JPH03291631A - Orientation control method for liquid crystal high polymer - Google Patents

Orientation control method for liquid crystal high polymer

Info

Publication number
JPH03291631A
JPH03291631A JP9481590A JP9481590A JPH03291631A JP H03291631 A JPH03291631 A JP H03291631A JP 9481590 A JP9481590 A JP 9481590A JP 9481590 A JP9481590 A JP 9481590A JP H03291631 A JPH03291631 A JP H03291631A
Authority
JP
Japan
Prior art keywords
liquid crystal
substrate
liquid crystalline
alignment
orientation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9481590A
Other languages
Japanese (ja)
Other versions
JP2897139B2 (en
Inventor
Yasuyuki Takiguchi
康之 滝口
Haruo Iimura
治雄 飯村
Akihiko Kanemoto
金本 明彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP9481590A priority Critical patent/JP2897139B2/en
Publication of JPH03291631A publication Critical patent/JPH03291631A/en
Application granted granted Critical
Publication of JP2897139B2 publication Critical patent/JP2897139B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To execute the control of an angle of torsion with high accuracy by orientating a liquid crystal high polymer on a first substrate, and thereafter, superposing other second substrate to which the orientation processing is performed. CONSTITUTION:A liquid crystal high polymer layer 3 is formed on a first substrate 1 to which such an orientation processing as a liquid crystal high polymer is oriented in one direction is performed. Subsequently, after the liquid crystal high polymer is oriented, a second substrate 4 which is subjected to orientation processing in the same way is superposed so that its orientation processing surface comes into contact closely with the liquid crystal high polymer layer 3. After this second substrate 4 is superposed, it is heated to a temperature at which the liquid crystal high polymer takes a liquid crystal phase, and by holding it for a prescribed time, molecules of the liquid crystal high polymer layer 3 which comes into contact with a second substrate 4 can be arranged in the orientation processing direction of a second substrate 4. That is, even if an angle of torsion has an in-plane distribution on a first substrate 1, a uniform angle of torsion is obtained completely by the orientation control of a second substrate 4. In such a way, a monodomain orientation in which the angle of torsion is controlled with high accuracy is obtained easily.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は液晶表示素子用補償板や光メモリー媒体等に用
いられる液晶性高分子の配向制御方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for controlling the alignment of liquid crystal polymers used in compensating plates for liquid crystal display elements, optical memory media, and the like.

(従来の技術及び発明が解決しようとする課題)液晶は
、電場や磁場、せん断力などの外場によって配向状態が
変化し、これに伴う光学的性質の変化を利用することに
より各種光エレクトロニクスの分野で利用されている。
(Prior art and problems to be solved by the invention) The alignment state of liquid crystals changes depending on external fields such as electric fields, magnetic fields, and shear forces, and by utilizing the accompanying changes in optical properties, various types of optoelectronics can be realized. used in the field.

このうち液晶性高分子は低分子液晶に較べて液晶状態で
高粘性であるため、液晶状態で配向させたのち、ガラス
転移点以下に冷却することによって液晶の配向状態を固
定化することができるという低分子液晶に見られない特
徴を有している。これを利用して、熱書き込みの光メモ
リーや光学フィルターなどの光エレク1〜ロニクス分野
での応用が試みられている。これらを実現するためには
所望の分子配向を高度に制御する必要がある。たとえば
一種の光学フィルターであるスーパーツィステッドネマ
ティック(STN)型液晶表示素子用の色補償板は、S
TN型液晶表示素子の液晶セルと偏光板の間に挿入され
、液晶セルによって楕円偏光となった光を直線偏光に戻
すように機能する必要があるが、この様な機能は液晶性
高分子を水平に、かつ、一定の方向に高い秩序度と均一
性を持って配向させることによって初めて発現させるこ
とができる。
Among these, liquid crystal polymers have higher viscosity in the liquid crystal state than low-molecular liquid crystals, so after being oriented in the liquid crystal state, the liquid crystal orientation state can be fixed by cooling to below the glass transition point. It has characteristics not found in low-molecular liquid crystals. Utilizing this, attempts are being made to apply it to optical electronics fields such as thermal writing optical memories and optical filters. In order to realize these, it is necessary to highly control the desired molecular orientation. For example, the color compensation plate for super twisted nematic (STN) type liquid crystal display elements, which is a type of optical filter, is S
It is inserted between the liquid crystal cell and the polarizing plate of a TN type liquid crystal display element, and it must function to return the light that has become elliptically polarized by the liquid crystal cell to linearly polarized light. , and can only be manifested by orienting it in a certain direction with a high degree of order and uniformity.

低分子液晶の場合、配向制御方法はほぼ確立されている
が、液晶性高分子の場合、十分には確立されていない。
In the case of low-molecular liquid crystals, alignment control methods have almost been established, but in the case of liquid crystalline polymers, they have not been fully established.

液晶性高分子の配向制御の例としては、すり応力のよう
な外力を加える方法、磁場や電場のような外場を与える
方法等が知られているが、これらは大面積の配向制御が
不可能であったり、均一性の点で十分とは言えない。低
分子液晶と同様に配向処理を施した基板間の空隙に液晶
性高分子を注入する方法をそのまま液晶性高分子に適用
した場合には、液晶性高分子の高粘性のため、注入時の
流れに沿って液晶性高分子が配向してしまい、所望の配
向が得られなかったり、大きな面積になると注入すら困
難となる。
As an example of controlling the orientation of liquid crystalline polymers, methods of applying an external force such as shear stress, and methods of applying an external field such as a magnetic field or electric field are known, but these methods do not allow orientation control over a large area. It cannot be said that it is possible or sufficient in terms of uniformity. If the method of injecting liquid crystal polymers into the gap between substrates that have been subjected to alignment treatment in the same way as for low-molecular liquid crystals is applied to liquid crystal polymers, the high viscosity of liquid crystal polymers will cause problems during injection. The liquid crystalline polymer is oriented along the flow, and if the desired orientation cannot be obtained or if the area becomes large, even injection becomes difficult.

本発明者らは、配向処理した基板に液晶性高分子を塗布
し、片面が空気に接したままで液晶温度に加温すること
によって良好な配向を大面積にわたって実現できること
を見いだしたが、この方法では液晶性高分子にねじれ構
造がある場合には、厚さの不均一性がそのままねじれ角
の不均一となってしまう。さらに、前述の液晶表示素子
用補償板などではねじれ角を制御するためにきわめて厳
密に厚さを制御することが要求される。
The present inventors have discovered that good alignment can be achieved over a large area by coating a liquid crystalline polymer on an aligned substrate and heating it to the liquid crystal temperature with one side in contact with air. In this method, if the liquid crystalline polymer has a twisted structure, non-uniformity in thickness directly results in non-uniformity in twist angle. Furthermore, in the above-mentioned compensating plate for a liquid crystal display element, etc., it is required to control the thickness extremely precisely in order to control the twist angle.

本発明は以上のような従来技術の問題点に鑑みてなされ
たものであり、その目的は、大面積にわたって均一で、
高度に配向制御された液晶性高分子膜の配向制御方法を
提供するものである。
The present invention has been made in view of the problems of the prior art as described above, and its purpose is to uniformly spread over a large area,
The present invention provides a method for controlling the orientation of a liquid crystalline polymer film in which the orientation is highly controlled.

(課題を解決するための手段及び作用)本発明によれば
、液晶性高分子を一方向に配向させるような配向処理の
施された第一の基板上に液晶性高分子層を形成し、液晶
性高分子を配向させた後、同様に配向処理された第二の
基板をその配向処理面が液晶性高分子層に密接するよう
に重ね合わせることを特徴とする液晶性高分子の配向制
御方法が提供される。
(Means and effects for solving the problems) According to the present invention, a liquid crystal polymer layer is formed on a first substrate subjected to an alignment treatment that aligns liquid crystal polymers in one direction, Orientation control of a liquid crystalline polymer, which comprises aligning a liquid crystalline polymer and then superimposing a second substrate that has been similarly aligned so that its alignment treated surface comes into close contact with the liquid crystalline polymer layer. A method is provided.

次に本発明を図面を用いて詳細に説明する。Next, the present invention will be explained in detail using the drawings.

第1図は本発明による液晶性高分子の配向制御方法の手
順を模式的に示したものである。
FIG. 1 schematically shows the procedure of the method for controlling the alignment of liquid crystalline polymers according to the present invention.

3− 4− まず、ガラス、プラスチック等の基板工上に配向処理層
2を形成する。配向処理の方法としてはポリイミド、ポ
リエーテルイミド、ポリアミドイミド、ポリエステルイ
ミド、ポリアミド、ポリエステル、ポリビニルアルコー
ル、ポリアクリロニトリル等の高分子被膜を形成後、ラ
ビング処理する方法、アルコキシシラン、有機チタネー
トなどの有機金属化合物などの塗膜またはその熱処理膜
をラビング処理する方法、酸化珪素などの斜め蒸着法な
どを例示することができる。またプラスチック基板を直
接ラビング処理することによっても配向処理は可能で、
この場合配向処理層2は不要となる。
3-4- First, the alignment layer 2 is formed on a substrate such as glass or plastic. Orientation treatment methods include forming a polymer film of polyimide, polyetherimide, polyamideimide, polyesterimide, polyamide, polyester, polyvinyl alcohol, polyacrylonitrile, etc., and then rubbing it; organic metals such as alkoxysilane, organic titanate, etc. Examples include a method of rubbing a coating film of a compound or a heat-treated film thereof, a method of oblique vapor deposition of silicon oxide, etc. Orientation treatment is also possible by directly rubbing the plastic substrate.
In this case, the alignment layer 2 becomes unnecessary.

ついで、配向処理面に液晶性高分子を塗布し液晶性高分
子層3を形成する。
Next, a liquid crystal polymer layer 3 is formed by applying a liquid crystal polymer to the alignment-treated surface.

本発明において用いることのできる液晶性高分子はサー
モトロピックな液晶性高分子であり、構造は特に限定さ
れないが、例えばポリエステル、ポリエステルアミド、
ポリカーボネート、ポリエーテル等で主鎖に液晶性残基
を有する下記構造の主鎖型液晶性高分子: ザーX”MAl−X”+ Xl、X” ニーCOO−、−CONH−、−0CO−
、−0−等−Ph−Ph−COO−Ph−、−Ph−N
=CH−Ph−等A’ニー+CH,すff、−(−C8
,CH,Om?→CH2CH,O汁。
The liquid crystalline polymer that can be used in the present invention is a thermotropic liquid crystalline polymer, and its structure is not particularly limited, but for example, polyester, polyesteramide,
Main chain type liquid crystalline polymer made of polycarbonate, polyether, etc. and having a liquid crystalline residue in the main chain with the following structure: X"MAl-X"+
, -0-etc.-Ph-Ph-COO-Ph-, -Ph-N
=CH-Ph-etc.A'knee+CH,sff,-(-C8
,CH,Om? →CH2CH, O soup.

身 CH。body CH.

−N=N−であり、*は不斉炭素原子、nは0〜18の
整↓ 数を表わす。〉 あるいはビニル系高分子、ポリシロキサンなどで側鎖に
液晶性残基を有する下記構造の側鎖型液晶性高分子: (但し、R3はアルキル基、アルコキシ基、ハロゲン原
子、ニトロ基又はシアノ基であり、nは0〜18の整数
を表わす。) などを例示することができる。液晶性高分子は単独でま
たは混合して用いられる。液晶性高分子中に光学活性基
を導入したり、光学活性な化合物を添加することもでき
る。
-N=N-, * represents an asymmetric carbon atom, and n represents an integer from 0 to 18. 〉 Or a side chain type liquid crystal polymer such as a vinyl polymer or polysiloxane having a liquid crystal residue in the side chain and having the following structure: (However, R3 is an alkyl group, an alkoxy group, a halogen atom, a nitro group, or a cyano group. and n represents an integer from 0 to 18.). Liquid crystalline polymers may be used alone or in combination. It is also possible to introduce an optically active group into the liquid crystalline polymer or add an optically active compound.

塗布法としては液晶性高分子が流動性を有するガラス転
移点以上の温度で直接塗布する方法、または液晶性高分
子を溶媒に溶解させ、溶液とじて塗布または印刷する方
法が用いられる。膜厚の均一性と制御のしやすさの点で
後者の方法が特に好ましく用いられる。液晶性高分子の
溶媒としては用いる液晶性高分子の種類、重合度等によ
って異なるが、通常下記のものより選ばれる。
As a coating method, a method is used in which the liquid crystalline polymer is directly coated at a temperature equal to or higher than the glass transition point at which it has fluidity, or a method in which the liquid crystalline polymer is dissolved in a solvent and coated or printed as a solution is used. The latter method is particularly preferably used in terms of uniformity of film thickness and ease of control. The solvent for the liquid crystalline polymer varies depending on the type of liquid crystalline polymer used, degree of polymerization, etc., but is usually selected from the following.

クロロホルム、ジクロロエタン、テトラクロロエタン、
トリクロロエチレン、テトラクロロエチレン、オルソジ
クロロベンゼンなどのハロゲン系炭化水素、フェノール
、0−クロロフェノール、クレゾールなどのフェノール
系溶媒、ジメチルホルムアミド、ジメチルアセトアミド
、ジメチルスルホキシドなどの非プロトン性極性溶媒、
テトラヒドロフラン、ジオキサン等のエーテル系溶媒お
よびこれらの混合溶媒。
Chloroform, dichloroethane, tetrachloroethane,
Halogenated hydrocarbons such as trichlorethylene, tetrachlorethylene, and orthodichlorobenzene; phenolic solvents such as phenol, 0-chlorophenol, and cresol; aprotic polar solvents such as dimethylformamide, dimethylacetamide, and dimethylsulfoxide;
Ether solvents such as tetrahydrofuran and dioxane, and mixed solvents thereof.

溶液濃度は塗布法、高分子の粘性、目的とする膜厚等に
より異なる。液晶表示素子用の補償板を例にすると、要
求される膜厚は2〜10.程度であるので、通常は2〜
50重量2の範囲で使用され、好ましくは5〜30%の
範囲で使用される。塗布法としてはスピンコード法、ロ
ールコート法、グラビアコ7− −ト法、ディッピング法、スクリーン印刷法などが採用
される。液晶性高分子を塗布後、溶媒を乾燥して除去し
、液晶性高分子が液晶性を示す温度で熱処理して液晶性
高分子を配向させる。
The solution concentration varies depending on the coating method, the viscosity of the polymer, the desired film thickness, etc. Taking a compensation plate for a liquid crystal display element as an example, the required film thickness is 2 to 10 mm. Since it is about 2~
It is used in a range of 50% by weight2, preferably in a range of 5 to 30%. As the coating method, a spin code method, a roll coating method, a gravure coating method, a dipping method, a screen printing method, etc. are adopted. After coating the liquid crystalline polymer, the solvent is removed by drying, and the liquid crystalline polymer is aligned by heat treatment at a temperature at which the liquid crystalline polymer exhibits liquid crystallinity.

この様に本発明では液晶性高分子層の片面のみを配向層
と接触させ、他方は外気に接触させている。かりに、両
側を配向層と接触させると十分な配列は行なわれない。
In this way, in the present invention, only one side of the liquid crystalline polymer layer is brought into contact with the alignment layer, and the other side is brought into contact with the outside air. On the other hand, if both sides are brought into contact with the alignment layer, sufficient alignment will not occur.

これは、液晶性高分子が低分子液晶に較べて高粘性であ
るため、配向層と接触することによって配向膜界面の流
動性が大きく低下してしまう結果、分子の再配列が行わ
れにくいものと考えられる。本発明では配向膜界面が1
つであるため、容易に再配列がおこり、均一配向が起こ
り易い。
This is because liquid crystal polymers have a higher viscosity than low-molecular liquid crystals, so when they come into contact with the alignment layer, the fluidity at the interface of the alignment film is greatly reduced, making it difficult for molecules to rearrange. it is conceivable that. In the present invention, the alignment film interface is 1
Therefore, rearrangement easily occurs and uniform orientation tends to occur.

液晶性高分子を配向させるときの温度は、液晶性高分子
のガラス転移点以上であることが必要で、液晶性高分子
の等方性液体への転移温度より低いことが必要である。
The temperature at which the liquid crystalline polymer is aligned needs to be higher than the glass transition point of the liquid crystalline polymer and lower than the transition temperature of the liquid crystalline polymer to an isotropic liquid.

配向膜の界面活性による配向を助ける意味でポリマーの
粘性は低い方がよく、したがって温度は高い方がよいが
、あまり高いと8− コストの増大と作業性の悪化を招き好ましくない。
The lower the viscosity of the polymer, the better, in order to aid the alignment by the surface activity of the alignment film, and therefore the higher the temperature, but if it is too high, this is not preferable as it will increase costs and worsen workability.

−殻内には50℃〜300℃の範囲が好ましい。- The temperature within the shell is preferably in the range of 50°C to 300°C.

以上のようにして得られた液晶性高分子膜はモノドメイ
ン配向した優れた配向性を有しているが、塗布法である
ため厚さ分布は避けられず、所望の厚みに対して0.5
z以下の面精度を得ることは困難である。この値は用途
によっては十分な値であるが、液晶表示素子用補償板の
ように液晶性高分子がねじれ構造を持ち、ねじれ角をも
制御する必要がある場合には、膜厚の分布がねじれ角の
分布にもなってしまい好ましくない。本発明の液晶性高
分子にねじれ構造を導入するには、液晶性高分子として
コレステリック液晶相を呈するものを用いればよい。コ
レステリック液晶相を呈する液晶性高分子は前述のよう
にネマティック相を呈する液晶性高分子中に光学活性基
を導入するか、光学活性な物質を添加すればよい。この
場合、液晶性高分子は配向膜面では配向処理の方向に配
列し、厚み方向に自然ピッチに相当するねじれ角、すな
わち自然ピッチをP。、膜厚をd、ねじれ角をωとした
ときに、ω=360 X d/P、 (″)なるねじれ
角を形成する。
The liquid crystalline polymer film obtained as described above has excellent monodomain orientation, but since it is a coating method, thickness distribution is unavoidable, and the desired thickness is 0.5%. 5
It is difficult to obtain a surface accuracy of z or less. This value is sufficient for some applications, but in cases where the liquid crystal polymer has a twisted structure and the twist angle also needs to be controlled, such as in compensation plates for liquid crystal display elements, the film thickness distribution may be affected. This also results in a distribution of twist angles, which is undesirable. In order to introduce a twisted structure into the liquid crystalline polymer of the present invention, a liquid crystalline polymer exhibiting a cholesteric liquid crystal phase may be used. A liquid crystalline polymer exhibiting a cholesteric liquid crystal phase may be obtained by introducing an optically active group into a liquid crystalline polymer exhibiting a nematic phase as described above, or by adding an optically active substance to the liquid crystalline polymer exhibiting a nematic phase. In this case, the liquid crystalline polymer is aligned in the direction of the alignment treatment on the alignment film surface, and the twist angle corresponding to the natural pitch, that is, the natural pitch, is P in the thickness direction. , where d is the film thickness and ω is the twist angle, a twist angle of ω=360×d/P, (″) is formed.

本発明においては一旦、液晶性高分子を基板上で配向さ
せた後、第1図のように他の配向処理の施された第二の
基板4を重ね合わせることにより、高精度のねじれ角の
制御を可能にするものである。
In the present invention, after the liquid crystalline polymer is once aligned on a substrate, a second substrate 4 which has been subjected to another alignment treatment is superimposed as shown in FIG. It enables control.

第二の基板4はガラス、プラスチック等の透光性のもの
であり、その液晶性高分子層3と接触する面には液晶性
高分子をほぼ水平にかつ一方向に配列させるための配向
処理層5が施されている6配向処理の方法は第一の基板
1について述べた方法を用いることができる。配向処理
の方向は、所望のωによって決まる第二の基板面に接す
る液晶性高分子の所望の配列方向にほぼ等しく設定する
The second substrate 4 is made of a light-transmitting material such as glass or plastic, and its surface in contact with the liquid crystal polymer layer 3 is subjected to alignment treatment to align the liquid crystal polymer almost horizontally and in one direction. The method described for the first substrate 1 can be used for the orientation treatment 6 on which the layer 5 is applied. The direction of the alignment treatment is set approximately equal to the desired alignment direction of the liquid crystal polymer in contact with the second substrate surface, which is determined by the desired ω.

第二の基板4を重ね合わせたのち、液晶性高分子が液晶
相をとる温度に加熱し、一定時間保持することによって
、第二の基板4に接する液晶性高分子層3の分子を第二
の基板4の配向処理方向に揃えることができる。すなわ
ち、第一の基板l上においてねじれ角が面内分布を有し
ていたとしても、第二の基板4の配向規制によって全面
的に均一なねじれ角が得られる。ωと両基板の配向処理
方向の成す角とは概ね等しいか、または両者の差が概ね
180°の整数倍であることが特に好ましい。この条件
からのずれが大きくなると、液晶分子の再配列が困難と
なりドメイン分割を生じ易くなる。許容されるずれ角は
概ね45°以下で、好ましくは30゜以下、特に好まし
くは20″以下である。本発明では液晶性高分子は一旦
、片面のみが配向膜に接触した配列し易い状態で第一の
配向処理がなされ、その後、液晶性高分子の再配列に必
要な動きが小さい条件で両面からの界面規制が働くため
、容易にねじれ角が高精度で制御されたモノドメイン配
向が得られるという特徴がある。得られた配向状態は、
ガラス転移温度以下に急冷することにより保持されるの
で、きわめて安定である。
After the second substrates 4 are superimposed, the molecules of the liquid crystalline polymer layer 3 in contact with the second substrate 4 are heated to a temperature at which the liquid crystalline polymer takes a liquid crystal phase and held for a certain period of time. can be aligned in the orientation treatment direction of the substrate 4. That is, even if the torsion angle has an in-plane distribution on the first substrate l, by controlling the orientation of the second substrate 4, a uniform torsion angle can be obtained over the entire surface. It is particularly preferable that ω and the angle formed by the orientation treatment direction of both substrates are approximately equal, or that the difference between the two is approximately an integral multiple of 180°. If the deviation from this condition becomes large, it becomes difficult to rearrange the liquid crystal molecules, and domain division is likely to occur. The allowable deviation angle is approximately 45° or less, preferably 30° or less, and particularly preferably 20" or less. In the present invention, the liquid crystal polymer is once in a state where only one side is in contact with the alignment film and is easily aligned. After the first alignment process is performed, interface regulation from both sides works under conditions where the movement required for rearrangement of the liquid crystal polymer is small, making it easy to obtain monodomain alignment with highly precise control of twist angle. The obtained orientation state is
It is extremely stable because it is maintained by rapid cooling below the glass transition temperature.

(実施例) 次に本発明を実施例により更に詳しく説明するが、本発
明はこれら実施例に限定されるものではない。
(Examples) Next, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited to these Examples.

11一 実施例1 ガラス基板上に日立化成製のポリイミドワニスPIQを
スピンコード法で約1000人の厚さに塗布し、ついで
270℃で焼成してポリイミド膜を形成した。
11-Example 1 Polyimide varnish PIQ manufactured by Hitachi Chemical was coated on a glass substrate to a thickness of about 1,000 mm using a spin code method, and then baked at 270° C. to form a polyimide film.

ついでポリイミド膜上をテトロン植毛布で一方向にこす
り、ラビング処理を行った。
Next, the polyimide film was rubbed in one direction with a Tetron flocked cloth to perform a rubbing treatment.

下記式(A)で示されるネマティック液晶性ポリシロキ
サン系液晶性高分子と下記式(B)で示される光学活性
基を有するポリシロキサン系液晶性高分子をフェノール
/テトラクロロエタン混合溶媒(重量比50:50)に
25重量%となるように溶解させた。
A nematic liquid crystal polysiloxane liquid crystal polymer represented by the following formula (A) and a polysiloxane liquid crystal polymer having an optically active group represented by the following formula (B) were mixed in a mixed solvent of phenol/tetrachloroethane (weight ratio 50 :50) to a concentration of 25% by weight.

高分子(A)と(8)の割合は3:l(重量比)とした
The ratio of polymers (A) and (8) was 3:l (weight ratio).

(Ch:コレステリル) 12− この溶液を先の配向膜上にスピンコード法により塗布し
、ついで70℃で乾燥後、高分子(A)がネマティック
相を呈する170℃で30分間熱処理を行った。この状
態で室温に急冷したところ、膜厚4.6−の配向固定化
された液晶性高分子膜が得られたが、膜厚は0.05μ
m程度の分布を有しており、ねじれ角もピッチ(7,5
μm)から予測される値である220”に対して約2°
程度の分布を有していた。
(Ch: Cholesteryl) 12- This solution was applied onto the above alignment film by a spin code method, and then dried at 70°C, and then heat-treated at 170°C for 30 minutes at which the polymer (A) exhibits a nematic phase. When this state was rapidly cooled to room temperature, a liquid crystalline polymer film with a fixed orientation of 4.6 μm in thickness was obtained, but the film thickness was 0.05 μm.
It has a distribution of about m, and the twist angle also has a pitch (7, 5
approximately 2° to the expected value of 220” (μm)
It had a distribution of degrees.

ついで、同様の配向処理を施した第二のガラス基板を、
ラビング方向が220°の角度をなすように真空中で配
向膜面が液晶性高分子に接するように重ね、再度170
℃で30分間熱処理を行った。室温に急冷後、得られた
配向組織を1@察したところ、モノドメインな均一配向
であり、ねじれ角は2200で、らせん軸は基板に対し
て垂直方向であった。
Next, a second glass substrate that had been subjected to the same orientation treatment was
Layer the alignment films in vacuum so that the rubbing direction makes an angle of 220° and the surface of the alignment film is in contact with the liquid crystal polymer.
Heat treatment was performed at ℃ for 30 minutes. After quenching to room temperature, the obtained orientation structure was observed and found to be a monodomain uniform orientation, the twist angle was 2200, and the helical axis was perpendicular to the substrate.

レターデーションΔn−dは0.82μmであった。Retardation Δn-d was 0.82 μm.

また、150mm X 150mmの補償板においてね
じれ角の分布は全くなく、きわめて優れた均一性を示す
ことが確認された。
Furthermore, it was confirmed that there was no distribution of twist angles in the 150 mm x 150 mm compensator plate, showing extremely excellent uniformity.

(発明の効果) 本発明の液晶性高分子の配向制御方法は、液晶性高分子
が一旦、片面のみが配向膜に接触した配列し易い状態で
第一の配向処理がなされ、その後、液晶性高分子の再配
列に必要な動きが小さい条件で両面からの界面規制が働
くため、容易にねじれ角が高精度で制御されたモノドメ
イン配向が得られるという特徴がある。また、液晶性高
分子が基板の間に挟まれているために信頼性が高いとい
う特徴がある。そのため熱書き込みの光メモリーや光学
フィルターなどの光エレクトロニクス分野で有利に用い
られる。特に、ねじれ角が高度に制御できるという点で
スーパーツィステッドネマティック(STN)型液晶表
示素子用の色補償板の作製法として特に有用である。
(Effects of the Invention) In the method for controlling the alignment of liquid crystalline polymers of the present invention, the liquid crystalline polymers are once subjected to a first alignment treatment in a state where only one side is in contact with an alignment film and easily aligned, and then the liquid crystalline polymers are aligned easily. Since interface regulation from both sides works under conditions where the movement required for polymer rearrangement is small, monodomain alignment with highly precisely controlled torsion angles can be easily obtained. Additionally, since the liquid crystalline polymer is sandwiched between the substrates, it is characterized by high reliability. Therefore, it can be advantageously used in optical electronics fields such as thermal writing optical memories and optical filters. In particular, the present invention is particularly useful as a method for producing a color compensating plate for a super twisted nematic (STN) type liquid crystal display element in that the twist angle can be highly controlled.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の液晶性高分子の配向制御方法の説明図
である。 1・・・第一の基板 2・・・配向処理層 3・・・液晶性高分子 4・・・第二の基板 5・・・配向処理層
FIG. 1 is an explanatory diagram of the method for controlling the alignment of liquid crystalline polymers according to the present invention. 1... First substrate 2... Alignment treated layer 3... Liquid crystalline polymer 4... Second substrate 5... Alignment treated layer

Claims (2)

【特許請求の範囲】[Claims] (1)液晶性高分子を一方向に配向させるような配向処
理の施された第一の基板上に液晶性高分子層を形成し、
液晶性高分子を配向させた後、同様に配向処理させた第
二の基板をその配向処理面が液晶性高分子層に密接する
ように重ね合わせることを特徴とする液晶性高分子の配
向制御方法。
(1) Forming a liquid crystal polymer layer on a first substrate that has been subjected to an alignment treatment that aligns the liquid crystal polymer in one direction,
Orientation control of a liquid crystalline polymer, which comprises aligning a liquid crystalline polymer and then superimposing a second substrate that has been subjected to a similar alignment treatment so that the alignment treated surface comes into close contact with the liquid crystalline polymer layer. Method.
(2)液晶性高分子がネマティックまたはコレステリッ
ク相を呈し、その自然ピッチP_0と液晶性高分子層の
膜厚dとで決まるねじれ角ωと、両基板の配向処理方向
の成す角とが概ね等しいか、または両者の差が概ね18
0°の整数倍であることを特徴とする請求項1記載の液
晶性高分子の配向制御方法。
(2) The liquid crystal polymer exhibits a nematic or cholesteric phase, and the twist angle ω determined by its natural pitch P_0 and the film thickness d of the liquid crystal polymer layer is approximately equal to the angle formed by the orientation treatment direction of both substrates. or the difference between the two is approximately 18
2. The method for controlling the alignment of a liquid crystalline polymer according to claim 1, wherein the angle is an integral multiple of 0[deg.].
JP9481590A 1990-04-09 1990-04-09 Liquid crystal polymer alignment control method Expired - Fee Related JP2897139B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9481590A JP2897139B2 (en) 1990-04-09 1990-04-09 Liquid crystal polymer alignment control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9481590A JP2897139B2 (en) 1990-04-09 1990-04-09 Liquid crystal polymer alignment control method

Publications (2)

Publication Number Publication Date
JPH03291631A true JPH03291631A (en) 1991-12-20
JP2897139B2 JP2897139B2 (en) 1999-05-31

Family

ID=14120554

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9481590A Expired - Fee Related JP2897139B2 (en) 1990-04-09 1990-04-09 Liquid crystal polymer alignment control method

Country Status (1)

Country Link
JP (1) JP2897139B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0422917A (en) * 1990-05-18 1992-01-27 Nippon Oil Co Ltd Optically active optical element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0422917A (en) * 1990-05-18 1992-01-27 Nippon Oil Co Ltd Optically active optical element

Also Published As

Publication number Publication date
JP2897139B2 (en) 1999-05-31

Similar Documents

Publication Publication Date Title
JP2651870B2 (en) Substrate with liquid crystalline polymer thin film and method for manufacturing the same
JPH039325A (en) Orienting method for liquid crystalline high polymer
JP2662814B2 (en) Liquid crystal polymer alignment method
KR100502022B1 (en) LCD
JPH0412322A (en) Optical phase plate and production thereof and liquid crystal display element using this optical phase plate
Barberi et al. Bistable nematic azimuthal alignment induced by anchoring competition
JP3123621B2 (en) Liquid crystal alignment film and liquid crystal display device
KR100412080B1 (en) Compound for forming orientation film of lcd
JPH0416919A (en) Optical phase plate
JPH03291631A (en) Orientation control method for liquid crystal high polymer
EP0645662B1 (en) A liquid crystal display device
JPH0416928A (en) Compensating plate for liquid crystal display element and production thereof
JPH0416914A (en) Method for controlling orientation of liquid crystalline high polymer
JP2646281B2 (en) Substrate with liquid crystalline polymer thin film
JPH0416927A (en) Method for controlling orientation of liquid crystalline high polymer
JPH0412324A (en) Color liquid crystal display element
JPH04243228A (en) Liquid crystal element
US5422148A (en) Liquid crystal display device
KR100232405B1 (en) Novel pmia polymer derivatives for liquid crystal for alignment material and its preparation method
JPH06230392A (en) Orientation control film for ferroelectric liquid crystal and ferroelectric liquid crystal element formed by using the same
JPH049007A (en) Liquid crystal element and its manufacture
JP2628096B2 (en) Liquid crystal display device
JPH05203953A (en) Liquid crystal orientating agent composition and formation of liquid crystal oriented film using the same
JPH11231323A (en) Antiferroelectric liquid crystal display element
JPH01172927A (en) Liquid crystal element

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees