Therefore, as shown in FIG. 8, each single crystal battery is provided with pressure detection means 16 such as a pressure sensor for detecting its internal pressure, and this pressure detection means 16 detects when the internal pressure of the single crystal battery 1 has risen above a specified value. In this case, the forced cooling means 1
Activate 5.

更に単晶電池1  を充電状態に置くと上記したように
電池温度や電池内圧が上昇すると同時に、電池の端子電
圧も高まる。従って各単晶電池l・・・にその端子電圧
を検知する電圧検知手段を設け、この電圧検知手段が単
晶電池l・・・の端子電圧が規定以上に上昇したことを
検知した時に上記強制冷却手段15を作動せしめること
も有効である。
Further, when the single crystal battery 1 is placed in a charging state, the battery temperature and internal pressure increase as described above, and at the same time, the terminal voltage of the battery also increases. Therefore, each single crystal battery l... is provided with a voltage detection means for detecting its terminal voltage, and when this voltage detection means detects that the terminal voltage of the single crystal battery l... has risen above a specified value, the above-mentioned It is also effective to activate the cooling means 15.

尚、上述した各実施例において各単晶電池1・の放熱効
果を高めるために第9図に示すように電池の電槽に放熱
フィン17・・・を設ける構成も考えられる。
In each of the embodiments described above, in order to enhance the heat dissipation effect of each single crystal battery 1, it is possible to provide a configuration in which heat dissipation fins 17 are provided in the battery case as shown in FIG.

(ト)発明の効果 本発明は以上の説明から明らかな如く、並置された多数
の単晶電池から発生する熱に対する考慮が為されている
ので、その蓄電池に対する充放電、特に充電効率の向上
を図ることができる。
(G) Effects of the Invention As is clear from the above description, the present invention takes into consideration the heat generated from a large number of single crystal batteries arranged side by side, and therefore improves the charging and discharging of the storage batteries, especially the charging efficiency. can be achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第3図、第4図、第6図、第7図、第8図はそ
れぞれ本発明装置の構成を示す斜視図、第2図は第1図
の装置の動作説明のための特性図、第5図は第4図の装
置の動作説明のための特性図、第9図は本発明装置に適
用して有効な構成を示す斜視図である。 l・・・単晶電池、5・・・正極端子、6・・・負極端
子、9・・・溝、lO・・・箱体、11・・・融解物質
、12・・・ケース、13・・・温度検知手段、15・
・・強制冷却手段、16・・・圧力検知手段、17・・
・放熱フィン。
1, 3, 4, 6, 7, and 8 are perspective views showing the configuration of the device of the present invention, and FIG. 2 is a diagram for explaining the operation of the device in FIG. 1. FIG. 5 is a characteristic diagram for explaining the operation of the device of FIG. 4, and FIG. 9 is a perspective view showing a configuration effective when applied to the device of the present invention. l...Single crystal battery, 5...Positive electrode terminal, 6...Negative electrode terminal, 9...Groove, lO...Box body, 11...Melted substance, 12...Case, 13...・Temperature detection means, 15・
... Forced cooling means, 16... Pressure detection means, 17...
- Heat dissipation fin.

Claims (6)

【特許請求の範囲】[Claims] (1)正極と負極と電解液とによって構成され、充電時
に発熱を伴う単蓄電池を多数個並置したシステムにおい
て、各単蓄電池間に空気が流通する空間を設けると共に
、その空間幅/単蓄電池幅が、0.1〜1.0の範囲に
あることを特徴とした蓄電池システムの放熱装置。
(1) In a system in which a large number of single storage batteries are arranged side by side and are composed of a positive electrode, a negative electrode, and an electrolyte and generate heat during charging, a space is provided between each single storage battery for air to circulate, and the width of the space/the width of the single storage battery is is in the range of 0.1 to 1.0.
(2)正極と負極と電解液とによって構成され、充電時
に発熱を伴う単蓄電池を多数個密着並置したシステムに
おいて、各単蓄電池の外装に少なくとも外装下面から上
面に達する熱対流用の溝を設けたことを特徴とする蓄電
池システムの放熱装置。
(2) In a system in which a large number of single storage batteries, which are composed of a positive electrode, a negative electrode, and an electrolyte and generate heat during charging, are closely arranged side by side, the exterior of each single storage battery is provided with a groove for heat convection that reaches at least from the lower surface to the upper surface of the exterior. A heat dissipation device for a storage battery system characterized by:
(3)正極と負極と電解液とによって構成され、充電時
に発熱を伴う単蓄電池を多数個並置したシステムにおい
て、並置した単蓄電池の内側位置の電池容量を、最外位
置の電池容量より並置位置の違いによる温度差に起因す
る電池容量低下分だけ多く設定したことを特徴とする蓄
電池システムの放熱装置。
(3) In a system in which a large number of single storage batteries are arranged side by side and are composed of a positive electrode, a negative electrode, and an electrolyte and generate heat during charging, the battery capacity at the inner position of the side-by-side single storage batteries is determined by the battery capacity at the outermost position at the side-by-side position. A heat dissipation device for a storage battery system, characterized in that the heat dissipation device for a storage battery system is set to an amount corresponding to a decrease in battery capacity due to a temperature difference due to a difference in temperature.
(4)正極と負極と電解液とによって構成され、充電時
に発熱を伴う単蓄電池を多数個並置したシステムにおい
て、各単蓄電池間に、常温では固体であるが蓄電池の充
電時の昇温時には融解して液体となる溶解物質を配置し
たことを特徴とする蓄電池システムの放熱装置。
(4) In a system consisting of a positive electrode, a negative electrode, and an electrolytic solution, in which a large number of single storage batteries are arranged side by side and generate heat during charging, there is a space between each single storage battery that is solid at room temperature but melts when the temperature rises during charging of the storage battery. A heat dissipation device for a storage battery system, characterized in that a molten substance that becomes a liquid is arranged.
(5)正極と負極と電解液とによって構成され、充電時
に発熱を伴う単蓄電池を多数個並置したシステムにおい
て、上記単蓄電池の温度、内部圧力、並びに/又は端子
電圧を検知する手段を設け、その検知手段による検知結
果が予め定められた規定値以上になった時に作動する強
制冷却手段を設けたことを特徴とする蓄電池システムの
放熱装置。
(5) In a system in which a large number of single storage batteries that are composed of a positive electrode, a negative electrode, and an electrolytic solution and generate heat during charging are arranged side by side, a means for detecting the temperature, internal pressure, and/or terminal voltage of the single storage battery is provided, A heat dissipation device for a storage battery system, characterized in that a forced cooling means is provided which is activated when a detection result by the detection means exceeds a predetermined value.
(6)上記単蓄電池は、正極に金属酸化物を、負極に水
素吸蔵合金を、電解液としてアルカリ水溶液を用いた請
求項(1)(2)(3)(4)、又は(5)記載の蓄電
池システムの放熱装置。
(6) The single storage battery described in claim (1), (2), (3), (4), or (5) uses a metal oxide for the positive electrode, a hydrogen storage alloy for the negative electrode, and an alkaline aqueous solution as the electrolyte. heat dissipation device for storage battery systems.
JP9250890A 1990-04-06 1990-04-06 Heat dissipation device for storage battery system Expired - Fee Related JP2931361B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9250890A JP2931361B2 (en) 1990-04-06 1990-04-06 Heat dissipation device for storage battery system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9250890A JP2931361B2 (en) 1990-04-06 1990-04-06 Heat dissipation device for storage battery system

Publications (2)

Publication Number Publication Date
JPH03291867A true JPH03291867A (en) 1991-12-24
JP2931361B2 JP2931361B2 (en) 1999-08-09

Family

ID=14056255

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9250890A Expired - Fee Related JP2931361B2 (en) 1990-04-06 1990-04-06 Heat dissipation device for storage battery system

Country Status (1)

Country Link
JP (1) JP2931361B2 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0599137A1 (en) * 1992-11-10 1994-06-01 Matsushita Electric Industrial Co., Ltd. Storage battery system
US5456994A (en) * 1992-06-08 1995-10-10 Honda Giken Kogyo Kabushiki Kaisha Battery module and temperature-controlling apparatus for battery
EP0692838A1 (en) 1994-07-11 1996-01-17 Matsushita Electric Industrial Co., Ltd. Sealed storage battery and method for manufacturing the same
US5510203A (en) * 1994-02-23 1996-04-23 Matsushita Electric Industrial Co., Ltd. Cell and module battery of sealed alkaline storage battery
US5580677A (en) * 1993-09-17 1996-12-03 Matsushita Electric Industrial Co., Ltd. Unit battery of sealed alkaline storage battery and battery system
US5663007A (en) * 1994-02-23 1997-09-02 Matsushita Electric Industrial Co., Ltd. Sealed storage battery and method for manufacturing the same
JPH10172584A (en) * 1996-12-04 1998-06-26 Sanyo Electric Co Ltd Method and device for charging dc power supply
US5800942A (en) * 1995-10-24 1998-09-01 Matsushita Electric Industrial Co., Ltd. Storage battery with ventilation system
US5817435A (en) * 1994-07-05 1998-10-06 Matsushita Electric Industrial Co., Ltd. Sealed alkaline storage battery
US6309776B1 (en) 1998-01-29 2001-10-30 Sanyo Electric Co. Ltd. Assembled storage battery unit of the collective type
US6709783B2 (en) 2000-01-12 2004-03-23 Matsushita Electric Industrial Co., Ltd. Battery pack cooling structure
US6818343B1 (en) 1998-11-27 2004-11-16 Matsushita Electric Industrial Co., Ltd. Battery pack with reduced temperature differential between cells
JP2005108750A (en) * 2003-10-01 2005-04-21 Nissan Motor Co Ltd Battery module and battery pack
JP2005209367A (en) * 2004-01-20 2005-08-04 Matsushita Electric Ind Co Ltd Battery pack
US7291421B2 (en) 1999-10-08 2007-11-06 Matsushita Electric Industrial Co., Ltd. Battery pack
EP1939956A1 (en) 2006-12-28 2008-07-02 Sanyo Electric Co., Ltd. Battery pack
JP2008535174A (en) * 2005-04-20 2008-08-28 エルジー・ケム・リミテッド Secondary battery module with piezoelectric sensor
WO2011007534A1 (en) * 2009-07-17 2011-01-20 パナソニック株式会社 Battery module and battery pack using the same

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5456994A (en) * 1992-06-08 1995-10-10 Honda Giken Kogyo Kabushiki Kaisha Battery module and temperature-controlling apparatus for battery
EP0599137A1 (en) * 1992-11-10 1994-06-01 Matsushita Electric Industrial Co., Ltd. Storage battery system
US5322745A (en) * 1992-11-10 1994-06-21 Matsushita Electric Industrial Co., Ltd. Storage battery system
US5580677A (en) * 1993-09-17 1996-12-03 Matsushita Electric Industrial Co., Ltd. Unit battery of sealed alkaline storage battery and battery system
US5510203A (en) * 1994-02-23 1996-04-23 Matsushita Electric Industrial Co., Ltd. Cell and module battery of sealed alkaline storage battery
US5663007A (en) * 1994-02-23 1997-09-02 Matsushita Electric Industrial Co., Ltd. Sealed storage battery and method for manufacturing the same
US5817435A (en) * 1994-07-05 1998-10-06 Matsushita Electric Industrial Co., Ltd. Sealed alkaline storage battery
EP0692838A1 (en) 1994-07-11 1996-01-17 Matsushita Electric Industrial Co., Ltd. Sealed storage battery and method for manufacturing the same
US5800942A (en) * 1995-10-24 1998-09-01 Matsushita Electric Industrial Co., Ltd. Storage battery with ventilation system
JPH10172584A (en) * 1996-12-04 1998-06-26 Sanyo Electric Co Ltd Method and device for charging dc power supply
US6309776B1 (en) 1998-01-29 2001-10-30 Sanyo Electric Co. Ltd. Assembled storage battery unit of the collective type
US6818343B1 (en) 1998-11-27 2004-11-16 Matsushita Electric Industrial Co., Ltd. Battery pack with reduced temperature differential between cells
US7147963B2 (en) 1998-11-27 2006-12-12 Matsushita Electric Industrial Co., Ltd. Battery pack with thermal distribution configuration
US7291421B2 (en) 1999-10-08 2007-11-06 Matsushita Electric Industrial Co., Ltd. Battery pack
US6709783B2 (en) 2000-01-12 2004-03-23 Matsushita Electric Industrial Co., Ltd. Battery pack cooling structure
JP2005108750A (en) * 2003-10-01 2005-04-21 Nissan Motor Co Ltd Battery module and battery pack
JP2005209367A (en) * 2004-01-20 2005-08-04 Matsushita Electric Ind Co Ltd Battery pack
JP4635442B2 (en) * 2004-01-20 2011-02-23 パナソニック株式会社 Battery pack
JP2008535174A (en) * 2005-04-20 2008-08-28 エルジー・ケム・リミテッド Secondary battery module with piezoelectric sensor
EP1939956A1 (en) 2006-12-28 2008-07-02 Sanyo Electric Co., Ltd. Battery pack
US8071234B2 (en) 2006-12-28 2011-12-06 Sanyo Electric Co., Ltd. Battery pack
WO2011007534A1 (en) * 2009-07-17 2011-01-20 パナソニック株式会社 Battery module and battery pack using the same
JP4815026B2 (en) * 2009-07-17 2011-11-16 パナソニック株式会社 Battery module and battery pack using the same
JPWO2011007534A1 (en) * 2009-07-17 2012-12-20 パナソニック株式会社 Battery module and battery pack using the same
US8475952B2 (en) 2009-07-17 2013-07-02 Panasonic Corporation Battery module and battery pack using the same

Also Published As

Publication number Publication date
JP2931361B2 (en) 1999-08-09

Similar Documents

Publication Publication Date Title
JPH03291867A (en) Heat radiating device for storage battery system
KR101792162B1 (en) Battery pack
JP6456508B2 (en) Battery module
US10381694B2 (en) Cooling device for battery cell and battery module comprising the same
US5871859A (en) Quick charge battery with thermal management
JP4833420B2 (en) Battery pack
US10347880B2 (en) Battery module having improved cooling performance
KR102022590B1 (en) Battery Module
JP6047810B2 (en) Secondary battery, secondary battery module including the same, and secondary battery pack
US20080248379A1 (en) Battery unit
JP2018507512A (en) battery pack
JP2019502232A (en) Battery module
CN209860115U (en) Battery module
JP7176006B2 (en) Battery module with improved heat dissipation, battery pack including the battery module, and motor vehicle including the battery pack
KR102026386B1 (en) Battery module
US20210083342A1 (en) Battery Module with Enhanced Cooling Efficiency, and Battery Pack Comprising Same
KR102202417B1 (en) The cartridge, Battery module including the cartridge, Battery pack
KR20170070542A (en) Can Type Secondary Battery and Secondary Battery Module including the same
JP2022529795A (en) Battery module including cell frame
JP2000348781A (en) Nonaqueous electrolyte battery
CN112582731B (en) Battery module
KR102009438B1 (en) Battery module
EP3686986B1 (en) Battery module and battery pack including the same
CN113140813A (en) Lithium ion battery pack with intelligent overheat protection
JP3780396B2 (en) Oil-immersed equal-pressure storage battery

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees