JPH0329152B2 - - Google Patents

Info

Publication number
JPH0329152B2
JPH0329152B2 JP59145273A JP14527384A JPH0329152B2 JP H0329152 B2 JPH0329152 B2 JP H0329152B2 JP 59145273 A JP59145273 A JP 59145273A JP 14527384 A JP14527384 A JP 14527384A JP H0329152 B2 JPH0329152 B2 JP H0329152B2
Authority
JP
Japan
Prior art keywords
illuminance
circuit
lighting
output
operating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59145273A
Other languages
Japanese (ja)
Other versions
JPS6127097A (en
Inventor
Mitsushi Nakayama
Hiroshi Takeuchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iwasaki Denki KK
Original Assignee
Iwasaki Denki KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iwasaki Denki KK filed Critical Iwasaki Denki KK
Priority to JP14527384A priority Critical patent/JPS6127097A/en
Publication of JPS6127097A publication Critical patent/JPS6127097A/en
Publication of JPH0329152B2 publication Critical patent/JPH0329152B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Circuit Arrangement For Electric Light Sources In General (AREA)
  • Electronic Switches (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔発明の技術分野〕 この発明は、消灯照度を点灯照度より低く設定
しうる光電式自動点滅装置に関する。 〔従来技術〕 従来、光電式自動点滅装置は、点灯照度より消
灯照度が高く設定されるのが一般的である。その
ため、朝方充分明るいのに不要な街路灯が長時間
点灯している場合があつて不経済であり、したが
つて消灯照度が点灯照度と同等か、それ以下の光
電式自動点滅装置の実現が要望されるに到つてい
る。 かかる問題点を解決すべく、光電式自動点滅装
置において、夕方点灯動作後、タイマー等により
所定の遅延時間を経たのち、消灯照度の設定を、
点灯照度より低い照度に設定しなおす方法が提案
されている(実開昭58−98800)。 しかし、この方法は、外光の変化がその日の条
件によつて差異があり、設定する点灯/消灯照度
条件及び設置場所を種々想定すると、遅延時間を
長く設定する必要があり、更に動作の安全性を考
慮した場合、遅延時間をどの程度にすれば安全性
を保証できるかの基準を設定するのは困難であ
り、これらの設計上の諸問題から装置自体が高価
なものになつてしまう欠点がある。 〔発明の目的〕 本発明は、上記従来の光電式点滅装置の欠点を
解消すべくなされたもので、高照度用及び低照度
用の点灯・消灯照度設定手段を設け、外光照度に
応じて自動的に上記各照度設定手段を切り替え、
確実に消灯照度と点灯照度より低く設定しうるよ
うにした光電式自動点滅装置を提供することを目
的とする。 〔発明の概要〕 本発明は、高照度用と低照度用の動作照度設定
手段を設け、低照度用の設定消灯照度を高照度用
の設定点灯照度より低く設定し、外光照度が低照
度用の設定点灯照度より低下した場合には低照度
用の動作照度設定手段の出力のみを有効にし、外
光照度が高照度用の設定点灯照度より上昇した場
合には高照度用の動作照度設定手段の出力のみを
有効にして、点灯照度よりも確実に消灯照度を低
くして不要な朝方の点灯を防止するように構成す
るものである。 〔発明の実施例〕 次に本発明に係る光電式自動点滅装置の実施例
について説明する。 まず本発明の光電式自動点滅装置によつて照明
負荷を点灯または消灯させる動作プログラムの概
略を、第1図に基づいて説明する。 夕方における照明負荷の点灯プログラムにつ
いて 夕方においては、消灯照度A-1を例えば
150Lux、点灯照度A-2を例えば80Luxに設定し
た高照度用の動作照度設定回路Aの動作によつ
て、時刻T1において外光が点灯照度A-2
(80Lux)に達すると、殆んど遅延時間なしで、
直ちに照明負荷は点灯動作状態となるように構
成されている。これは、暗くなつた場合、照明
は直ちに点灯した方が安全性が高いという考え
方に基づくものである。 一方、消灯動作に到るまでは、一定の遅延時
間を設けている。すなわち、時刻T2において
迷光より外光照度が消灯照度A-1(150Lux)以
上になり、この照度が所定の遅延時間Td以上
継続して検知された場合、時刻T3で初めて消
灯動作が行われるように構成されている。した
がつて、夕方、頻繁に照明負荷が点灯・消灯動
作を繰り返すことを防止でき、仮に消灯動作に
到つた場合でも、時刻T4において、再度外光
が点灯照度A-2(80Lux)以下になると、直ち
に照明負荷が点灯動作状態となるように構成さ
れている。 また、本発明に係る光電式自動点滅装置にお
いては、消灯照度B-1を例えば50Lux、点灯照
度B-2を例えば20Luxに設定した低照度用の動
作照度設定回路Bを独自に備えている。しか
し、この動作照度設定回路Bは、点灯照度B-2
以下の外光が所定時間継続しないと、上記動作
照度設定回路Aから切替えられて有効に動作し
ないように構成されている。したがつて、外光
照度が動作照度設定回路Aの点灯照度A-2
(80Lux)より低くなつて、動作照度設定回路
Bの消灯照度B-1(50Lux)を所定時間継続して
検知しても、この動作照度設定回路Bは、まだ
有効にはならず、依然として動作照度設定回路
Aが有効に動作しているため、照明負荷は点灯
動作状態を維持するようになつている。 夜間における照明負荷点灯プログラムについ
て 外光照度が更に低下して、時刻T5において
動作照度設定回路Bの点灯照度B-2(20Lux)以
下の照度を所定時間Tdに亘つて検知すると、
動作照度設定回路Bは初めて有効になり、一方
動作照度設定回路Aが無効となり、完全な夜間
状態になつて、照度負荷は点灯動作を維持す
る。 このような夜間の点灯動作中において、車の
ヘツドライトやサーチライト等による迷光の照
射に対しては、一定の遅延時間を設けて誤動作
を防止するように構成しているが、何らかの特
別の理由で所定の遅延時間を越えるような長時
間の迷光を受けた場合でも、次のようにして点
灯動作に復帰するように構成されている。すな
わち、 (イ) 動作照度設定回路Bの消灯照度B-1
(50Lux)以上で、動作照度設定回路Aの消
灯照度A-1(150Lux)より低い照度の迷光
を、所定の遅延時間Td以上継続して受光し
た場合は、時刻T6で照明負荷は消灯動作に
入るが、動作照度設定回路は切り替らず、動
作照度設定回路Bが依然として有効であり、
迷光がなくなり時刻T7で外光照度が再度点
灯照度B-2(20Lux)に低下すると、それを検
知して直ちに照明負荷を点灯状態に復帰させ
るようになつている。 (ロ) 一方、動作照度設定回路Aの消灯照度A-1
(150Lux)以上の照度の迷光を、所定の遅延
時間Td以上継続して受光した場合は、時刻
T8において、消灯動作に入ると共に動作照
度設定回路が切り替わり、動作照度設定回路
Bが無効となり、動作照度設定回路Aが有効
になる。 そして時刻T9で迷光がなくなり、外光照
度が点灯照度A-2(80Lux)になると、直ち
に照明を点灯状態に復帰させるように構成さ
れている。 更に外光照度が低下して、点灯照度B-2
(20Lux)以下の照度を所定の遅延時間Td
亘つて検知されると、時刻T10において動作
照度設定回路が再び切り替わり、動作照度設
定回路Bが有効となり、照明負荷の点灯状態
が維持される。 朝方における照明負荷消灯プログラムについ
て 以上のようにして、夜間から朝方にかけて、動
作照度設定回路Bが有効に動作しており、朝方、
外光照度が所定の遅延時間に亘つて、消灯照度
(50Lux)以上になつたのを時刻T11において検知
すると、照明負荷を確実に消灯動作にすることが
できるように構成されている。 次いで、外光が動作照度設定回路Bの消灯照度
B-1(50Lux)より更に明るくなつて、その照度が
動作照度設定回路Aの点灯照度A-2(80Lux)に
なつても、動作照度設定回路は切り替わらず、動
作照度設定回路Bが有効に動作しているので、消
灯動作を維持して、更に外光照度が増して時刻
T12で動作照度設定回路Aの消灯照度A-1
(150Lux)になつて、完全な朝方の明るい状態に
なると、動作照度設定回路が切り替わり、動作照
度設定回路Aが有効となつて、動作照度設定回路
Bが無効となり、したがつて、その後も消灯動作
を維持しながら夕方における照明負荷点灯プログ
ラムと同様の初期状態に復帰させるようになつて
いる。 以上のような動作プログラムで夕方から朝方ま
で照明負荷を繰り返し点灯・消灯させるものであ
るが、このプログラムからわかるように、本発明
においては動作照度設定回路を夜間において、外
光照度に応じて自動的に切り替えるため、消灯照
度を点灯照度より容易に且つ確実に低く設定する
ことができる。 次に、上記のような動作プログラムを実施する
ための光電式自動点滅装置の構成について説明す
る。第2図は、その一例を示すブロツクダイヤグ
ラムである。 第2図において、1は商用周波交流電源、2は
該交流電源に接続された定電圧回路で、制御回路
の電源となるものである。3は高照度用の動作照
度(消灯照度、及び点灯照度)設定回路A及び低
照度用の動作照度設定回路Bで、照度検知回路3
-1、遅延タイマー回路3-2、遅延タイマー回路の
動作を有効又は無効にする挿脱切替回路3-3、高
照度及び低照度用の点灯照度設定用電圧検出回路
-4、高照度用の動作照度比(消灯照度A-1/点
灯照度A-2)設定回路3-5、低照度用の動作照度
比(消灯照度B-1/点灯照度B-2)設定回路3-6
で構成されている。 4は論理判定回路で、一致回路4-1、クロツク
パルス発生回路4-2、D形フリツプフロツプ回路
-3、論理和回路4-4からなり、高照度用の動作
照度比設定回路3-5の出力は、低照度用の動作照
度比設定回路3-6の点灯照度B-2に対応する外光
照度の検出まで有効とし、低照度用の動作照度比
設定回路3-6の出力は、高照度用の動作照度比設
定回路3-5の消灯照度A-1に対応する外光照度の
検出まで有効とし、高照度用の動作照度比設定回
路3-5の点灯照度A-2で点灯動作出力を、低照度
用の動作照度設定回路3-6の消灯照度B-1で消灯
動作出力を発生するように構成されている。 5は、論理回路4の出力に基づき、照明負荷6
を点灯・消灯させるための出力ドライブ回路であ
る。 次に、第2図のブロツク図で示した光電式自動
点滅装置の具体的な回路構成例を、第3図に基づ
いて説明する。 商用周波(50/60Hz)交流電源1には、サージ
電圧吸収用のサージ・アブソーバSAが並列に接
続されている。制御回路用の直流電圧電源を形成
する定電圧回路2は、交流電源1の一方のライン
l1に直列に接続された抵抗R13とダイオードD1
交流電源1の他方のラインl2に接続された整流ブ
リツジ回路Brの中の一個のダイオードD2-1、前
記抵抗R13とダイオードD1並びに前記ダイオード
D2-1を介して、交流電源1にそれぞれ並列に接
続されたツエナーダイオードZD及び平滑用コン
デンサC1とで構成されている。なお、P1,P0
定電圧回路2の出力端子である。 動作照度(消灯照度・点灯照度)設定回路3の
照度検知回路3-1は、互いに直列に接続され、定
電圧電源端子P1,P0に並列に接続された感度調
整抵抗R1と光導電セルCdSとで構成されている。 遅延タイマー回路3-2は、前記照度検知回路3
-1の抵抗R1と光導電セルCdSの接続点に接続され
た抵抗R2と、該抵抗R2と前記光導電セルCdSに
並列接続されたコンデンサC2とで構成されてい
る。この遅延タイマー回路3-2の動作を有効また
は無効にするための挿脱切替回路3-3は、発光ダ
イオードLEDとフオトトランジスタTPからなる
フオトカプラPCと、抵抗R3,R4とで構成されて
おり、フオトカプラPCの発光ダイオードLEDと
抵抗R4の直列接続回路が、定電圧電源端子P1
論理回路4の出力cへ接続されており、また抵抗
R3とフオトカプラPCのフオトトランジスタTP
直列接続回路が、遅延タイマー回路3-2の抵抗
R2に並列に接続されている。 高照度用及び低照度用の点灯照度A-2,B-2
設定するための電圧検出回路3-4は、電界効果ト
ランジスタFETと該FETのソースSに接続され
た抵抗R5,R6の直列回路で構成されており、電
界効果トランジスタFETのドレインDは定電圧
電源の端子P1に接続されている。 高照度用の動作照度比(消灯照度/点灯照度)
設定回路3-5は、直列接続された2個のインバー
タINV1,INV2と、該インバータINV1,INV2
並列に接続された抵抗R8と、これらの直並列回
路に直列接続された抵抗R7とで形成されたシユ
ミツトトリガ回路と、該シユミツトトリガ回路の
2個のインバータINV1,INV2間と定電圧電源端
子P0との間に接続された誤動作防止用コンデン
サC3とで構成されている。そして、入力信号は、
前記電圧検出回路3-4の電界効果トランジスタ
FETのソースSと抵抗R5の接続点から供給され、
その出力Aは論理回路4の入力端子の一方に接続
されている。 低照度用の動作照度比(消灯照度/点灯照度)
設定回路3-6は、同じく抵抗R9,R10と2個のイ
ンバータINV3,INV4からなるシユミツトトリガ
回路と、誤動作防止用コンデンサC4とで構成さ
れており、入力信号は電圧検出回路3-4における
抵抗R5と抵抗R6の接続点から供給され、出力B
は論理回路4の入力端子の他方に接続されてい
る。 なお、動作照度比設定回路3-5,3-6における
誤動作防止用コンデンサC3,C4は、インバータ
を構成するICの入出力レベルを安定にして、動
作を安定化するためのものである。 論理判定回路4は、動作照度設定回路3の出力
A,Bを入力信号として、各外光照度条件ごと
に、照明負荷6を点灯又は消灯させる最終出力c
を発生させるもので、各回路は次のように構成さ
れている。 一致回路4-1は、高照度用の動作照度比設定回
路3-5の出力A、及び低照度用の動作照度比設定
回路3-6の出力Bを入力とする排他的論理和回路
EOR1と、その出力側に接続されたインバータ
INV5からなり、その出力はD形フリツプフロツ
プ4-3のプリセツト端子PRへ接続されている。
クロツクパルス発生回路4-2は、一方の入力端子
I1に高照度用動作照度比設定回路3-5の出力Aを
接続し、他方の入力端子I2には、上記出力Aに接
続した抵抗R11とコンデンサC5からなる積分回路
の出力端子を接続した排他的論理和回路EOR2
と、該排他的論理和回路EOR2の出力端子O1に接
続した抵抗R12とコンデンサC6からなる遅延回路
とで構成され、前記排他的論理和回路EOR2の出
力端子O1は、前記遅延回路の抵抗R12とコンデン
サC6の接続点を介して、D形フリツプフロツプ
-3のクロツク端子CPに接続されており、前記
遅延回路を構成する抵抗R12の他端は定電圧電源
端子P1に、コンデンサC5,C6の他端は定電圧電
源端子P0にそれぞれ接続されている。 D形フリツプフロツプ4-3は、クリアリセツト
端子CL及びデータ端子Dには定電圧電源の一方
の負端子P0が接続されていて常時論理値はLと
なり、また出力は論理和回路4-4の一方の入力
端子aに接続されている。 論理和回路4-4の他方の入力bには、前記動作
照度設定回路3の出力Bが接続されており、論理
和回路4-4の出力cは、遅延タイマー挿脱切替回
路3-3の抵抗R4の他端と、照明負荷点灯・消灯
ドライブ回路5の入力端子にそれぞれ接続されて
いる。なお、S1は論理和回路4の出力端子であ
る。 照明負荷点灯・消灯ドライブ回路5は、ダイオ
ードD2-1,D2-2,D2-3,D2-4からなり、ダイオ
ードD2-1,D2-3の接続点に交流電源1の一方の
ラインl2を接続し、ダイオードD2-1,D2-2の接続
点を定電圧回路2の一方の端子P0に接続したダ
イオードブリツジBrと、前記論理回路4の出力
端子S1と前記ダイオードブリツジBrのダイオー
ドD2-1,D2-2の接続点間に接続された、サイリ
スタThのゲート電圧調整用の直列抵抗R14,R15
と、前記ダイオードブリツジBrのダイオード
D2-1,D2-2の接続点にカソード、同じくダイオ
ードD2-3,D2-4の接続点にアノードをそれぞれ
接続し、ゲートを前記抵抗R14とR15の接続点に
接続したサイリスタThと、照明負荷6の一方の
端子と電源1の一方のラインl2間に主電極を接続
し、前記ダイオードD2-2,D2-4の接続点にゲー
トを接続した照明負荷点灯・消灯用トライアツク
TRと、該トライアツクTRの一方の主電極とゲ
ート間に接続したゲート抵抗R16と、前記トライ
アツクTRの主電極間に並列に接続されたトライ
アツク誤動作防止用の抵抗R17とコンデンサC7
直列回路とで構成されている。 次に、このように構成された光電式自動点滅装
置の具体的回路構成例の動作について説明する。 まず動作照度設定回路3における各抵抗の抵抗
値の設定について説明する。 照度検知回路3-1は、外光が明るく(暗く)な
ると、光導電セルCdSの抵抗値が低く(高く)な
ることを利用しているもので、光導電セルCdSが
高照度用の点灯照度A-2(例えば80Lux)の外光
を受光したときの、光導電セルCdSの抵抗値に基
づく、電圧検出回路3-4の電界効果トランジスタ
FETのソース−定電圧電源端子P0間の電圧VAが、
高照度用の動作照度比設定回路3-5の入力電圧と
なる。そして、その入力電圧は動作照度比設定回
路3-5のシユミツトトリガ回路のスレシユホール
ド電圧を越えて、その出力Aが論理値Hとなるよ
うに、感度調整用抵抗R1の抵抗値が設定される。 論理回路4の出力c(論理値)は、消灯動作中
はLなので、遅延タイマー回路3-2の切替回路3
-3のフオトカプラPCはONになる。この際、抵抗
R3の抵抗値を抵抗R2より極端に小さく設定して
おぎ、遅延タイマー回路3-2を無効にして動作し
ないようにしている。一方、点灯動作中は、論理
回路4の出力cはHとなり、フオトカプラPCは
OFFとなるため、遅延タイマー回路3-2は有効に
動作するようになる。 更に、照度が消灯照度A-1(150Lux)の外光を
受光したときの電圧検出回路3-4の電界効果トラ
ンジスタFETのソースS−定電圧電源端子P0
の電圧VAで、動作照度比設定回路3-5のシユミ
ツトトリガ回路の出力Aが論理値Lとなるよう
に、抵抗R7と抵抗R8が設定される。 また、照度が点灯照度B-2(20Lux)の外光を光
導電セルCdSが受光したときの、電圧検出回路3
-4の電界効果トランジスタFETのソースS−定
電圧電源端子P0間の電圧VAを、抵抗R5と抵抗R6
とで分圧した抵抗R6の両端間の電圧VBが、低照
度用の動作照度比設定回路3-6のシユミツトトリ
ガ回路の入力電圧となり、その入力電圧VBで出
力Bが論理値Hとなるように、抵抗R5と抵抗R6
が設定される。 更に、光導電セルCdSが消灯照度B-1(50Lux)
の外光を受光したときの、電圧検出回路3-4の電
界効果トランジスタFETのソースS−定電圧電
源端子P0間の電圧VAを、抵抗R5と抵抗R6で分圧
した抵抗R6の両端間の電圧VBで、動作照度比設
定回路3-6のシユミツトトリガ回路の出力Bが論
理値Lとなるように、抵抗R9と抵抗R10が設定さ
れる。 次に、このように動作照度設定回路3における
各抵抗の抵抗値を設定した光電式自動点滅装置に
おいて、外光照度が変化した場合の動作について
説明する。 まず、動作照度比設定回路3-5,3-6の各出力
A,Bについて説明する。外光照度が点灯照度
A-2(80Lux)以下のときは、高照度用の動作照
度比設定回路3-5の出力AはHとなり、次いで外
光照度が上昇して、消灯照度A-1(150Lux)以上
の照度を所定の遅延時間(Td)継続して検出し
たときは、出力Aは論理値Lとなる。 外光が点灯照度A-2(80Lux)から低下して、
点灯照度B-2(20Lux)以下の照度を所定の遅延時
間継続して検出したときは、動作照度比設定回路
-6の出力Bは論理値Hとなり、次いで消灯照度
B-1(50Lux)以上の照度を所定の遅延時間継続し
て検知したとき、動作照度比設定回路3-6の出力
Bは論理値Lとなる。 これらの種々の照度の外光に対する動作例のデ
ータを第1表に示す。但し定電圧電源は6Vとし
た場合である。
[Technical Field of the Invention] The present invention relates to a photoelectric automatic blinking device that can set the illuminance at which the light is turned off to be lower than the illuminance at which the light is turned on. [Prior Art] Conventionally, in photoelectric automatic flashing devices, the illumination intensity when the lights are turned off is generally set higher than the illumination intensity when the lights are turned on. Therefore, unnecessary street lights may be left on for a long time even though there is sufficient brightness in the morning, which is uneconomical. Therefore, it is difficult to realize a photoelectric automatic flashing device in which the illuminance when the lights are turned off is equal to or lower than the illuminance when the lights are turned on. It has reached the point where it is requested. In order to solve this problem, in the photoelectric automatic flashing device, after turning on in the evening, after a predetermined delay time using a timer etc., the illuminance setting for turning off the light is set.
A method has been proposed in which the illuminance is reset to lower than the illuminance of the lighting (Utility Model Application Publication No. 58-98800). However, with this method, changes in outside light vary depending on the conditions of the day, and if various lighting conditions and installation locations are assumed, it is necessary to set a long delay time, and furthermore, it is necessary to ensure operational safety. Considering safety, it is difficult to set a standard for how much delay time should be used to guarantee safety, and these design problems tend to make the device itself expensive. There is. [Object of the Invention] The present invention has been made in order to eliminate the drawbacks of the conventional photoelectric flashing device described above. Switch each of the above illuminance setting means automatically,
To provide a photoelectric automatic blinking device that can reliably set the illumination intensity lower than the illuminance when turning off and turning on. [Summary of the Invention] The present invention provides operating illuminance setting means for high illuminance and low illuminance, sets the illuminance setting for low illuminance to turn off and set it lower than the illuminance for turning on high illuminance, and sets the external light illuminance to When the illuminance of external light falls below the set lighting illuminance, only the output of the operating illuminance setting means for low illuminance is enabled, and when the illuminance of outside light rises above the set lighting illuminance for high illuminance, the output of the operating illuminance setting means for high illuminance is enabled. The configuration is such that only the output is enabled, and the off illumination is reliably lower than the on illuminance to prevent unnecessary lighting in the morning. [Embodiments of the Invention] Next, embodiments of the photoelectric automatic flashing device according to the present invention will be described. First, an outline of an operation program for turning on or off a lighting load using the photoelectric automatic flashing device of the present invention will be explained based on FIG. Regarding the lighting program for lighting loads in the evening In the evening, turn off the illuminance A -1 for example.
150 Lux, the lighting illuminance A -2 is set to, for example, 80 Lux. By the operation of the operating illuminance setting circuit A for high illuminance, the external light changes to the lighting illuminance A -2 at time T 1 .
(80Lux), there is almost no delay time,
The lighting load is configured to immediately enter the lighting operation state. This is based on the idea that when it gets dark, it is safer to turn on the lights immediately. On the other hand, a certain delay time is provided until the light goes out. In other words, if the outside light illuminance due to stray light becomes equal to or higher than the lights-off illuminance A -1 (150Lux) at time T 2 , and this illuminance is continuously detected for a predetermined delay time T d , the lights-off operation is performed for the first time at time T 3 . It is configured so that Therefore, it is possible to prevent the lighting load from repeatedly turning on and off in the evening, and even if the lights turn off, at time T 4 , the outside light will fall below the lighting illuminance A -2 (80Lux) again. When this occurs, the lighting load is configured to immediately enter the lighting operation state. Further, the photoelectric automatic flashing device according to the present invention is uniquely equipped with an operating illuminance setting circuit B for low illuminance, which sets the illumination intensity B -1 when turned off to 50 Lux, and the illumination intensity B -2 when turned on to, for example, 20 Lux. However, this operating illuminance setting circuit B has a lighting illuminance of B -2
If the following external light does not continue for a predetermined period of time, the operation illuminance setting circuit A is switched and does not operate effectively. Therefore, the outside light illuminance is the lighting illuminance A -2 of the operating illuminance setting circuit A.
(80Lux), and even if operating illuminance setting circuit B turns off illuminance B -1 (50Lux) is detected continuously for a predetermined period of time, this operating illuminance setting circuit B is not yet enabled and remains in operation. Since the illuminance setting circuit A is operating effectively, the lighting load maintains the lighting operation state. About the lighting load lighting program at night When the outside light illuminance further decreases and the illuminance below the lighting illuminance B -2 (20 Lux) of the operating illuminance setting circuit B is detected at time T 5 for a predetermined time T d ,
The operating illuminance setting circuit B is enabled for the first time, while the operating illuminance setting circuit A is disabled, resulting in a complete nighttime state, and the illuminance load maintains the lighting operation. During the lighting operation at night, the system is designed to prevent malfunctions by setting a certain delay time in response to stray light from car headlights or searchlights, but for some special reason. Even if the device receives stray light for a long time that exceeds a predetermined delay time, it is configured to return to lighting operation as follows. That is, (a) Turn-off illuminance B -1 of operating illuminance setting circuit B
(50 Lux) or more, turning off the operating illuminance setting circuit A. If stray light with an illuminance lower than the illuminance A -1 (150 Lux) is received continuously for more than the predetermined delay time T d , the lighting load will be turned off at time T 6 . It enters operation, but the operating illuminance setting circuit does not switch, and the operating illuminance setting circuit B is still valid.
When the stray light disappears and the outside light illuminance falls again to the lighting illuminance B -2 (20 Lux) at time T 7 , this is detected and the lighting load is immediately returned to the lighting state. (b) On the other hand, the operating illuminance setting circuit A turns off illuminance A -1
If stray light with an illuminance of (150 Lux) or more is received for more than a predetermined delay time T d , the time
At T8 , the operating illuminance setting circuit is switched as the light goes out, the operating illuminance setting circuit B is disabled, and the operating illuminance setting circuit A is enabled. Then, at time T9 , when the stray light disappears and the outside light illuminance reaches the lighting illuminance A -2 (80Lux), the lighting is configured to immediately return to the lighting state. Furthermore, the outside light illuminance decreases, and the lighting illuminance is B -2.
(20 Lux) or less is detected for a predetermined delay time Td , the operating illuminance setting circuit switches again at time T10 , the operating illuminance setting circuit B becomes valid, and the lighting state of the lighting load is maintained. Ru. About the lighting load turn-off program in the morning As described above, the operating illuminance setting circuit B operates effectively from night to morning, and in the morning,
When it is detected at time T11 that the outside light illuminance has exceeded the lights-off illuminance (50 Lux) for a predetermined delay time, the lighting load can be reliably turned off. Next, the external light changes to the operating illuminance setting circuit B's turn-off illuminance.
Even if the illuminance becomes even brighter than B -1 (50Lux) and reaches the lighting illuminance A -2 (80Lux) of operating illuminance setting circuit A, the operating illuminance setting circuit does not switch and the operating illuminance setting circuit B becomes effective. Since the lights are still operating, the light off operation is maintained and the outside light intensity increases further and the time changes.
Operation at T 12 Illuminance setting circuit A turns off Illuminance A -1
(150Lux), and when it becomes completely bright in the morning, the operating illuminance setting circuit switches, operating illuminance setting circuit A becomes valid, and operating illuminance setting circuit B becomes invalid, and therefore the light remains off thereafter. It is designed to return to the initial state similar to the lighting load lighting program in the evening while maintaining operation. The operation program described above repeatedly turns on and off the lighting load from evening to morning.As can be seen from this program, in the present invention, the operating illuminance setting circuit is automatically turned on and off at night according to the outside light illuminance. Therefore, the illuminance when the lights are turned off can be easily and reliably set to be lower than the illumination when the lights are on. Next, the configuration of a photoelectric automatic blinking device for implementing the above operating program will be described. FIG. 2 is a block diagram showing one example. In FIG. 2, 1 is a commercial frequency AC power source, and 2 is a constant voltage circuit connected to the AC power source, which serves as a power source for the control circuit. 3 is an operating illuminance setting circuit A for high illuminance (unlit illuminance and on illuminance) and an operating illuminance setting circuit B for low illuminance, and the illuminance detection circuit 3
-1 , Delay timer circuit 3 -2 , Insertion/removal switching circuit 3 for enabling or disabling the operation of the delay timer circuit 3 -3 , Voltage detection circuit for setting lighting illuminance for high and low illuminance 3 -4 , For high illuminance Operating illuminance ratio (unlit illuminance A -1 / lit illuminance A -2 ) setting circuit 3 -5 , operating illuminance ratio for low illuminance (unlit illuminance B -1 / lit illuminance B -2 ) setting circuit 3 -6
It consists of Reference numeral 4 designates a logic judgment circuit, which is comprised of a coincidence circuit 4-1 , a clock pulse generation circuit 4-2 , a D-type flip-flop circuit 4-3 , and an OR circuit 4-4 . The output is valid until the external light illuminance corresponding to the lighting illuminance B -2 of the operating illuminance ratio setting circuit 3-6 for low illuminance is detected. The operating illuminance ratio setting circuit for high illuminance is valid until the detection of external light illuminance corresponding to the off illuminance A -1 of 3 -5 , and the lighting operation output is set at the on illuminance A -2 of operating illuminance ratio setting circuit 3 -5 for high illuminance. , the operation illuminance setting circuit 3-6 for low illuminance is configured to generate a lights-out operation output at the lights-out illuminance B -1 . 5 is a lighting load 6 based on the output of the logic circuit 4.
This is an output drive circuit for turning on and off the light. Next, a specific example of the circuit configuration of the photoelectric automatic blinking device shown in the block diagram of FIG. 2 will be explained based on FIG. 3. A surge absorber SA for absorbing surge voltage is connected in parallel to the commercial frequency (50/60Hz) AC power supply 1. A constant voltage circuit 2 forming a DC voltage power supply for the control circuit is connected to one line of the AC power supply 1.
Resistor R 13 and diode D 1 connected in series with l 1 ,
One diode D2-1 in the rectifier bridge circuit Br connected to the other line l2 of the AC power source 1, the resistor R13 , the diode D1, and the diode
It consists of a Zener diode ZD and a smoothing capacitor C 1 which are each connected in parallel to the AC power supply 1 via D 2-1 . Note that P 1 and P 0 are output terminals of the constant voltage circuit 2. The illuminance detection circuit 3-1 of the operating illuminance (unlit illuminance/on illuminance) setting circuit 3 is connected in series with each other, and the sensitivity adjustment resistor R1 and photoconductive resistor are connected in parallel to the constant voltage power supply terminals P1 and P0 . It is composed of cell CdS. Delay timer circuit 3 -2 is the illuminance detection circuit 3
-1 resistor R 1 and a resistor R 2 connected to the connection point of the photoconductive cell CdS, and a capacitor C 2 connected in parallel to the resistor R 2 and the photoconductive cell CdS. The insertion/removal switching circuit 3-3 for enabling or disabling the operation of the delay timer circuit 3-2 is composed of a photocoupler PC consisting of a light emitting diode LED and a phototransistor TP , and resistors R 3 and R 4 . A series connection circuit of the light emitting diode LED of the photocoupler PC and the resistor R4 is connected to the constant voltage power supply terminal P1 and the output c of the logic circuit 4, and the resistor
The series connection circuit of R 3 and the phototransistor T P of the photocoupler PC is the resistor of the delay timer circuit 3 -2 .
Connected in parallel to R 2 . The voltage detection circuit 3 -4 for setting the lighting illuminance A -2 , B -2 for high illuminance and low illuminance consists of a field effect transistor FET and resistors R 5 , R 6 connected to the source S of the FET. The drain D of the field effect transistor FET is connected to the terminal P1 of the constant voltage power supply. Operating illuminance ratio for high illuminance (illuminance off/illuminance on)
Setting circuit 3-5 includes two inverters INV 1 and INV 2 connected in series, a resistor R 8 connected in parallel to the inverters INV 1 and INV 2 , and a resistor R 8 connected in series to these series-parallel circuits. It consists of a Schmitt trigger circuit formed by a resistor R 7 and a malfunction prevention capacitor C 3 connected between the two inverters INV 1 and INV 2 of the Schmitt trigger circuit and the constant voltage power supply terminal P 0 . ing. And the input signal is
Field effect transistor of the voltage detection circuit 3-4
Supplied from the connection point of FET source S and resistor R5 ,
Its output A is connected to one of the input terminals of the logic circuit 4. Operating illuminance ratio for low illuminance (unlit illuminance/lit illuminance)
The setting circuit 3-6 is composed of a Schmitt trigger circuit also consisting of resistors R 9 and R 10 and two inverters INV 3 and INV 4 , and a malfunction prevention capacitor C 4 , and the input signal is sent to the voltage detection circuit 3. -4 is supplied from the connection point of resistor R 5 and resistor R 6 at output B
is connected to the other input terminal of the logic circuit 4. The malfunction prevention capacitors C 3 and C 4 in the operating illuminance ratio setting circuits 3 -5 and 3 -6 are used to stabilize the input and output levels of the ICs that make up the inverter, thereby stabilizing the operation. . The logic determination circuit 4 uses the outputs A and B of the operating illuminance setting circuit 3 as input signals to generate a final output c that turns on or off the lighting load 6 for each external light illuminance condition.
Each circuit is configured as follows. The matching circuit 4-1 is an exclusive OR circuit that receives as input the output A of the operating illuminance ratio setting circuit 3-5 for high illuminance and the output B of the operating illuminance ratio setting circuit 3-6 for low illuminance.
EOR 1 and the inverter connected to its output side
INV 5 , the output of which is connected to the preset terminal PR of the D-type flip-flop 4-3 .
Clock pulse generation circuit 4 -2 is one input terminal
The output A of the high illuminance operating illuminance ratio setting circuit 3-5 is connected to I1 , and the other input terminal I2 is the output terminal of an integrating circuit consisting of a resistor R11 and a capacitor C5 connected to the above output A. Exclusive OR circuit EOR 2 connected to
and a delay circuit consisting of a resistor R 12 and a capacitor C 6 connected to the output terminal O 1 of the exclusive OR circuit EOR 2 , and the output terminal O 1 of the exclusive OR circuit EOR 2 is connected to the output terminal O 1 of the exclusive OR circuit EOR 2. It is connected to the clock terminal CP of the D-type flip-flop 4-3 through the connection point between the resistor R12 of the delay circuit and the capacitor C6 , and the other end of the resistor R12 constituting the delay circuit is a constant voltage power supply terminal. The other ends of capacitors C 5 and C 6 are connected to constant voltage power supply terminal P 0 . In the D-type flip-flop 4-3 , one negative terminal P0 of the constant voltage power supply is connected to the clear reset terminal CL and data terminal D, and the logic value is always L, and the output is the logic value of the OR circuit 4-4 . It is connected to one input terminal a. The output B of the operating illuminance setting circuit 3 is connected to the other input b of the OR circuit 4-4 , and the output c of the OR circuit 4-4 is connected to the output B of the delay timer insertion/removal switching circuit 3-3 . The other end of the resistor R4 is connected to the input terminal of the lighting load turning on/off drive circuit 5, respectively. Note that S 1 is the output terminal of the OR circuit 4. The lighting load turning on/off drive circuit 5 consists of diodes D 2-1 , D 2-2 , D 2-3 , D 2-4 , and the AC power supply 1 is connected to the connection point of the diodes D 2-1 and D 2-3 . A diode bridge B r is connected to one line l 2 of the diodes D 2-1 and D 2-2 and the connection point of the diodes D 2-1 and D 2-2 is connected to one terminal P 0 of the constant voltage circuit 2, and the output of the logic circuit 4. Series resistors R 14 and R 15 for adjusting the gate voltage of the thyristor T h are connected between the terminal S 1 and the connection point of the diodes D 2-1 and D 2-2 of the diode bridge B r .
and the diode of said diode bridge B r
Connect the cathode to the connection point of D 2-1 and D 2-2 , the anode to the connection point of diodes D 2-3 and D 2-4 , and connect the gate to the connection point of the resistors R 14 and R 15 . The main electrode is connected between the thyristor T h and one terminal of the lighting load 6 and one line l 2 of the power supply 1, and the gate is connected to the connection point of the diodes D 2-2 and D 2-4 . Triax for turning on/off the load
TR, a gate resistor R 16 connected between one main electrode and the gate of the triax TR, a resistor R 17 for preventing malfunction of the triax connected in parallel between the main electrodes of the triax TR, and a capacitor C 7 connected in series. It consists of a circuit. Next, the operation of a specific circuit configuration example of the photoelectric automatic flashing device configured as described above will be explained. First, the setting of the resistance value of each resistor in the operating illuminance setting circuit 3 will be explained. Illuminance detection circuit 3-1 utilizes the fact that the resistance value of the photoconductive cell CdS becomes lower (higher) when the outside light becomes brighter (darker). Field effect transistor of voltage detection circuit 3 -4 based on the resistance value of photoconductive cell CdS when receiving external light of A -2 (e.g. 80 Lux)
The voltage V A between the FET source and constant voltage power supply terminal P 0 is
This is the input voltage for the operating illuminance ratio setting circuit 3-5 for high illuminance. Then, the resistance value of the sensitivity adjustment resistor R1 is set so that the input voltage exceeds the threshold voltage of the shot trigger circuit of the operating illuminance ratio setting circuit 3-5 and the output A becomes the logical value H. Ru. Since the output c (logical value) of the logic circuit 4 is L during the light-off operation, the switching circuit 3 of the delay timer circuit 3 -2
-3 photocoupler PC is turned on. At this time, resistance
The resistance value of R3 is set to be extremely smaller than that of resistor R2 , and the delay timer circuit 3-2 is disabled to prevent it from operating. On the other hand, during lighting operation, the output c of the logic circuit 4 becomes H, and the photocoupler PC
Since it is turned OFF, the delay timer circuit 3-2 comes to operate effectively. Furthermore, the operating illuminance is determined by the voltage V A between the source S of the field effect transistor FET of the voltage detection circuit 3-4 and the constant voltage power supply terminal P0 when receiving external light with the illumination intensity being off illuminance A -1 (150 Lux). The resistors R7 and R8 are set so that the output A of the Schmitt trigger circuit of the ratio setting circuit 3-5 has a logical value L. In addition, when the photoconductive cell CdS receives external light whose illuminance is lighting illuminance B -2 (20Lux), the voltage detection circuit 3
The voltage V A between the source S of the field effect transistor FET of -4 and the constant voltage power supply terminal P 0 is expressed as the voltage V A between the resistor R 5 and the resistor R 6.
The voltage V B across the resistor R 6 divided by and becomes the input voltage of the Schmitt trigger circuit of the operating illuminance ratio setting circuit 3-6 for low illuminance, and the output B becomes the logic value H at that input voltage V B. so that resistor R 5 and resistor R 6
is set. Furthermore, the photoconductive cell CdS is turned off at illuminance B -1 (50Lux)
When external light is received, the voltage V A between the source S of the field effect transistor FET of the voltage detection circuit 3-4 and the constant voltage power supply terminal P0 is divided by the resistor R5 and the resistor R6 . The resistor R9 and the resistor R10 are set so that the output B of the Schmitt trigger circuit of the operating illuminance ratio setting circuit 3-6 becomes the logical value L at the voltage VB between both ends of the resistor R9 and the resistor R10. Next, in the photoelectric automatic flashing device in which the resistance values of the respective resistors in the operating illuminance setting circuit 3 are set in this manner, the operation when the external light illuminance changes will be described. First, the respective outputs A and B of the operating illuminance ratio setting circuits 3 -5 and 3 -6 will be explained. Outdoor light illuminance is lighting illuminance
When A -2 (80Lux) or lower, the output A of the operating illuminance ratio setting circuit 3 -5 for high illuminance becomes H, and then the outside light illuminance increases until the illuminance reaches A -1 (150Lux) or higher. When the detection is continued for a predetermined delay time (T d ), the output A becomes a logical value L. The outside light decreases from lighting illuminance A -2 (80Lux),
When the illuminance below the lighting illuminance B -2 (20 Lux) is detected continuously for a predetermined delay time, the output B of the operating illuminance ratio setting circuit 3 -6 becomes a logic value H, and then the illuminance turns off.
When an illuminance of B -1 (50 Lux) or more is detected continuously for a predetermined delay time, the output B of the operating illuminance ratio setting circuit 3 -6 becomes a logical value L. Table 1 shows data of operation examples for external light of various illuminances. However, this is when the constant voltage power supply is 6V.

【表】 次に、動作照度設定回路3の出力A,Bに伴う
論理回路4の動作について説明する。 一致回路4-1は、入力が両方共、H又はLのと
きだけ出力がHとなるもので、排他的論理和回路
EOR1とその出力に接続したインバータINV5
構成されているものであり、したがつて、その入
力となる動作照度設定回路3の出力A,Bが両方
共H又はLのとき、この一致回路4-1の出力はH
となり、一致回路4-1の出力が接続されているD
形フリツプフロツプ4-3のプリセツト端子PRも
Hとなる。したがつて、該フリツプフロツプ4-3
の出力及び論理和回路4-4の一方の入力aは必
ずLとなる。 クロツクパルス発生回路4-2が有効に動作する
には、一致回路4-1の出力、すなわちD形フリツ
プフロツプ4-3のプリセツト端子PRがLになる
必要がある。 すなわち、クロツクパルス発生回路4-2からの
クロツクパルスは、動作照度設定回路3の出力A
がLからHになつたとき、抵抗R11とコンデンサ
C5よりなる積分回路と、排他的論理和回路EOR2
で発生させるが、該クロツクパルスは、動作照度
設定回路3の出力AがLからHに変化し、出力B
がLを保持している状態に基づいて、D形フリツ
プフロツプ4-3のプリセツト端子PRがLになつ
てから、抵抗R12とコンデンサC6とからなる遅延
回路により遅らされてクロツク端子CPに伝送さ
れるので、確実にD形フリツプフロツプ4-3の出
力、すなわち論理和回路4-4の一方の入力aを
LからHにすることができる。 論理和回路4-4は、入力aと入力bのどちらか
がHであるとき、出力cはHとなり、点灯出力と
なる。この論理回路4の点灯出力により、照明負
荷点灯・消灯ドライブ回路5のサイリスタTh
ONとなり、それによりトライアツクTRもONと
なつて照明負荷6を点灯出力状態にする。また、
論理回路4の点灯出力により遅延タイマー回路切
替回路3-3のフオトカプラPCをOFFとし、遅延
タイマー回路3-2を有効に動作させ、次の消灯動
作に所定の遅延時間をもたせるようにする。 また論理和回路4-4の入力a及び入力bのどち
らもLであるときは、出力cはLとなり消灯出力
となる。この消灯出力により、照明負荷点灯・消
灯ドライブ回路5のサイリスタTh及びトライア
ツクTRをOFFにして照明負荷6を消灯させ、同
時に、遅延タイマー回路3-2を不作動状態にし
て、次の即時点灯に備えるようにする。 これらの種々の照度の外光(IL)に対する論
理判定回路4の各入出力論理値を第2表に示す。
但し、消灯照度A-1:150Lux、点灯照度A-2
80Lux、消灯照度B-1:50Lux、点灯照度B-2
20Luxとする。 なお、表中PR及びCPとはD形フリツプフロツ
プのクロツク端子及びプリセツト端子への入力を
示す。
[Table] Next, the operation of the logic circuit 4 in response to the outputs A and B of the operating illuminance setting circuit 3 will be described. Matching circuit 4-1 outputs H only when both inputs are H or L, and is an exclusive OR circuit.
It is composed of EOR 1 and inverter INV 5 connected to its output. Therefore, when the outputs A and B of the operating illuminance setting circuit 3, which is its input, are both H or L, this matching circuit 4 -1 output is H
Then, D to which the output of matching circuit 4 -1 is connected
The preset terminal PR of the flip-flop type 4-3 also becomes H. Therefore, the flip-flop 4 -3
The output of and one input a of the OR circuit 4-4 are always L. In order for the clock pulse generating circuit 4-2 to operate effectively, the output of the matching circuit 4-1 , that is, the preset terminal PR of the D-type flip-flop 4-3 , must become L. That is, the clock pulse from the clock pulse generation circuit 4-2 is outputted from the output A of the operating illuminance setting circuit 3.
When changes from L to H, resistor R11 and capacitor
Integrator circuit consisting of C 5 and exclusive OR circuit EOR 2
However, the clock pulse is generated when the output A of the operating illuminance setting circuit 3 changes from L to H, and the output B
Based on the state that holds L, the preset terminal PR of the D-type flip-flop 4-3 becomes L, and is then delayed by a delay circuit consisting of resistor R12 and capacitor C6 to reach the clock terminal CP. Since the signal is transmitted, the output of the D-type flip-flop 4-3 , that is, one input a of the OR circuit 4-4 , can be reliably changed from L to H. In the OR circuit 4-4 , when either the input a or the input b is H, the output c becomes H and becomes a lighting output. Based on the lighting output of this logic circuit 4, the thyristor T h of the lighting load turning on/off drive circuit 5 is
As a result, the triac TR is also turned on, and the lighting load 6 is brought into a lighting output state. Also,
The photocoupler PC of the delay timer circuit switching circuit 3-3 is turned off by the lighting output of the logic circuit 4, and the delay timer circuit 3-2 is effectively operated to provide a predetermined delay time for the next light-off operation. Further, when both the input a and the input b of the OR circuit 4-4 are L, the output c becomes L and becomes a light-off output. This light-off output turns off the thyristor T h and triax TR of the lighting load on/off drive circuit 5, turns off the lighting load 6, and at the same time puts the delay timer circuit 3-2 in an inactive state, causing the next immediate lighting. Be prepared for. Table 2 shows each input/output logic value of the logic determination circuit 4 for external light (IL) of various illuminances.
However, illuminance when turned off A -1 : 150Lux, illuminance turned on A -2 :
80Lux, off illuminance B -1 : 50Lux, on illuminance B -2 :
20 Lux. In the table, PR and CP indicate inputs to the clock terminal and preset terminal of the D-type flip-flop.

【表】【table】

【表】 次に、上記第2表に示した論理値に基づく照明
負荷の具体的な点滅動作プログラムについて説明
する。 夕方の照明負荷点灯プログラム 外光照度が第2表の(1)、(2)の状態から(3)の状
態(50<IL≦80)になると、論理回路4の出
力cがHとなつて点灯動作になる。また、外光
照度がこの(3)の状態から(1)の状態(IL≧150)
になり、その状態を一定の遅延時間維持したと
き、論理回路4の出力cがLとなり、消灯動作
となる。しかし、この消灯動作後、再度外光照
度が(3)の状態になるときは、出力cがLなので
遅延タイマー回路3-2は動作せず、直ちに点灯
動作となる。そして、外光照度が低下して、(4)
の状態(20<IL≦50)になつても、出力cは
Hのままで点灯動作を保持し、高照度用の動作
照度設定回路Aが有効に動作する。 夜間の照明負荷点灯プログラム 完全に夜になつて、外光照度が更に低下して
(5)の状態(0≦IL≦20)になると、動作照度
設定回路3の出力BがHとなり入力aがLとな
るが、入力bはHとなり出力cがHになつて、
点灯動作を保持し、低照度用の動作照度設定回
路Bが有効に動作する。 迷光により外光照度が(7)、又は(8)の状態(50
≦IL<80、又は80≦IL<150)を所定の遅延時
間継続したときは、入力aはLのままで、入力
bはLとなるため、消灯動作となるが、迷光が
なくなり、再度外光照度が(5)の状態(0≦IL
≦20)になると、出力BがHとなり直ちに点灯
動作となる。 更に迷光により外光照度が(1)又は、(9)の状態
(IL≧150)を所定の遅延時間継続したときは、
出力A,Bは共にLとなり、入力a,bも共に
Lとなるため消灯動作となり、動作照度設定回
路Aが有効になるが、迷光がなくなり、再度外
光照度が(3)の状態(50<IL≦80)になると、
入力aがHとなり直ちに点灯動作となり、更に
外光照度が(4)の状態を経て(5)の状態(0≦IL
≦20)に低下すると、再度動作照度設定回路B
が有効となり、この状態で夜間は点灯動作を保
持することになる。 朝方の照明負荷消灯プログラム 外光照度が(6)の状態(20<IL<50)を経て
(7)の状態(50≦IL<80)を所定の遅延時間継
続したとき、クロツクパルスは発生せず、入力
aはLのままであるが、入力bはLになるので
出力cはLとなり消灯動作になる。したがつ
て、夕方の点灯照度より低い外光照度で確実に
消灯させることができる。 更に、外光照度が(8)の状態(80≦IL<150)
を経て、(9)の状態(IL≧150)になつたとき、
入力aはLのままで出力AがLとなり、動作照
度設定回路Aが有効となり、したがつて外光照
度が(1)の状態と等しくなり、夕方における照明
負荷点灯プログラムの初期状態に復帰する。 上記具体的回路構成例において、動作照度設
定回路3の照度検知回路3-1における光導電セ
ルとしては、硫化カドミウムセルを用いたもの
を示したが、フオトトランジスタなどの他の受
光素子を用いることができる。なお、該設定回
路3の電圧検出回路3-4の電界効果トランジス
タFETについては、該FETの代りにhFEの高い
トランジスタを用いることも考えられる。しか
し、照度検知回路、遅延タイマー回路、動作照
度比設定回路の総計インピーダンスが小さいの
で、入力インピーダンスの小さいトランジスタ
を用いる場合は調整が非常に困難になるから、
電界効果トランジスタを用いるのが最も安定し
ていて効果的である。 また、論理回路4における排他的論理和回路
EOR1は、第4図AまたはBに示すように、
NAND回路とOR回路とAND回路を組み合わ
せて構成した回路、又は4つのNAND回路を
組み合わせて構成した回路によつても、同一動
作を行わせることができる。また、同じく、ク
ロツクパルス発生回路4-2の排他的論理和回路
EOR2は、第5図A又はBに示すように、一方
の入力端I1にインバータINVを接続したNOR
回路、又は他方の入力端I2にインバータINVを
接続したAND回路を代りに用いることができ
る。更に、論理回路4の論理和回路4-4は、排
他的論理和回路で代用することができ、同一の
点灯・消灯動作をさせることができる。 (発明の効果) 以上実施例に基づき詳細に説明したように、本
発明によれば、外光照度に応じて高照度用と低照
度用の点灯・消灯照度設定手段の各出力が自動的
に切り替えられ、外界の条件の変動等に拘らず確
実に消灯照度を点灯照度より低く設定することが
できる。
[Table] Next, a specific flashing operation program for the lighting load based on the logical values shown in Table 2 above will be explained. Evening lighting load lighting program When the outside light illuminance changes from the states (1) and (2) in Table 2 to the state (3) (50<IL≦80), the output c of the logic circuit 4 becomes H and the light is turned on. It becomes action. Also, the external light illuminance changes from this (3) state to (1) state (IL≧150).
When this state is maintained for a certain delay time, the output c of the logic circuit 4 becomes L, and the light goes out. However, after this light-off operation, when the outside light illuminance returns to state (3) again, the output c is L, so the delay timer circuit 3-2 does not operate, and the light-on operation immediately starts. Then, the outside light illuminance decreases, (4)
Even in the state (20<IL≦50), the output c remains at H and the lighting operation is maintained, and the operating illuminance setting circuit A for high illuminance operates effectively. Lighting load lighting program at night As night falls, the brightness of outside light decreases further.
When the state (5) is reached (0≦IL≦20), the output B of the operating illuminance setting circuit 3 becomes H and the input a becomes L, but the input b becomes H and the output c becomes H.
The lighting operation is maintained, and the operating illuminance setting circuit B for low illuminance operates effectively. Due to stray light, the external light illuminance is (7) or (8) (50
≦IL<80 or 80≦IL<150) continues for the specified delay time, input a remains low and input b becomes low, so the light turns off, but the stray light disappears and the light is turned off again. Light illuminance is (5) (0≦IL
≦20), the output B becomes H and the lighting operation starts immediately. Furthermore, if the outside light illuminance continues to be in state (1) or (9) (IL≧150) for a predetermined delay time due to stray light,
Outputs A and B are both L, and inputs a and b are also both L, so the light goes out and the operating illuminance setting circuit A becomes effective, but the stray light disappears and the outside light illuminance is again in the state (3) (50 < When IL≦80),
Input a becomes H and the lighting starts immediately, and the external light illuminance goes through state (4) and then reaches state (5) (0≦IL
≦20), the operating illuminance setting circuit B is activated again.
is enabled, and in this state the lighting operation will be maintained at night. Lighting load turn-off program in the morning After the external light illuminance reaches state (6) (20<IL<50)
When the state (7) (50≦IL<80) continues for the predetermined delay time, no clock pulse is generated and input a remains L, but input b becomes L, so output c becomes L and the light goes out. It becomes action. Therefore, the light can be reliably turned off at an outside light illuminance lower than the lighting illuminance in the evening. Furthermore, the external light illuminance is (8) (80≦IL<150)
When the condition (9) (IL≧150) is reached after
The output A becomes L while the input a remains at L, and the operating illuminance setting circuit A becomes effective. Therefore, the external light illuminance becomes equal to the state (1), and the program returns to the initial state of the illumination load lighting program in the evening. In the above specific circuit configuration example, a cadmium sulfide cell is used as the photoconductive cell in the illuminance detection circuit 3 -1 of the operating illuminance setting circuit 3, but other light receiving elements such as phototransistors may be used. Can be done. Note that as for the field effect transistor FET of the voltage detection circuit 3-4 of the setting circuit 3, a transistor with high h FE may be used instead of the FET. However, since the total impedance of the illuminance detection circuit, delay timer circuit, and operating illuminance ratio setting circuit is small, adjustment becomes extremely difficult when using transistors with small input impedance.
The use of field effect transistors is the most stable and effective. In addition, the exclusive OR circuit in the logic circuit 4
EOR 1 is as shown in Figure 4 A or B.
The same operation can be performed by a circuit configured by combining a NAND circuit, an OR circuit, and an AND circuit, or a circuit configured by combining four NAND circuits. Similarly, the exclusive OR circuit of clock pulse generation circuit 4-2
EOR 2 is a NOR with an inverter INV connected to one input terminal I1 as shown in Figure 5A or B.
circuit, or an AND circuit with an inverter INV connected to the other input I 2 can be used instead. Further, the OR circuit 4-4 of the logic circuit 4 can be replaced with an exclusive OR circuit, and the same lighting/extinguishing operation can be performed. (Effects of the Invention) As described above in detail based on the embodiments, according to the present invention, each output of the on/off illuminance setting means for high illuminance and low illuminance is automatically switched according to the external light illuminance. Therefore, the illuminance when the lights are turned off can be reliably set to be lower than the illuminance when the lights are turned on, regardless of changes in external conditions.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明に係る光電式自動点滅装置に
よる照明負荷の点灯・消灯動作プログラムを示す
図、第2図は、本発明の一実施例のブロツク構成
図、第3図は、第2図に示した各ブロツクの回路
構成例を示す図、第4図A,Bは、第3図に示し
た排他的論理和回路EOR1の他の等価的な回路を
示す図、第5図A,Bは、第3図に示した排他的
論理和回路EOR2の他の等価的な回路を示す図で
ある。 図において、1は交流電源、2は定電圧回路、
3は動作照度設定回路、3-1は照度検知回路、3
-2は遅延タイマー回路、3-3は遅延タイマー切替
回路、3-4は点灯照度設定用電圧検出回路、3-5
は高照度用の動作照度比設定回路、3-6は低照度
用の動作照度比設定回路、4は論理判定回路、4
-1は一致回路、4-2はクロツクパルス発生回路、
-3はD形フリツプフロツプ、4-4は論理和回路
を示す。
FIG. 1 is a diagram showing a lighting load turning on/off operation program by a photoelectric automatic flashing device according to the present invention, FIG. 2 is a block diagram of an embodiment of the present invention, and FIG. Figures 4A and 4B are diagrams showing an example of the circuit configuration of each block shown in the figure, and Figure 5A is a diagram showing another equivalent circuit of the exclusive OR circuit EOR 1 shown in Figure 3. , B are diagrams showing other equivalent circuits of the exclusive OR circuit EOR 2 shown in FIG. 3. In the figure, 1 is an AC power supply, 2 is a constant voltage circuit,
3 is the operating illuminance setting circuit, 3 -1 is the illuminance detection circuit, 3
-2 is a delay timer circuit, 3 -3 is a delay timer switching circuit, 3 -4 is a voltage detection circuit for lighting illuminance setting, 3 -5
is an operating illuminance ratio setting circuit for high illuminance, 3 -6 is an operating illuminance ratio setting circuit for low illuminance, 4 is a logic judgment circuit, 4
-1 is a coincidence circuit, 4 -2 is a clock pulse generation circuit,
4-3 is a D-type flip-flop, and 4-4 is an OR circuit.

Claims (1)

【特許請求の範囲】 1 外光の照度変化を検知する照度検知手段と、
消灯照度が点灯照度より高く設定され、前記照度
検知手段による検知照度が設定された前記点灯照
度以下になつた場合に出力信号を出す高照度用の
点灯・消灯照度設定手段と、消灯照度が点灯照度
より高く、且つ前記高照度用の点灯・消灯照度設
定手段の点灯照度より低く設定され、前記照度検
知手段による検知照度が設定された点灯照度以下
になつた場合に出力信号を出す低照度用の点灯・
消灯照度設定手段と、前記照度検知手段による検
知照度が低照度用の点灯・消灯照度設定手段の点
灯照度より低下した場合に、高照度用の点灯・消
灯照度設定手段を無効にして低照度用の点灯・消
灯照度設定手段の出力信号のみを有効とし、高照
度用の点灯・消灯照度設定手段の消灯照度より上
昇した場合に、低照度用の点灯・消灯照度設定手
段を無効にして高照度用の点灯・消灯照度設定手
段の出力信号のみを有効にする論理判定手段と、
該論理判定手段の出力により制御される照明負荷
点滅駆動手段とを備えたことを特徴とする光電式
自動点滅装置。 2 前記外光照度検知手段には遅延手段が接続さ
れており、該遅延手段は、前記論理判定手段の出
力信号により、照明負荷が点灯時には有効に動作
し、消灯時にはその動作が無効になるように切替
え制御され、点灯動作開始時においては直ちに点
灯動作を行ない、消灯動作開始時には所定の遅延
時間経過後に消灯動作を行なうように構成されて
いることを特徴とする特許請求の範囲第1項記載
の光電式自動点滅装置。
[Claims] 1. Illuminance detection means for detecting changes in the illuminance of external light;
a high illuminance on/off illuminance setting unit that outputs an output signal when the unlit illuminance is set higher than the on illuminance and the illuminance detected by the illuminance detection means becomes less than the set on illuminance, and the unlit illuminance is turned on. For low illuminance, the illuminance is set higher than the illuminance and lower than the lighting illuminance of the turning on/off illuminance setting means for high illuminance, and outputs an output signal when the illuminance detected by the illuminance detecting means falls below the set lighting illuminance. lighting/
When the illuminance detected by the lights-off illuminance setting means and the illuminance detecting means is lower than the lighting illuminance of the turning-on/turn-off illuminance setting means for low illuminance, the turning-on/turn-off illuminance setting means for high illuminance is disabled and the illuminance for low illuminance is set. Only the output signal of the on/off illuminance setting means is enabled, and when the illuminance rises above the off illuminance of the on/off illuminance setting means for high illuminance, the on/off illuminance setting means for low illuminance is disabled and the high illuminance is turned off. logical determination means for validating only the output signal of the on/off illuminance setting means;
1. A photoelectric automatic flashing device comprising: lighting load flashing drive means controlled by the output of the logical determination means. 2. A delay means is connected to the external light illuminance detection means, and the delay means is configured to operate effectively when the lighting load is turned on and to be disabled when the lighting load is turned off, according to the output signal of the logic judgment means. According to claim 1, the switching control is performed so that when the lighting operation starts, the lighting operation is performed immediately, and when the lighting operation starts, the lighting operation is performed after a predetermined delay time has elapsed. Photoelectric automatic flashing device.
JP14527384A 1984-07-14 1984-07-14 Photoelectric automatic flasher Granted JPS6127097A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14527384A JPS6127097A (en) 1984-07-14 1984-07-14 Photoelectric automatic flasher

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14527384A JPS6127097A (en) 1984-07-14 1984-07-14 Photoelectric automatic flasher

Publications (2)

Publication Number Publication Date
JPS6127097A JPS6127097A (en) 1986-02-06
JPH0329152B2 true JPH0329152B2 (en) 1991-04-23

Family

ID=15381320

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14527384A Granted JPS6127097A (en) 1984-07-14 1984-07-14 Photoelectric automatic flasher

Country Status (1)

Country Link
JP (1) JPS6127097A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4862364B2 (en) * 2005-11-16 2012-01-25 岩崎電気株式会社 Lighting control device
JP5073559B2 (en) * 2008-04-02 2012-11-14 シャープ株式会社 Solar battery lighting device
JP6747024B2 (en) * 2016-04-06 2020-08-26 株式会社ジェイテクト Electronic control device and motor control device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5712694B2 (en) * 1977-10-20 1982-03-12
JPS57176690A (en) * 1981-04-22 1982-10-30 Matsushita Electric Works Ltd Hysteresis circuit for automatic photoelectric flasher

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5712694U (en) * 1980-06-20 1982-01-22

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5712694B2 (en) * 1977-10-20 1982-03-12
JPS57176690A (en) * 1981-04-22 1982-10-30 Matsushita Electric Works Ltd Hysteresis circuit for automatic photoelectric flasher

Also Published As

Publication number Publication date
JPS6127097A (en) 1986-02-06

Similar Documents

Publication Publication Date Title
US5272418A (en) Time enabled photosensing circuit
CN211184377U (en) Intelligent lamp energy control system induced by light-operated delayer
CN111315091B (en) Cell lighting control system based on light sensitivity and timing
JPH0329152B2 (en)
JPH0317193B2 (en)
EP1937038A2 (en) Power regulator
JPH0550838B2 (en)
CN211656478U (en) District lighting control system based on it is photosensitive and regularly
US5053683A (en) Starting and operating device for controlling a starter that ignites a sodium lamp
KR200342039Y1 (en) Active Circuit Of Lamp
CN218526470U (en) Light-operated lamp drive control circuit and controller
CN210868258U (en) NE555 chip-based light sensation adjusting circuit
CN220043723U (en) Warning lamp control circuit
CN115499966B (en) Inductor for constant current power supply tail end power taking
JP2973730B2 (en) Fluorescent lamp lighting device
CN218335988U (en) Street lamp time delay drive circuit
JPS61220296A (en) Photoelectric type flash control circuit
CN209824082U (en) Linear driving light-operated circuit with time delay function
KR920010175B1 (en) Lighting control device for street lamp
JP2966537B2 (en) Lighting equipment
JPH0134868Y2 (en)
CN2285042Y (en) Around-the-clock automatic controller for high-power lights
JPH01274387A (en) Illumination control circuit
JPS61218092A (en) Photoelectric type flash control circuit
KR900009193Y1 (en) Automatic lighting circuit

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees