JP3780396B2 - Oil-immersed equal-pressure storage battery - Google Patents

Oil-immersed equal-pressure storage battery Download PDF

Info

Publication number
JP3780396B2
JP3780396B2 JP32256897A JP32256897A JP3780396B2 JP 3780396 B2 JP3780396 B2 JP 3780396B2 JP 32256897 A JP32256897 A JP 32256897A JP 32256897 A JP32256897 A JP 32256897A JP 3780396 B2 JP3780396 B2 JP 3780396B2
Authority
JP
Japan
Prior art keywords
battery
storage tank
oil
immersed
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP32256897A
Other languages
Japanese (ja)
Other versions
JPH10247513A (en
Inventor
顕弘 生田
福夫 藤樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
GS Yuasa Corp
Original Assignee
Mitsubishi Heavy Industries Ltd
GS Yuasa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd, GS Yuasa Corp filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP32256897A priority Critical patent/JP3780396B2/en
Publication of JPH10247513A publication Critical patent/JPH10247513A/en
Application granted granted Critical
Publication of JP3780396B2 publication Critical patent/JP3780396B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)
  • Secondary Cells (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、深海等の高圧下で使用される油漬均圧型蓄電池、特に充電時の発熱量を低く抑えることの出来る油漬均圧型蓄電池に関する。
【0002】
【従来の技術】
深海等の高圧下で使用される電池として、油漬均圧型蓄電池がある。この蓄電池は、一般的には大気圧下で充電され、深海等の高圧下での計測機器の電源や水中走行体の駆動用電源として使用される。
このような蓄電池は、本願と同一出願人による特開昭49−85530号や特開昭49−85531号に開示されている。その概要は、図12(A)に示すように、電池収納槽1と均圧装置2とで形成される密封空間内に、複数の開放型単電池3,3,・・・(単電池群)と絶縁油とを収納した構成であり、一括して単電池の均圧群の均圧を図るものである。
【0003】
図12(B)は、前記均圧装置2の内部構造を示す図であり、この例では蛇腹式伸縮部としたゴム袋製の伸張収縮体8が均圧機能部材である。この図では均圧装置2のゴム袋製の伸張収縮体8外周部に海水を導入するための海水導入孔は省略されているが、この油漬均圧型蓄電池を搭載した深海調査船等が潜水したとき、海水導入孔を通って均圧装置2内に流入した海水がゴム袋製の伸張収縮体8を圧縮することにより、電池収納槽1の外部圧力と電池収納槽1内部の圧力とが釣り合い、もって深海等での蓄電池の破損が防止される。尚、単電池3にも均圧手段が備えられているが、その構成と本願発明の要旨とは直接関係はないので説明を省略する。
【0004】
油漬均圧型蓄電池の代表的な用途に、深海調査船用電源がある。この深海調査船は『しんかい2000』や『しんかい6500』の名で実用に供されている。これには、単電池として酸化銀亜鉛二次電池が用いられており、そのおおよその単電池仕様は、定格容量450〜540Ah、重量9〜9.5Kg、寸法約110×90×430mm、重量エネルギ−密度75〜85Wh/Kg、容積エネルギ−密度160〜200Wh/l(リットル)、といわれている。このような単電池が、数10個、電池収納槽内に配置されている。
【0005】
周知の通り、かかる用途における油漬均圧型蓄電池においては、サイクル寿命や放電性能等とともに、重量効率、体積効率が最重視される。重量効率、体積効率を上げる観点から、従来、電池収納槽内の不要空間部をなるべく減らすとともに、不要部材の削減を図るべく、特開昭49−85530号や特開昭49−85531号に図示されているように(これらを図12に示す)、単電池同士を隣接させて収容していた。
図13は、従来の単電池収納方法を示す図であり、図12(A)のY−Y矢視断面図である。この図に示すように、電池収納槽1内には単電池3が並べて配置され、電池収納槽1の壁面にはスペ−サ4が貼り付けられ、また、電池収納槽1の角部には絶縁油移動通路6が設けられている。この絶縁油移動通路6は前記均圧装置2内及び電池収納槽1の上部空間1aと繋がっている。
【0006】
【発明が解決しようとする課題】
油漬均圧蓄電池は、深海等の高圧下で使用(放電)した後、地上なり或いは支援船上なりで充電されるのが一般的であるが、その際、いちいち絶縁油を抜き取って充電するなどという煩雑な方法によるのではなく、電池収納槽1内に密閉されたまま行われる。
充電時には単電池温度が上昇するが、過度の温度上昇がセパレ−タや電極の劣化、電解液の分解等の悪影響を及ぼすことは周知の通りであり、充電時における単電池温度上昇をいかに低く抑えるかが、この種電池技術分野における重要な課題の一つである。しかるに、単電池同士を隣接させて配備していた従来の油漬均圧型蓄電池は、その構造上、放熱特性が必ずしもよくないという問題がある。
【0007】
このような課題に対しては、従来、止むを得ず、油漬均圧型蓄電池をテント内に収納してスポットク−ラ−で冷却したり、陣地収納槽上部にたくさんの氷を載せるなりして、温度上昇をおさえるという方法が採用されていた。しかしながら、これらの方法ではいまだ十分とは言えず、結果としてサイクル寿命や放電特性の点で当初の期待通りの目標に到達しえないケ−スが皆無とは言えなかった。
【0008】
この発明は上記する課題に対処するためになされたものであり、放熱特性に優れ、もってサイクル寿命や放電特性も改善された油漬均圧型蓄電池を提供することを目的としている。
【0009】
【課題を解決するための手段】
即ち、この発明は上記する課題を解決するために、請求項1に記載の発明は、均圧装置を有する電池収納槽と、該電池収納槽に収納された単電池群と、該電池収納槽内の空間部に充填された絶縁液とを備えた油漬均圧型蓄電池において、
単電池群と前記電池収納槽内壁との間及び単電池群間に、流体通路形成部材を配置して、電池収納槽上部空間の絶縁油と下部空間の絶縁油とが対流により入れ替わるよう、電池収納槽の下部空間と上部空間とを連通する複数の流体通路を形成し、前記流体通路形成部材は、その高さが単電池上端から極板群に達しない部材であることを特徴とする。
【0010】
或いは請求項2に記載の発明は、前記流体通路形成部材は、楔状体であることを特徴とする。
【0011】
【発明の実施の形態】
以下、この発明の具体的実施の形態について図面を参照しながら説明する。
図1は、この発明の油漬均圧型蓄電池の内部を示す一部断面図であり、図2は図1のX−X矢視断面図である。この油漬均圧型蓄電池は、例えばチタン合金製の電池収納槽1内に単電池群(3,3,・・・)を所定の空間をおいて配置し、内部に例えばシリコンオイル絶縁油(以下、単に絶縁油とする)を充填する構造としてある。これらの単電池3としては、通常、酸化銀亜鉛電池が用いられる。該電池収納槽1には均圧装置2(図12に示すものと同様)が設けられる。また、該電池収納槽1の側壁1wに沿って合成樹脂(例えばポリエチレン樹脂)製のスペ−サ4を設置し、該スペ−サ4(電池収納槽内壁1w)と単電池3との間及び単電池3と単電池3との間には流体通路形成部材5,5,・・を配置して所定の空間10,10,・・が形成される。これらの空間10は、絶縁油の流体通路となるものである(以下、この空間10を流体通路10とする)。
【0012】
前記電池収納槽内壁1wと単電池3との間或いは単電池3と単電池3との間に配置した流体通路形成部材5は、図3に示すように、楔状体としてある。この流体通路形成部材5を楔状体としたのは、単電池3と単電池3の間や電池収納槽内壁1w(スペ−サ4)と単電池3との間に挿入しやすくするためであるが、装着上の支障がなければ棒状体或いは平板状体のものを使用してもよい。なお、楔状体の流体通路形成部材5では、この流体通路形成部材5の側面に空間ができるので一部を絶縁油通路とすることができる。
【0013】
上記するように、電池収納槽内壁1wと単電池3との間或いは単電池3と単電池3との間に流体通路形成部材5を配置することにより、電池収納槽1の内部において、下部空間1bと上部空間1aとの間及びこれら単電池3と単電池3の間や電池収納槽内壁1wと単電池3との間に流体(絶縁油)が流通する流体通路10が多数形成され、上部空間1aと下部空間1bとはこれら流体通路10で連通する。従って、電池収納槽1内の上部空間1aの絶縁油と下部空間1bの絶縁油との間に温度差が生じると、流体通路10を通じて下部空間1bの絶縁油は上方へ上がり、冷たい上部空間1aの絶縁油は下方へ移動して入れ替わる対流が生じて、充電時の温度上昇を抑えることができる。
【0014】
図4は、この発明の油漬均圧型蓄電池の変形実施の形態の内部を示す一部断面図であり、図5は図4のX−X矢視断面図である。この油漬均圧型蓄電池では、電池収納槽1の側壁1wに沿って合成樹脂(例えばポリエチレン樹脂)製のスペ−サ4、及び単電池3と単電池3との間にはスペ−サ4a,4aを設置し(ただし、この単電池3と単電池3との間のスペ−サ4aは必ずしも設ける必要はない)、これらスペ−サ4(電池収納槽内壁1w)と単電池3との間及び単電池3と単電池3との間(スペ−サ4aとスペ−サ4aとの間)には流体通路形成部材として、図6に示すような短い楔状体5’,5’,・・を配置して所定の流体通路10,10,・・が形成される。
【0015】
前記電池収納槽内壁1wと単電池3との間或いは単電池3と単電池3との間(スペ−サ4aとスペ−サ4aとの間)に配置した短い楔状体5は、図6に示すように、その高さHは、単電池3上端から極板群に達しない程度の短い楔状体とする。このように短い楔状体5’としたのは、単電池3と単電池3の間(スペ−サ4aとスペ−サ4aとの間)や電池収納槽内壁1w(スペ−サ4)と単電池3との間のすき間の幅に差があっても挿入しやすく、且つ確実に挿入できるためであるが、装着上の支障がなければ棒状体或いは平板状体のものであってもよい。
【0016】
更に、前記短い楔状体5’の高さを単電池上端から極板群に達しない程度の短い高さHの楔状体としたのは次のような理由による。
即ち、図7に示すように、単電池3の内部は、正極板とセパレ−タと負極板とを交互に積層した極板群3aから構成され、各極板からのリ−ド線3b、3cが正極端子3dと、負極端子3eに接続された構造となっている。
これらの単電池3,3,・は、図8の二点鎖線に示すように、充放電を行うと極板の積層方向に膨れる特性を持っている。そして単電池単体で充放電を繰り返すと、短絡に至る単電池はないが、電池収納槽1に多数の単電池3,3,・を収納し、単電池3と単電池3との間(スペ−サ4aとスペ−サ4aとの間)に、これら単電池3と殆ど同じ高さの長い楔状体5’を設置して固定した状態で充放電を繰り返すと、短絡に至る単電池が発生することがある。その理由は、充放電の繰り返しによる単電池3の膨張を該長い楔状体5’が阻害することにより、単電池3内のセパレ−タに負荷がかかり、短絡に至るものと考えられる。そこで、短い楔状体5’を電池収納槽内壁1wと単電池3との間或いは単電池3と単電池3との間に設けると、これら短い楔状体5’の側面及び該楔状体5’の下部に空間ができるが、これらの空間が流体通路10となると共に、充放電時の膨張を許容する空間ともなるので短絡を防止することができる。
【0017】
上記実施の形態において、単電池群(3,3,・・)と電池収納槽内壁1wとの間或いは単電池3と単電池3との間に、流体通路形成部材(5或いは5’)を配置して流体通路10を形成するとは、全ての単電池3と電池収納槽内壁1wとの間に流体通路10を形成することを意味するのではなく、電池収納槽内壁1wとの間に流体通路10が形成されていない単電池3,3,・・があってもよい。即ち、単電池群間に流体通路10を形成するとは、図9に示すように、単電池3と単電池3との間に流体通路10が形成されていない単電池があっても極板群の積層方向でなければよいのである。肝要なことは、単電池の大きさ、数量、電池収納槽1の内容積、絶縁油の種類による粘度等を考慮して電池収納槽1の上部空間1aの絶縁油と下部空間1bの絶縁油とが対流により効果的に入れ替わるよう、適切に流体通路10の断面積と数量を設計することである。
【0018】
【実施例】
この発明の実施例として、この発明の油漬均圧型蓄電池と、隣接密着収納した従来の油漬均圧型蓄電池とを用いて行ったサイクル寿命試験と充電時の温度上昇試験とを行った。
ここで使用した酸化銀亜鉛単電池3は、底面110×90(mm2)、高さ400(mm)、の角柱形電池であり、初期容量650Ahである。
また、これらの油漬均圧型蓄電池では、同じ構成の単電池を同数とし、両者を常圧(大気圧)、周囲温度25°C、の環境下で充放電試験に供した。放電条件は、『90A定電流放電、充電終止電圧2.05V/単電池』である。 図10はサイクル寿命特性試験の結果を示す図であり、図11は20サイクル目の充電時の温度変化を示す図である。尚、温度変化は、単電池底面に付設した温度センサにより測定した。
これらの結果から明らかなように、本発明の方が従来品に比べてサイクル寿命性能においても、また、充電中の温度上昇抑制の点でも優れていることは一目瞭然である。
【0019】
従来の油漬均圧型蓄電池の問題は、充電時の電池温度上昇が大きく、これが電池特性に悪影響を与えているということであった。この原因を調査したところ、単電池同士が隣接配備されているため単電池内部で発生した熱が単電池外部に放出されにくいこと、電池収納槽内部の上部空間1aの絶縁油と下部空間1bの絶縁油が良好に対流が生じるような通路が確保されておらず、いくら電池収納槽1上部を冷却しても下部の絶縁油が冷却しきれないことに起因していること、が判明した。そこで、本発明者らは、単電池3と電池収納槽内壁1wとの間及び単電池群の中の適切な箇所に、流体通路形成部材(5或いは5’)を配置して、電池収納槽1の下部空間1bと上部空間1aとを連通する複数の流体通路10を形成すれば、電池収納槽1の上部空間1aの絶縁油と下部空間1bの絶縁油とが対流によりうまく入れ替わり、充電時の温度上昇を低く抑えることができることを見いだしたものである。
【0020】
なお、この発明では、単電池3として酸化銀亜鉛電池を例に説明したが、この電池に限らず、リチウム電池やニッケルカドミウム電池、ニッケル水素電池等、充電字における温度上昇が電池特性に悪影響を及ぼすような全ての電池に適用することができるのはいうまでもない。
【0021】
【発明の効果】
以上詳述したように、この発明の油漬均圧型蓄電池によれば、電池収納槽内の上部空間の絶縁油と下部空間の絶縁油とが対流により効果的に入れ替えることができるので、充電時の温度上昇を低く抑えることができる。また、短い楔状体を用いることにより、単電池は充放電時自由に膨張することができるようになるので、複数個の単電池を電池収納槽に収納した場合でも、単電池単体で充放電を繰り返すのと同じ状態となり、短絡が生じる恐れは殆どなくなる。従って、サイクル寿命や放電特性が改善された油漬均圧型蓄電池を提供することができる。
【図面の簡単な説明】
【図1】 この発明の油漬均圧型蓄電池の内部を示す一部断面図である。
【図2】 図1のX−X矢視断面図であって、単電池と単電池との間に流体通路形成部材を配置して流体通路を形成した状態を示す図である。
【図3】 この発明の油漬均圧型蓄電池で使用する楔状体の流体通路形成部材の例を示す斜視図である。
【図4】 この発明の油漬均圧型蓄電池の変形実施の形態の内部を示す一部断面図である。
【図5】 図4のX−X矢視断面図であって、単電池と単電池との間に流体通路形成部材を配置して流体通路を形成した状態を示す図である。
【図6】 この発明の油漬均圧型蓄電池で使用する流体通路形成部材の短い楔状体の斜視図である。
【図7】 この発明の油漬均圧型蓄電池の電池収納槽に配置した単電池間に短い楔状体を設置した状態の断面図である。
【図8】 単電池内の極板群の充放電時の膨れを示す断面図である。
【図9】 この発明の油漬均圧型蓄電池の内部の単電池と単電池との間に流体通路形成部材を配置して流体通路を形成する他の実施の形態を示す平面図である。
【図10】 この発明の油漬均圧型蓄電池と従来の油漬均圧型蓄電池とを用いて行ったサイクル寿命試験結果を示す図である。
【図11】 この発明の油漬均圧型蓄電池と従来の油漬均圧型蓄電池とを用いて行った充電時における温度上昇試験結果を示す図である。
【図12】 図12(A)は従来の油漬均圧型蓄電池の内部を示す一部断面図であり、図12(B)は均圧装置の内部の概要を示す図である。
【図13】 図12(A)のY−Y矢視断面図であって、電池収納槽内における単電池群の配置状態を示す図である。
【符号の説明】
1 電池収納槽
1a 電池収納槽上部空間
1b 電池収納槽下部空間
2 均圧装置
3 単電池
4 スペ−サ
5 流体通路形成部材
5’ 短い流体通路形成部材
10 流体通路
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an oil-immersed uniform pressure storage battery that is used under a high pressure such as in the deep sea, and more particularly to an oil-immersed equal pressure storage battery that can keep the amount of heat generated during charging low.
[0002]
[Prior art]
As a battery used under a high pressure such as in the deep sea, there is an oil-immersed uniform pressure type storage battery. This storage battery is generally charged under atmospheric pressure, and is used as a power source for measuring equipment under a high pressure such as in the deep sea or a power source for driving an underwater vehicle.
Such a storage battery is disclosed in JP-A-49-85530 and JP-A-49-85531 by the same applicant as the present application. As shown in FIG. 12 (A), the outline is that a plurality of open unit cells 3, 3,... (Unit cell group) are formed in a sealed space formed by the battery storage tank 1 and the pressure equalizing device 2. ) And insulating oil, and the pressure equalization of the pressure equalization group of the unit cells is achieved collectively.
[0003]
FIG. 12B is a diagram showing the internal structure of the pressure equalizing device 2, and in this example, the expansion / contraction body 8 made of a rubber bag, which is a bellows type expansion / contraction section, is a pressure equalizing function member. In this figure, the seawater introduction hole for introducing seawater into the outer periphery of the rubber bag expansion / contraction body 8 of the pressure equalizing device 2 is omitted, but a deep-sea research ship equipped with this oil-immersed pressure equalizing type storage battery has dived. When the seawater flowing into the pressure equalizing device 2 through the seawater introduction hole compresses the expansion / contraction body 8 made of rubber bag, the external pressure of the battery storage tank 1 and the pressure inside the battery storage tank 1 are balanced. Therefore, damage to the storage battery in the deep sea is prevented. The unit cell 3 is also provided with pressure equalizing means, but its configuration and the gist of the present invention are not directly related to each other, and the description thereof is omitted.
[0004]
A typical application of oil-immersed equal-pressure storage batteries is power supplies for deep-sea research vessels. This deep-sea research vessel is put into practical use under the name of “Shinkai 2000” or “Shinkai 6500”. For this, a silver zinc oxide secondary battery is used as a single battery, and the approximate specifications of the single battery are a rated capacity of 450 to 540 Ah, a weight of 9 to 9.5 kg, a size of about 110 × 90 × 430 mm, and a weight energy. -It is said that the density is 75 to 85 Wh / Kg, and the volumetric energy density is 160 to 200 Wh / l (liter). Several tens of such cells are arranged in the battery storage tank.
[0005]
As is well known, in oil-immersed equal-pressure storage batteries for such applications, weight efficiency and volumetric efficiency are given the highest priority, as well as cycle life and discharge performance. Conventionally, from the viewpoint of increasing weight efficiency and volumetric efficiency, as shown in JP-A-49-85530 and JP-A-49-85531, in order to reduce unnecessary spaces in the battery storage tank as much as possible and to reduce unnecessary members. As shown (these are shown in FIG. 12), the cells were accommodated adjacent to each other.
FIG. 13 is a view showing a conventional cell storage method, and is a cross-sectional view taken along the line Y-Y in FIG. As shown in this figure, cells 3 are arranged side by side in the battery storage tank 1, a spacer 4 is attached to the wall surface of the battery storage tank 1, and a corner of the battery storage tank 1 is attached. An insulating oil moving passage 6 is provided. The insulating oil moving passage 6 is connected to the pressure equalizing device 2 and the upper space 1 a of the battery storage tank 1.
[0006]
[Problems to be solved by the invention]
Oil-immersed equal-pressure storage batteries are generally charged on the ground or on a support ship after being used (discharged) under high pressure such as in the deep sea. It is not carried out by a complicated method, but is performed while being sealed in the battery storage tank 1.
Although the cell temperature rises during charging, it is well known that excessive temperature rise has adverse effects such as separator and electrode degradation, electrolyte decomposition, etc. It is one of the important issues in this type of battery technology field. However, the conventional oil-immersed uniform pressure type storage battery that has been disposed adjacent to each other has a problem that heat dissipation characteristics are not necessarily good due to its structure.
[0007]
Conventionally, in order to deal with such problems, it is unavoidable to store oil-immersed equal-pressure storage batteries in a tent and cool them with a spot cooler, or place a lot of ice on the base of the base storage tank. The method of suppressing the temperature rise was adopted. However, these methods are still not sufficient, and as a result, it cannot be said that there are no cases where the target as originally expected in terms of cycle life and discharge characteristics cannot be achieved.
[0008]
The present invention has been made to address the above-described problems, and an object thereof is to provide an oil-immersed equal-pressure storage battery that has excellent heat dissipation characteristics and improved cycle life and discharge characteristics.
[0009]
[Means for Solving the Problems]
That is, in order to solve the above-described problems, the invention described in claim 1 includes a battery storage tank having a pressure equalizing device, a group of cells stored in the battery storage tank, and the battery storage tank. In an oil-immersed equal-pressure storage battery comprising an insulating liquid filled in the space inside,
A battery is formed between the single cell group and the inner wall of the battery storage tank and between the single battery groups so that the insulating oil in the upper space of the battery storage tank and the insulating oil in the lower space are interchanged by convection. A plurality of fluid passages communicating with the lower space and the upper space of the storage tank are formed, and the fluid passage forming member is a member whose height does not reach the electrode plate group from the upper end of the unit cell.
[0010]
Alternatively, the invention described in claim 2 is characterized in that the fluid passage forming member is a wedge-shaped body.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, specific embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a partial cross-sectional view showing the inside of the oil-immersed equal-pressure storage battery of the present invention, and FIG. 2 is a cross-sectional view taken along the line XX of FIG. This oil-immersed equal-pressure storage battery has a cell group (3, 3,...) Arranged in a predetermined space in a battery storage tank 1 made of, for example, titanium alloy, and a silicon oil insulating oil (hereinafter, The structure is simply filled with insulating oil. As these single cells 3, a silver zinc oxide battery is usually used. The battery storage tank 1 is provided with a pressure equalizing device 2 (similar to that shown in FIG. 12). Further, a spacer 4 made of a synthetic resin (for example, polyethylene resin) is installed along the side wall 1w of the battery storage tank 1, and between the spacer 4 (battery storage tank inner wall 1w) and the unit cell 3, and Between the single cell 3 and the single cell 3, fluid passage forming members 5, 5,... Are arranged to form predetermined spaces 10, 10,. These spaces 10 serve as fluid passages for insulating oil (hereinafter, the spaces 10 are referred to as fluid passages 10).
[0012]
As shown in FIG. 3, the fluid passage forming member 5 disposed between the battery storage tank inner wall 1w and the unit cell 3 or between the unit cell 3 and the unit cell 3 has a wedge shape. The reason why the fluid passage forming member 5 is wedge-shaped is to facilitate insertion between the unit cells 3 and the unit cells 3 and between the cell storage tank inner wall 1w (spacer 4) and the unit cells 3. However, a rod-shaped body or a plate-shaped body may be used as long as there is no trouble in mounting. The wedge-shaped fluid passage forming member 5 has a space on the side surface of the fluid passage forming member 5, so that a part of the fluid passage forming member 5 can be used as an insulating oil passage.
[0013]
As described above, by arranging the fluid passage forming member 5 between the battery storage tank inner wall 1w and the single cell 3 or between the single cell 3 and the single cell 3, a lower space is formed inside the battery storage tank 1. A large number of fluid passages 10 through which fluid (insulating oil) flows are formed between 1b and the upper space 1a, between the single cells 3 and the single cells 3, or between the battery storage tank inner wall 1w and the single cells 3. The space 1a and the lower space 1b communicate with each other through these fluid passages 10. Therefore, when a temperature difference is generated between the insulating oil in the upper space 1a and the insulating oil in the lower space 1b in the battery storage tank 1, the insulating oil in the lower space 1b rises upward through the fluid passage 10 and the cold upper space 1a. This insulating oil moves downward and causes convection to be exchanged, so that temperature rise during charging can be suppressed.
[0014]
FIG. 4 is a partial cross-sectional view showing the inside of a modified embodiment of the oil-immersed equal-pressure storage battery according to the present invention, and FIG. 5 is a cross-sectional view taken along the line XX of FIG. In this oil-immersed equal-pressure storage battery, a spacer 4 made of synthetic resin (for example, polyethylene resin) along the side wall 1 w of the battery storage tank 1, and spacers 4 a and 4 a between the unit cell 3 and the unit cell 3. (However, it is not always necessary to provide the spacer 4a between the unit cell 3 and the unit cell 3), and between the spacer 4 (battery storage tank inner wall 1w) and the unit cell 3 and A short wedge-shaped body 5 ', 5',... As shown in FIG. 6 is used as a fluid passage forming member between the single cells 3 and 3 (between the spacers 4a and 4a). The predetermined fluid passages 10, 10,... Are formed.
[0015]
A short wedge-shaped body 5 disposed between the inner wall 1w of the battery storage tank and the unit cell 3 or between the unit cell 3 and the unit cell 3 (between the spacer 4a and the spacer 4a) is shown in FIG. As shown, the height H is a wedge-shaped body that is short enough not to reach the electrode plate group from the upper end of the unit cell 3. The short wedge-shaped body 5 ′ is formed between the unit cell 3 and the unit cell 3 (between the spacer 4 a and the spacer 4 a) or the battery storage tank inner wall 1 w (the spacer 4) and the unit cell 3. This is because even if there is a difference in the width of the gap with the battery 3, it is easy to insert and can be surely inserted.
[0016]
Further, the reason why the height of the short wedge-shaped body 5 'is a wedge-shaped body having such a short height H that does not reach the electrode plate group from the upper end of the unit cell is as follows.
That is, as shown in FIG. 7, the inside of the unit cell 3 is composed of an electrode plate group 3a in which a positive electrode plate, a separator, and a negative electrode plate are alternately laminated, and lead wires 3b from each electrode plate, 3c is connected to the positive terminal 3d and the negative terminal 3e.
These single cells 3, 3,... Have a characteristic of expanding in the stacking direction of the electrode plates when charging and discharging are performed, as indicated by a two-dot chain line in FIG. If charging / discharging is repeated for a single cell, there is no single cell leading to a short circuit, but a large number of single cells 3, 3,. -When a long wedge-shaped body 5 'having the same height as those of the single cells 3 is installed and fixed between the spacer 4a and the spacer 4a) and repeated charging and discharging, a single cell leading to a short circuit is generated. There are things to do. The reason is considered that the long wedge-shaped body 5 ′ inhibits the expansion of the unit cell 3 due to repeated charge and discharge, thereby loading the separator in the unit cell 3 and causing a short circuit. Therefore, when a short wedge-shaped body 5 ′ is provided between the battery storage tank inner wall 1w and the single battery 3 or between the single battery 3 and the single battery 3, the side surfaces of the short wedge-shaped body 5 ′ and the wedge-shaped body 5 ′ are provided. Although spaces are formed in the lower portion, these spaces serve as the fluid passages 10 and spaces that allow expansion during charging and discharging, so that a short circuit can be prevented.
[0017]
In the above embodiment, the fluid passage forming member (5 or 5 ′) is provided between the unit cell group (3, 3,...) And the battery storage tank inner wall 1w or between the unit cell 3 and the unit cell 3. Arrangement to form the fluid passage 10 does not mean that the fluid passage 10 is formed between all the cells 3 and the inner wall 1w of the battery storage tank, but fluid between the inner wall 1w of the battery storage tank. There may be a single cell 3, 3,... In which the passage 10 is not formed. That is, the formation of the fluid passage 10 between the unit cell groups means that, as shown in FIG. 9, even if there is a unit cell in which the fluid passage 10 is not formed between the unit cell 3 and the unit cell 3, the electrode plate group It is only necessary that the stacking direction is not. What is important is that the insulating oil in the upper space 1a and the insulating oil in the lower space 1b of the battery storage tank 1 are taken into consideration in consideration of the size and quantity of the unit cells, the internal volume of the battery storage tank 1, the viscosity depending on the type of insulating oil, and the like. Is to appropriately design the cross-sectional area and quantity of the fluid passage 10 so that they are effectively replaced by convection.
[0018]
【Example】
As an example of the present invention, a cycle life test and a temperature rise test during charging were performed using the oil-immersed equal-pressure storage battery of the present invention and a conventional oil-immersed equal-pressure storage battery that was closely adjacently housed.
The silver zinc oxide single battery 3 used here is a prismatic battery having a bottom surface of 110 × 90 (mm 2 ) and a height of 400 (mm), and has an initial capacity of 650 Ah.
In these oil-immersed equal-pressure storage batteries, the same number of cells having the same configuration was used, and both were subjected to a charge / discharge test under an environment of normal pressure (atmospheric pressure) and ambient temperature of 25 ° C. The discharge condition is “90 A constant current discharge, end-of-charge voltage of 2.05 V / single cell”. FIG. 10 is a view showing the results of the cycle life characteristic test, and FIG. 11 is a view showing a temperature change at the time of charging in the 20th cycle. The temperature change was measured with a temperature sensor attached to the bottom of the unit cell.
As is clear from these results, it is obvious that the present invention is superior in cycle life performance and in suppressing temperature rise during charging as compared to the conventional product.
[0019]
A problem with conventional oil-immersed equal-pressure storage batteries is that the battery temperature rises greatly during charging, which adversely affects battery characteristics. As a result of investigating this cause, it is difficult to release the heat generated inside the single cell to the outside of the single cell because the single cells are arranged adjacent to each other, and the insulating oil in the upper space 1a and the lower space 1b inside the battery storage tank. It has been found that the passage through which the convection of the insulating oil is satisfactorily not ensured, and the insulating oil in the lower part cannot be cooled down no matter how much the upper part of the battery storage tank 1 is cooled. Therefore, the present inventors have arranged a fluid passage forming member (5 or 5 ′) between the unit cell 3 and the inner wall 1w of the cell storage tank and at an appropriate location in the cell group, and the battery storage tank. If a plurality of fluid passages 10 that connect the lower space 1b and the upper space 1a are formed, the insulating oil in the upper space 1a of the battery storage tank 1 and the insulating oil in the lower space 1b are successfully switched by convection, and charging is performed. It has been found that the temperature rise of can be kept low.
[0020]
In the present invention, a silver-zinc oxide battery has been described as an example of the unit cell 3, but the battery characteristics are adversely affected by a temperature rise in a charging character such as a lithium battery, a nickel cadmium battery, or a nickel metal hydride battery. It goes without saying that it can be applied to all such batteries.
[0021]
【The invention's effect】
As described above in detail, according to the oil-immersed and equalized storage battery of the present invention, the insulating oil in the upper space and the insulating oil in the lower space in the battery storage tank can be effectively replaced by convection. Temperature rise can be kept low. In addition, by using a short wedge-shaped body, the unit cell can expand freely during charging and discharging, so even when a plurality of unit cells are stored in the battery storage tank, charging and discharging can be performed with the unit cell alone. This is the same state as repeated, and there is almost no risk of a short circuit. Therefore, it is possible to provide an oil-immersed equal pressure storage battery with improved cycle life and discharge characteristics.
[Brief description of the drawings]
FIG. 1 is a partial cross-sectional view showing the inside of an oil-immersed equal-pressure storage battery according to the present invention.
FIG. 2 is a cross-sectional view taken along the line XX of FIG. 1 and shows a state in which a fluid passage is formed by disposing a fluid passage forming member between the single cells.
FIG. 3 is a perspective view showing an example of a wedge-shaped fluid passage forming member used in the oil-immersed equal-pressure storage battery of the present invention.
FIG. 4 is a partial cross-sectional view showing the inside of a modified embodiment of the oil-immersed equal-pressure storage battery according to the present invention.
5 is a cross-sectional view taken along the line XX of FIG. 4 and shows a state in which a fluid passage is formed by disposing a fluid passage forming member between the single cells.
FIG. 6 is a perspective view of a short wedge-shaped body of a fluid passage forming member used in the oil-immersed equal pressure storage battery of the present invention.
FIG. 7 is a cross-sectional view of a state in which a short wedge-shaped body is installed between the cells arranged in the battery storage tank of the oil-immersed equal-pressure storage battery according to the present invention.
FIG. 8 is a cross-sectional view showing the swelling of the electrode plate group in the unit cell during charging and discharging.
FIG. 9 is a plan view showing another embodiment in which a fluid passage is formed by disposing a fluid passage forming member between a single cell and a single cell inside the oil immersed equal pressure storage battery of the present invention.
FIG. 10 is a diagram showing the results of a cycle life test performed using the oil-immersed uniform pressure storage battery of the present invention and a conventional oil-immersed uniform pressure storage battery.
FIG. 11 is a diagram showing a temperature rise test result during charging performed using the oil-immersed uniform pressure storage battery of the present invention and a conventional oil-immersed uniform pressure storage battery.
FIG. 12 (A) is a partial cross-sectional view showing the inside of a conventional oil-immersed equalizing type storage battery, and FIG. 12 (B) is a view showing an outline of the inside of the pressure equalizing device.
13 is a cross-sectional view taken along the line YY in FIG. 12A, and is a view showing an arrangement state of the cell groups in the battery storage tank.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Battery storage tank 1a Battery storage tank upper space 1b Battery storage tank lower space 2 Pressure equalizing device 3 Single cell 4 Spacer 5 Fluid passage formation member 5 'Short fluid passage formation member 10 Fluid passage

Claims (2)

均圧装置を有する電池収納槽と、該電池収納槽に収納された単電池群と、該電池収納槽内の空間部に充填された絶縁液とを備えた油漬均圧型蓄電池において、In an oil-immersed pressure equalizing type storage battery comprising a battery storage tank having a pressure equalizing device, a unit cell group stored in the battery storage tank, and an insulating liquid filled in a space in the battery storage tank,
単電池群と前記電池収納槽内壁との間及び単電池群間に、流体通路形成部材を配置して、電池収納槽上部空間の絶縁油と下部空間の絶縁油とが対流により入れ替わるよう、電池収納槽の下部空間と上部空間とを連通する複数の流体通路を形成し、前記流体通路形成部材は、その高さが単電池上端から極板群に達しない部材であることを特徴とする油漬均圧型蓄電池。A battery is formed between the single cell group and the inner wall of the battery storage tank and between the single battery groups so that the insulating oil in the upper space of the battery storage tank and the insulating oil in the lower space are interchanged by convection. A plurality of fluid passages communicating the lower space and the upper space of the storage tank are formed, and the fluid passage forming member is a member whose height does not reach the electrode plate group from the upper end of the unit cell. Equal pressure storage battery.
流体通路形成部材は、楔状体である請求項1に記載の油漬均圧型蓄電池。The oil-immersed uniform pressure storage battery according to claim 1, wherein the fluid passage forming member is a wedge-shaped body.
JP32256897A 1996-12-30 1997-11-25 Oil-immersed equal-pressure storage battery Expired - Fee Related JP3780396B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32256897A JP3780396B2 (en) 1996-12-30 1997-11-25 Oil-immersed equal-pressure storage battery

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP8-358809 1996-12-30
JP35880996 1996-12-30
JP32256897A JP3780396B2 (en) 1996-12-30 1997-11-25 Oil-immersed equal-pressure storage battery

Publications (2)

Publication Number Publication Date
JPH10247513A JPH10247513A (en) 1998-09-14
JP3780396B2 true JP3780396B2 (en) 2006-05-31

Family

ID=26570862

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32256897A Expired - Fee Related JP3780396B2 (en) 1996-12-30 1997-11-25 Oil-immersed equal-pressure storage battery

Country Status (1)

Country Link
JP (1) JP3780396B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4667817B2 (en) * 2004-10-04 2011-04-13 古河電気工業株式会社 Heating element cooling structure
JP4586824B2 (en) 2007-06-27 2010-11-24 トヨタ自動車株式会社 Power storage device and vehicle
JP6191200B2 (en) * 2013-03-29 2017-09-06 株式会社Gsユアサ Power storage device
KR102249504B1 (en) 2017-03-21 2021-05-06 주식회사 엘지화학 Battery module, battery pack comprising the battery module and vehicle comprising the battery pack
JP7151559B2 (en) * 2019-03-07 2022-10-12 トヨタ自動車株式会社 alkaline battery

Also Published As

Publication number Publication date
JPH10247513A (en) 1998-09-14

Similar Documents

Publication Publication Date Title
US11848431B2 (en) Battery module
KR102119183B1 (en) Battery module
JP5621111B2 (en) Battery cell with improved thermal stability and medium- or large-sized battery module using the same
KR101865995B1 (en) Battery module
KR100194913B1 (en) Unit battery of sealed alkaline battery
JPH07235326A (en) Unit cell and unit battery for sealed type alkaline storage battery
KR102172515B1 (en) Battery module
US6372377B1 (en) Mechanical and thermal improvements in metal hydride batteries, battery modules and battery packs
US20170373289A1 (en) Battery pack
KR102281374B1 (en) Battery Module Having Module Housing
JPH0785847A (en) Unit cell and battery system of sealed type alkaline storage battery
EP0834952A2 (en) Cooling method for assembled batteries
US20180337376A1 (en) Battery module
CN209860115U (en) Battery module
KR20180005456A (en) Battery module, battery pack comprising the battery module and vehicle comprising the battery pack
KR102057620B1 (en) Battery module
KR102329343B1 (en) Battery module with enhanced cooling efficiency and Battery pack comprising the same
KR102361272B1 (en) Battery module with improved cooling efficiency and Battery pack comprising the same
US11923523B2 (en) Battery module
KR102026386B1 (en) Battery module
KR20170098590A (en) The cartridge, Battery module including the cartridge, Battery pack
JP3780396B2 (en) Oil-immersed equal-pressure storage battery
US11264668B2 (en) Battery module having improved cooling structure
KR101852235B1 (en) Pouch type secondary battery and Cell assembly comprising it
KR20170052059A (en) Battery module

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040518

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040709

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20051213

TRDD Decision of grant or rejection written
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20060119

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060220

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090317

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090317

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100317

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees