JPH032911B2 - - Google Patents

Info

Publication number
JPH032911B2
JPH032911B2 JP56056282A JP5628281A JPH032911B2 JP H032911 B2 JPH032911 B2 JP H032911B2 JP 56056282 A JP56056282 A JP 56056282A JP 5628281 A JP5628281 A JP 5628281A JP H032911 B2 JPH032911 B2 JP H032911B2
Authority
JP
Japan
Prior art keywords
urea
parts
reaction
catalyst
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56056282A
Other languages
Japanese (ja)
Other versions
JPS57170961A (en
Inventor
Tomio Segawa
Hideo Sawada
Ritsu Ninomya
Genichi Suyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Kasei Chemicals Ltd
Original Assignee
Kawasaki Kasei Chemicals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Kasei Chemicals Ltd filed Critical Kawasaki Kasei Chemicals Ltd
Priority to JP5628281A priority Critical patent/JPS57170961A/en
Publication of JPS57170961A publication Critical patent/JPS57170961A/en
Publication of JPH032911B2 publication Critical patent/JPH032911B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明の方法は、染顔料として有用な銅フタロ
シアニンおよび/又はその誘導体の製造法に関す
る。 一般的に、銅フタロシアニンの製造法としては
不活性反応媒体中で、触媒の存在下、無水フタル
酸及び/又はその誘導体、銅化合物並びに尿素を
加熱反応させて合成することが最もよく知られ、
通常尿素法或はワイラー法と呼ばれ工業的に広く
実施されている。触媒としてはモリブデン化合物
が有効であり一般に用いられている。 この尿素法において原料の添加方法は、従来無
水フタル酸及び/又はその誘導体と溶媒との混合
物に、触媒粉体をそのまま又は触媒粉体を不活性
反応媒体に銅化合物と共に懸濁したスラリーとし
て添加し、次いで尿素を加えて反応せしめてい
た。われわれはこの反応について詳細に研究した
ところ、尿素に対する溶解速度が銅化合物は大き
いが、触媒として用いられるモリブデン酸アンモ
ニウムなどのモリブデン化合物の尿素に対する溶
解速度がかなり小さく、反応混合物中に均一に分
散しにくいことを見出した。そのめ、銅フタロシ
アニン合成反応の触媒の使用量を増大しなければ
ならず、収率の低下および品質のバラツキを生じ
る原因となると考えた。 本発明者らは、このような触媒の使用上の欠点
を克服するため鋭意検討した結果、触媒として用
いるモリブデン化合物を尿素に予め分散又は溶解
せしめて得られた融解物を用いて銅フタロシアニ
ン合成反応を行なつたところ、触媒の分散性が改
善され、触媒量が従来法の約1/10〜1/100に減少
することができ、しかも驚くべきことに収率が1
〜3モル%増大することを見出し本発明を完成し
た。 すなわち、本発明の方法は、フタル酸及び/又
はその誘導体、尿素及び/又は尿素誘導体並びに
銅化合物とを不活性反応媒体及び触媒の存在下に
反応せしめて銅フタロシアニン及び/又はその誘
導体を製造する方法において、モリブデン化合物
を尿素に予め分散又は溶解せしめて得られる融解
物を触媒としてモリブデン酸アンモニウムに換算
して0.003〜0.05%(対フタル酸及び/又はその
誘導体(無水フタル酸に換算して以下同じ))を
使用して反応を行なわせることを特徴とする銅フ
タロシアニン及び/又はその誘導体の製造法に存
する。 本発明者らは、本発明の方法に先だち銅化合
物、尿素及びモリブデン化合物の融解物を触媒と
して使用する方法を提案した(特願昭55−99870
号)。しかしながら、銅化合物として一般に安価
なため使用されている塩化第一銅を用いた場合、
上記融解物は腐蝕性が強く、ステンレス鋼やハス
テロイ等の汎用耐蝕性金属材を腐蝕するので、融
解容器及び配管にグラスライニングなどの高価な
特殊材料を用いるため高価になる。これに対して
本発明の方法は上記汎用金属に対する腐食性はな
いため極めて有利である。 本発明の触媒に用いられるモリブデン化合物と
しては、例えばモリブデン酸アンモニウム、モリ
ブデン酸ナトリウム、リンモリブデン酸アンモニ
ウム又は酸化モリブデン等があげられるが、一般
的にはモリブデン酸アンモニウムが用いられる。
該モリブデン化合物は市販の粒度のままでもよい
が、細かく粉砕するのも分散性、溶解性上好まし
い。 本発明の方法において、上記記モリブデン化合物
を尿素に分散又か溶解せしめて融解物を調製する
が、その処理方法としては種々採用することがで
きる。例えば、 (1) 融解した尿素にモリブデン化合物を添加し分
散又は溶解する方法 (2) 尿素とモリブデン化合物を粉体で混合し、同
時に融解する方法 (3) 融点の比較的低い上記(1)で得られた融解物に
所定量の尿素及びモリブデン化合物を添加し分
散又は溶解する方法 等が挙げられる。通常は(1)及び(3)の方法が用いら
れる。 この場合に用いられる尿素は尿素単独で用いる
こともできるが、尿素誘導体、例えばビユーレツ
ト、トリウレツト若しくはシアヌール酸が混入し
ていてもよい。尿素誘導体の混合量は通常は50%
までが好ましい。 上記融解物を調製する場合の尿素の量は、モリ
ブデン化合物に対して約1.7倍以上、一般的には
2倍〜100倍、通常は4倍〜30倍である。約1.7倍
量以下はモリブデン化合物は溶解し難くなり又、
流動性も乏しくなるので好ましくない。 本発明において、一般的にはモリブデン化合物
を融解尿素に分散することで本発明の目的を達す
ることができるが、好ましくは尿素にモリブデン
化合物を完全に溶解した方が好ましい。溶解時間
はモリブデン化合物の種類及び温度によつても異
なるが、通常モリブデン酸アンモニウムでは約5
分以上、酸化モリブデンでは約30分以上である。
尿素の融解時間は長くなるとそれだけ尿素の分解
量が多くなるのであまり長時間は好ましくなく、
一般的には48時間以下が好ましい。 本発明において、モリブデン化合物を尿素に分
散又は溶解する場合の温度は、融点以上、一般的
には128〜160℃、好ましくは130〜140℃である。
なお、モリブデン化合物を尿素に溶解させる場
合、モリブデン化合物は一部尿素と反応して、別
なモリブデン化合物に変化していることがX線回
折結果からわかつている。 このモリブデン化合物を尿素に分散又は溶解す
る場合は、大気圧下、窒素等の不活性ガス雰囲気
下又は加圧下で実施することができる。 しかして得られるモリブデン化合物を含む尿素
の融解物は、液状で又は冷却し固体状例えば粉末
又は粒状で銅フタロシアニン合成反応の触媒とし
て用いることができる。 本発明の触媒を上記反応に使用する場合には銅
フタロシアニン合成反応の反応速度は10〜20%増
大し、従来法において通常用いられている0.5〜
0.05%(モリブデン酸アンモニウムに換算して、
対フタル酸及び/又はその誘導体(無水フタル酸
換算)、以下触媒の使用量は同一基準)を0.003%
にまで減少しても反応速度がほとんど低下しな
い。従つて、本発明の触媒の使用量は一般に銅フ
タロシアニン合成反応に使用される使用量から
0.003%、通常0.003〜0.5%から選ばれる。しかし
ながら本発明の効果をさらに高めるためには、
0.003〜0.05%特に0.01〜0.05%の本発明の触媒量
を用いるのが好ましく、これによつて従来法に比
べて銅フタロシアニンの収率が1〜3%上昇す
る。本発明の触媒は0.05%より多く用いると反応
速度は増大するが、逆に収率は従来法の収率にま
で低下する。 本発明の方法において、銅フタロシアニン合成
反応に用いられるフタル酸及び/又はフタル酸誘
導体としては、例えばフタル酸、無水フタル酸、
フタル酸アンモニウム、フタルアミド酸若しくは
フタルイミド等のベンゼン核無置換化合物又はこ
れらの化合物のベンゼン核が塩素原子、臭素原子
等のハロゲン原子;メチル基、エチル基等のアル
キル基;その他ニトロ基、カルボキシル基、スル
ホン酸基、アリール基等で1つ以上置換されたフ
タル酸誘導体が挙げられる。一般的には無水フタ
ル酸、フタルイミドが用いられる。 本発明の方法において、銅フタロシアニン合成
反応に用いられる尿素又は尿素誘導体としては、
尿素、ビユーレツト、トリウレツト、シアヌール
酸が挙げられる。尿素及び/又は尿素誘導体の使
用量は、本発明の触媒中に含まれる尿素含有分を
含めて、通常フタル酸及び/又はフタル酸誘導体
1モルに対して、1.5〜3.5モル倍である。 本発明の方法において、銅フタロシアニン合成
反応に用いられる銅化合物としては、公知の化合
物、例えば塩化第一銅、酸化銅、水酸化銅、フタ
ル酸銅、酢酸銅、塩化第二銅、硫酸銅等が挙げら
れるが、通常は安価で工業的に入手しやすい塩化
第1銅が用いられる。銅化合物の使用量は、フタ
ル酸及び/又はフタル酸誘導体に対して20〜30モ
ル%が用いられる。 本発明の方法における銅フタロシアニン合成反
応は、溶媒の不存在下でも実施しうるが、好まし
くは不活性反応媒体の存在下で行なわれる。 本発明の方法において用いられる不活性反応媒
体としては、例えば銅フタロシアニンの合成反応
に用いられる公知の比較的高沸点の不活性有機溶
媒、具体的にはニトロベンゼン、ジクロルベンゼ
ン、トリクロルベンゼン、クロルトルエン、イソ
プロピルベンゼン、ジイソプロピルベンゼン、ジ
イソプロピルキシレン、t−ブチルベンゼン、ナ
フタリン、クロルナフタリン、イソプロピルナフ
タリン等の芳香族化合物又はオクタン、ノナン、
デカン、ケロシンなどの脂肪族化合物などが挙げ
られる。勿論、これらは二種類以上混合して用い
ても差つかえない。 溶媒の使用量は、一般にはフタル酸誘導体に対
して約1.5〜4倍量である。 本発明の方法における銅フタロシアニンの合成
反応は従来の合成条件と同様に実施することがで
きる。一般的には、例えば塩化第一銅、モリブデ
ン化合物を含む、尿素、尿素の融解物、無水フタ
ル酸又はフタルイミドなどのフタル酸誘導体、及
び不活性反応媒体とを反応器に仕込み、反応温度
140〜230℃好ましくは170〜200℃、反応圧力常圧
〜20Kg/、cm2G、好ましくは1〜10Kg/cm2Gで行
なわれる。加圧反応を採用する場合は、発生する
炭酸ガス、アンモニア及び不活性反応媒体の蒸気
を利用し、反応器にガス放出口を設け、発生する
気体の一部を放出することにより圧力を調節する
ことができる。その際、放出されたガス中のアン
モニアをイミド化反応、例えば該ガス中のアンモ
ニアと無水フタル酸とを130〜230℃、1〜20Kg/
cm2Gで反応させフタルイミドとする反応に利用す
ることができる。加圧下で該反応を行なうこと
は、尿素類の分解を抑制し、発生ガスに同伴する
無水フタル酸又はその誘導体の損失を少なくする
効果があるので好ましい。 次に実施例を挙げて本発明の方法を説明する
が、本発明は以下の実施例に限定されるものでは
ない。 なお、本明細書中の「%」とあるのは特に断ら
ない限り「重量%」を表わし、「部」は「重量部」
を表わす。 実施例 1 (1) 触媒の調製 尿素150部を加熱融解し、該融解物にモリブデ
ン酸アンモニウム11.1部を撹拌しながら約5分で
溶解した。溶解後、132〜135℃で5時間保持した
のち、この融解液を常温まで冷却・固化し粉砕し
た。得られた融解物即ち触媒の得量は148部であ
つた。 (2) 銅フタロシアニン合成反応 ガラス製オートクレーブに、フタルイミド200
部、尿素204部、塩化第1銅33.6部、該触媒0.54
部(モリブデン酸アンモニウムに換算して0.02%
対フタルイミド)及びt−ブチルベンゼン340部
を充填し、175〜195℃で4.5時間撹拌しながら加
熱し反応した。オートクレーブ内の圧力を3Kg/
cm2Gに保持する様に出口バルブの開度を調節し発
生する反応ガスを排出した。この反応における反
応ガス発生終了までの時間(実質的反応時間)は
4.0時間であつた。 反応生成物か溶媒のt−ブチルベンゼンを減圧
留去し回収したのち、缶残を約7倍量の熱水で洗
浄し過し、次いで約7倍量の2%硫酸で洗浄し
水洗・乾燥して、純度7%の粗製銅フタロシアニ
ン190部を得た。収率は94モル%であつた。 (3) 触媒添加量の影響実験 前記本実施例(1)の触媒を使用し、前記本実施例
(2)において触媒量をモリブデン酸アンモニウムに
換算して0.001,0.005,0.01,0.04,0.08,0.1及
び0.15%対フタルイミドに代えた以外は前記本実
施例(2)と同様に実施して次の第1表の結果を得
た。 表中、触媒添加量及び収率は本実施例と同じ単
位を示す。
The method of the present invention relates to a method for producing copper phthalocyanine and/or its derivatives useful as dyes and pigments. In general, the most well-known method for producing copper phthalocyanine is to synthesize it by heating phthalic anhydride and/or its derivatives, copper compounds, and urea in the presence of a catalyst in an inert reaction medium.
It is usually called the urea method or the Weiler method and is widely practiced industrially. Molybdenum compounds are effective and commonly used as catalysts. In this urea method, the raw material is conventionally added to a mixture of phthalic anhydride and/or its derivatives and a solvent, either as a catalyst powder or as a slurry in which the catalyst powder is suspended together with a copper compound in an inert reaction medium. Then, urea was added to cause a reaction. We conducted a detailed study on this reaction and found that copper compounds have a high dissolution rate in urea, but the dissolution rate of molybdenum compounds such as ammonium molybdate used as catalysts in urea is quite low, indicating that they are not uniformly dispersed in the reaction mixture. I found it difficult. Therefore, it was necessary to increase the amount of catalyst used in the copper phthalocyanine synthesis reaction, which was considered to be the cause of a decrease in yield and variation in quality. As a result of intensive studies to overcome these drawbacks in the use of catalysts, the present inventors conducted a copper phthalocyanine synthesis reaction using a melt obtained by dispersing or dissolving a molybdenum compound used as a catalyst in urea in advance. When this process was carried out, the dispersibility of the catalyst was improved, and the amount of catalyst was reduced to about 1/10 to 1/100 of the conventional method, and surprisingly, the yield was reduced to 1/10.
The present invention was completed by discovering that the amount increased by ~3 mol%. That is, the method of the present invention involves reacting phthalic acid and/or its derivatives, urea and/or urea derivatives, and a copper compound in the presence of an inert reaction medium and a catalyst to produce copper phthalocyanine and/or its derivatives. In this method, a molybdenum compound is predispersed or dissolved in urea, and a melt obtained is used as a catalyst, and 0.003 to 0.05% in terms of ammonium molybdate (based on phthalic acid and/or its derivatives (in terms of phthalic anhydride): The present invention relates to a method for producing copper phthalocyanine and/or its derivatives, characterized in that the reaction is carried out using the same). The present inventors proposed a method of using a melt of a copper compound, urea, and a molybdenum compound as a catalyst prior to the method of the present invention (Japanese Patent Application No. 55-99870
issue). However, when using cuprous chloride, which is generally used as a copper compound because it is cheap,
The above-mentioned melt is highly corrosive and corrodes general-purpose corrosion-resistant metal materials such as stainless steel and Hastelloy. Therefore, the melting container and piping require expensive special materials such as glass lining, which is expensive. In contrast, the method of the present invention is extremely advantageous because it is not corrosive to the above-mentioned general-purpose metals. Examples of the molybdenum compound used in the catalyst of the present invention include ammonium molybdate, sodium molybdate, ammonium phosphomolybdate, and molybdenum oxide, but ammonium molybdate is generally used.
Although the molybdenum compound may have a commercially available particle size, it is preferable to finely grind it in terms of dispersibility and solubility. In the method of the present invention, a melt is prepared by dispersing or dissolving the molybdenum compound in urea, and various methods can be used for the treatment. For example, (1) a method of adding a molybdenum compound to molten urea and dispersing or dissolving it; (2) a method of mixing urea and a molybdenum compound in powder form and melting them at the same time; (3) a method of (1) above with a relatively low melting point; Examples include a method of adding a predetermined amount of urea and a molybdenum compound to the obtained melt and dispersing or dissolving it. Usually, methods (1) and (3) are used. The urea used in this case can be used alone, but it may also be mixed with urea derivatives such as biuret, triuret or cyanuric acid. The amount of urea derivative mixed is usually 50%.
It is preferable that The amount of urea when preparing the above melt is about 1.7 times or more, generally 2 times to 100 times, and usually 4 times to 30 times as much as the molybdenum compound. If the amount is less than about 1.7 times, the molybdenum compound becomes difficult to dissolve.
This is not preferable because the fluidity becomes poor. In the present invention, the object of the present invention can generally be achieved by dispersing the molybdenum compound in molten urea, but it is preferable to completely dissolve the molybdenum compound in urea. The dissolution time varies depending on the type of molybdenum compound and the temperature, but usually for ammonium molybdate it is about 5
30 minutes or more for molybdenum oxide.
The longer the urea melting time, the more urea will be decomposed, so it is not preferable to melt the urea for too long.
Generally, 48 hours or less is preferable. In the present invention, the temperature when dispersing or dissolving the molybdenum compound in urea is higher than the melting point, generally 128 to 160°C, preferably 130 to 140°C.
Note that when a molybdenum compound is dissolved in urea, it is known from X-ray diffraction results that a portion of the molybdenum compound reacts with urea and changes into another molybdenum compound. When dispersing or dissolving this molybdenum compound in urea, it can be carried out under atmospheric pressure, in an inert gas atmosphere such as nitrogen, or under pressure. The urea melt containing the molybdenum compound thus obtained can be used as a catalyst for the copper phthalocyanine synthesis reaction in liquid form or in solid form, such as powder or granules after cooling. When the catalyst of the present invention is used in the above reaction, the reaction rate of the copper phthalocyanine synthesis reaction increases by 10 to 20%, compared to the 0.5 to
0.05% (converted to ammonium molybdate,
0.003% against phthalic acid and/or its derivatives (in terms of phthalic anhydride, hereinafter the same amount of catalyst used)
Even if the reaction rate is reduced to , the reaction rate hardly decreases. Therefore, the amount of the catalyst used in the present invention is generally smaller than that used in the copper phthalocyanine synthesis reaction.
0.003%, usually selected from 0.003-0.5%. However, in order to further enhance the effects of the present invention,
It is preferred to use an amount of the catalyst according to the invention of 0.003 to 0.05%, especially 0.01 to 0.05%, which increases the yield of copper phthalocyanine by 1 to 3% compared to conventional methods. When the catalyst of the present invention is used in an amount greater than 0.05%, the reaction rate increases, but the yield decreases to that of the conventional method. In the method of the present invention, examples of phthalic acid and/or phthalic acid derivatives used in the copper phthalocyanine synthesis reaction include phthalic acid, phthalic anhydride,
Compounds with unsubstituted benzene nuclei such as ammonium phthalate, phthalamic acid or phthalimide, or compounds in which the benzene nucleus of these compounds is a halogen atom such as a chlorine atom or a bromine atom; an alkyl group such as a methyl group or an ethyl group; other nitro groups, carboxyl groups, Examples include phthalic acid derivatives substituted with one or more sulfonic acid groups, aryl groups, and the like. Generally, phthalic anhydride and phthalimide are used. In the method of the present invention, the urea or urea derivative used in the copper phthalocyanine synthesis reaction includes:
Examples include urea, biuret, triuret, and cyanuric acid. The amount of urea and/or urea derivative used, including the urea content contained in the catalyst of the present invention, is usually 1.5 to 3.5 times the mole of phthalic acid and/or phthalic acid derivative. In the method of the present invention, the copper compounds used in the copper phthalocyanine synthesis reaction include known compounds such as cuprous chloride, copper oxide, copper hydroxide, copper phthalate, copper acetate, cupric chloride, copper sulfate, etc. However, cuprous chloride, which is inexpensive and industrially easily available, is usually used. The amount of the copper compound used is 20 to 30 mol % based on phthalic acid and/or phthalic acid derivative. Although the copper phthalocyanine synthesis reaction in the method of the present invention can be carried out in the absence of a solvent, it is preferably carried out in the presence of an inert reaction medium. Examples of the inert reaction medium used in the method of the present invention include known inert organic solvents with relatively high boiling points used in the synthesis reaction of copper phthalocyanine, specifically nitrobenzene, dichlorobenzene, trichlorobenzene, and chlorotoluene. , aromatic compounds such as isopropylbenzene, diisopropylbenzene, diisopropylxylene, t-butylbenzene, naphthalene, chlornaphthalene, isopropylnaphthalene, or octane, nonane,
Examples include aliphatic compounds such as decane and kerosene. Of course, two or more of these may be used in combination. The amount of solvent used is generally about 1.5 to 4 times the amount of the phthalic acid derivative. The copper phthalocyanine synthesis reaction in the method of the present invention can be carried out under the same conditions as conventional synthesis conditions. Generally, a reactor is charged with urea, a melt of urea, a phthalic acid derivative such as phthalic anhydride or phthalimide, and an inert reaction medium, including, for example, cuprous chloride, a molybdenum compound, and the reaction temperature
The reaction is carried out at a temperature of 140 to 230°C, preferably 170 to 200°C, and a reaction pressure of normal pressure to 20 kg/cm 2 G, preferably 1 to 10 kg/cm 2 G. When using a pressurized reaction, the generated carbon dioxide, ammonia, and the vapor of an inert reaction medium are used, and the pressure is adjusted by providing a gas outlet in the reactor and releasing a portion of the generated gas. be able to. At that time, ammonia in the released gas is subjected to an imidization reaction, for example, ammonia in the gas and phthalic anhydride are combined at 130 to 230°C, 1 to 20 kg/
It can be used to react with cm 2 G to form phthalimide. It is preferable to carry out the reaction under pressure because it has the effect of suppressing the decomposition of ureas and reducing the loss of phthalic anhydride or its derivatives accompanying the generated gas. Next, the method of the present invention will be explained with reference to Examples, but the present invention is not limited to the following Examples. In addition, "%" in this specification represents "% by weight" unless otherwise specified, and "parts" means "parts by weight".
represents. Example 1 (1) Preparation of catalyst 150 parts of urea was melted by heating, and 11.1 parts of ammonium molybdate was dissolved in the melted material over about 5 minutes while stirring. After dissolving, the mixture was maintained at 132 to 135°C for 5 hours, and then the melt was cooled to room temperature, solidified, and pulverized. The amount of melt or catalyst obtained was 148 parts. (2) Copper phthalocyanine synthesis reaction: 200 ml of phthalimide in a glass autoclave.
parts, 204 parts of urea, 33.6 parts of cuprous chloride, 0.54 parts of the catalyst
parts (0.02% converted to ammonium molybdate)
phthalimide) and 340 parts of t-butylbenzene were charged, and the mixture was heated and reacted at 175 to 195°C for 4.5 hours with stirring. Reduce the pressure inside the autoclave to 3Kg/
The opening of the outlet valve was adjusted to maintain the pressure at cm 2 G, and the generated reaction gas was discharged. The time until the end of reaction gas generation in this reaction (actual reaction time) is
It took 4.0 hours. After recovering the reaction product or solvent t-butylbenzene by distillation under reduced pressure, the residue was washed with about 7 times the amount of hot water and filtered, then washed with about 7 times the amount of 2% sulfuric acid, washed with water, and dried. As a result, 190 parts of crude copper phthalocyanine with a purity of 7% was obtained. The yield was 94 mol%. (3) Experiment on the influence of the amount of catalyst added Using the catalyst of Example (1) above,
The following procedure was carried out in the same manner as in Example (2) above, except that in (2), the catalyst amount was changed to 0.001, 0.005, 0.01, 0.04, 0.08, 0.1, and 0.15% of phthalimide in terms of ammonium molybdate. The results shown in Table 1 were obtained. In the table, the amount of catalyst added and the yield are shown in the same units as in this example.

【表】 即ち、本発明の触媒量の限定値である「0.003
〜0.05%」の前後で極めて臨界的な収率の低下が
認められた。 比較例 1 フタルイミド200部、尿素204部、塩化第一銅
33.6部、モリブデン酸アンモニウム0.3部(0.15%
対フタルイミド)及びt−ブチルベンゼン340部
をガラス製オートクレーブに充填し、175〜195
℃、3Kg/cm2G、5.5時間撹拌しながら反応した。
この反応における反応ガス発生終了までの時間は
5.0時間であつた。 反応生成物を実施例1と同様にして処理し、純
度97%の粗製銅フタロシアニン184部を得た。収
率は91モル%であつた。 又、モリブデン酸アンモニウムの添加量を0.02
%(対フタルイミド)に変えたところ、反応時間
は6.0〜7.0時間であつた。この反応における反応
ガス発生終了時間は5.5〜6.5時間であり、反応時
間がばらついた。収率は91モル%であつた。 実施例 2 (1) 触媒調製 尿素125部を加熱融解し、この融解物にモリブ
デン酸アンモニウム15部を撹拌しながら約5分で
溶解した。溶解後、132〜135℃で5時間保持した
のち、この融解液を常温まで冷却・固化し粉砕し
た。得られた該触媒の得量は116部(モリブデン
酸アンモニウムとして12.9%含有)であつた。 (2) 銅フタロシアニン合成反応 該触媒0.311部(モリブデン酸アンモニウムに
換算して0.02%対フタルイミド)を用いた以外は
実施例1と同様に銅フタロシアニン合成反応を行
ない、同様な反応ガス発生終了時間を得、純度97
%の粗製銅フタロシアニン192部を得た。収率は
95モル%であつた。 実施例 3 実施例2で得られた触媒0.155部(モリブデン
酸アンモニウムに換算して0.01%対フタルイミ
ド)、フタルイミド200部、尿素204部、塩化第1
銅33.6部及びt−ブチルベンゼン340部をガラス
製オートクレーブに充填し、175〜202℃、5.0時
間反応した。オートクレーブ内の圧力を3Kg/cm2
Gに保持する様に、オートクレーブ出口バルブの
開度を調節した。この反応における反応ガス発生
終了までの時間は4.5時間であつた。反応生成物
の後処理は実施例1と同様に行ない、純度97%の
粗製銅フタロシアニン191部を得た。収率は94.5
モル%であつた。 実施例 4 (1) 触媒調製 尿素125部を加熱融解し、該融解物に三酸化モ
リブデン12.2部を撹拌し30〜40分で溶解した。溶
解後、132〜135℃で5時間保持したのち、常温ま
で冷却・固化し粉砕した。得られた触媒の得量は
114部(モリブデン酸アンモニウムとして13.15%
含有)であつた。 (2) 銅フタロシアニン合成反応 該触媒0.304部(モリブデン酸アンモニウムと
して0.02%対フタルイミド)を用いた以外は実施
例1と同様に銅フタロシアニン合成反応を行な
い、反応ガス発生終了までの時間4.0時間及び純
度97%の粗製銅フタロシアニン192部を得た。収
率は95モル%であつた。 実施例 5 実施例2で得た触媒0.311部(モリブデン酸ア
ンモニウムに換算して0.02%対(無水フタル酸+
4−クロル無水フタル酸))、4−クロル無水フタ
ル酸61.6部、無水フタル酸150部、尿素244部、塩
化第1銅33.4部及びt−ブチルベンゼン420部を
ガラス製オートクレーブに充填し、175〜195℃で
6時間反応した。オートクレーブ内の圧力を3
Kg/cm2Gに保持するように出口バルブの開度を調
節した。この反応における反応ガス発生終了の時
間は5.5時間であつた。反応生成物の後処理は実
施例1と同様に実施し、純度97%の粗製モノクロ
ル銅フタロシアニン193部を得た。収率は91モル
%であつた。 比較例 3 無水フタル酸150部、4−クロル無水フタル酸
61.6部、尿素244部、塩化第1銅33.4部及びモリ
ブデン酸アンモニウム0.04部(0.02%対(無水フ
タル酸+4−クロル無水フタル酸))をガラス製
オートクレーブに充填し、175〜195℃、3Kg/cm2
Gで8時間反応した。反応生成物は実施例1と同
様に後処理して、純度96%の粗製モノクロル銅フ
タロシアニン167部を得た。収率は78モル%であ
つた。 実施例 6 モリブデン酸アンモニウムの代りに、リンモリブ
デン酸アンモニウムを用いて、実施例1と同様に
行ない同様な結果を得た。 実施例 7 (1) 触媒調製 尿素104部を加熱融解し、該融解物に三酸化モ
リブデン粉末12.2部を加え約5分間撹拌し十分に
分散した。得られた融解物を冷却・固化し粉砕し
た。該触媒の得量は113.9部(モリブデン酸アン
モニウムに換算して13.15%含有)であつた。 (2) 銅フタロシアニン合成反応 該触媒0.304部(モリブデン酸アンモニウムと
して0.02%対フタルイミド)を用いた以外は実施
例1と同様に銅フタロシアニン合成反応を行な
い、反応ガス発生終了までの時間4.0時間及び純
度97%の粗製銅フタロシアニン186部を得た。収
率は92モル%であつた。
[Table] That is, the limiting value of the catalyst amount of the present invention is “0.003
A very critical yield drop was observed around ~0.05%. Comparative example 1 200 parts of phthalimide, 204 parts of urea, cuprous chloride
33.6 parts, ammonium molybdate 0.3 parts (0.15%
phthalimide) and 340 parts of t-butylbenzene were charged into a glass autoclave.
The reaction was carried out at 3 Kg/cm 2 G for 5.5 hours with stirring.
The time until the end of reaction gas generation in this reaction is
It took 5.0 hours. The reaction product was treated in the same manner as in Example 1 to obtain 184 parts of crude copper phthalocyanine with a purity of 97%. The yield was 91 mol%. In addition, the amount of ammonium molybdate added was 0.02
% (relative to phthalimide), the reaction time was 6.0 to 7.0 hours. The reaction gas generation completion time in this reaction was 5.5 to 6.5 hours, and the reaction time varied. The yield was 91 mol%. Example 2 (1) Catalyst Preparation 125 parts of urea was melted by heating, and 15 parts of ammonium molybdate was dissolved in this melt over about 5 minutes while stirring. After dissolving, the mixture was maintained at 132 to 135°C for 5 hours, and then the melt was cooled to room temperature, solidified, and pulverized. The amount of the catalyst obtained was 116 parts (containing 12.9% ammonium molybdate). (2) Copper phthalocyanine synthesis reaction The copper phthalocyanine synthesis reaction was carried out in the same manner as in Example 1, except that 0.311 parts of the catalyst (0.02% phthalimide in terms of ammonium molybdate) was used, and the same reaction gas generation completion time was used. Obtained, purity 97
% crude copper phthalocyanine was obtained. The yield is
It was 95 mol%. Example 3 0.155 parts of the catalyst obtained in Example 2 (0.01% to phthalimide in terms of ammonium molybdate), 200 parts of phthalimide, 204 parts of urea, 1st chloride
A glass autoclave was charged with 33.6 parts of copper and 340 parts of t-butylbenzene, and reacted at 175 to 202°C for 5.0 hours. The pressure inside the autoclave is 3Kg/cm 2
The opening degree of the autoclave outlet valve was adjusted so as to maintain the temperature at G. It took 4.5 hours to complete the reaction gas generation in this reaction. The reaction product was post-treated in the same manner as in Example 1 to obtain 191 parts of crude copper phthalocyanine with a purity of 97%. Yield is 94.5
It was in mol%. Example 4 (1) Catalyst Preparation 125 parts of urea was melted by heating, and 12.2 parts of molybdenum trioxide was stirred and dissolved in the melt over 30 to 40 minutes. After dissolving, the mixture was maintained at 132 to 135°C for 5 hours, cooled to room temperature, solidified, and pulverized. The amount of catalyst obtained is
114 parts (13.15% as ammonium molybdate)
Contains). (2) Copper phthalocyanine synthesis reaction Copper phthalocyanine synthesis reaction was carried out in the same manner as in Example 1 except that 0.304 parts of the catalyst (0.02% ammonium molybdate to phthalimide) was used, and the time until the end of reaction gas generation was 4.0 hours and the purity was 192 parts of 97% crude copper phthalocyanine were obtained. The yield was 95 mol%. Example 5 0.311 parts of the catalyst obtained in Example 2 (0.02% in terms of ammonium molybdate) (phthalic anhydride +
A glass autoclave was charged with 61.6 parts of 4-chlorophthalic anhydride, 150 parts of phthalic anhydride, 244 parts of urea, 33.4 parts of cuprous chloride, and 420 parts of t-butylbenzene. The reaction was carried out at ~195°C for 6 hours. The pressure inside the autoclave is 3
The opening degree of the outlet valve was adjusted to maintain the pressure at Kg/cm 2 G. The time required for completion of reaction gas generation in this reaction was 5.5 hours. The reaction product was post-treated in the same manner as in Example 1 to obtain 193 parts of crude monochlorocopper phthalocyanine with a purity of 97%. The yield was 91 mol%. Comparative Example 3 150 parts of phthalic anhydride, 4-chlorophthalic anhydride
A glass autoclave was charged with 61.6 parts of urea, 244 parts of urea, 33.4 parts of cuprous chloride, and 0.04 parts of ammonium molybdate (0.02% vs. (phthalic anhydride + 4-chlorophthalic anhydride)), and heated at 175 to 195°C, 3 kg/ cm2
G for 8 hours. The reaction product was post-treated in the same manner as in Example 1 to obtain 167 parts of crude monochlorocopper phthalocyanine with a purity of 96%. The yield was 78 mol%. Example 6 The same procedure as in Example 1 was carried out except that ammonium phosphomolybdate was used instead of ammonium molybdate, and similar results were obtained. Example 7 (1) Catalyst Preparation 104 parts of urea was melted by heating, and 12.2 parts of molybdenum trioxide powder was added to the melt and stirred for about 5 minutes to fully disperse it. The obtained melt was cooled, solidified, and pulverized. The amount of catalyst obtained was 113.9 parts (containing 13.15% in terms of ammonium molybdate). (2) Copper phthalocyanine synthesis reaction Copper phthalocyanine synthesis reaction was carried out in the same manner as in Example 1 except that 0.304 parts of the catalyst (0.02% ammonium molybdate to phthalimide) was used, and the time until the end of reaction gas generation was 4.0 hours and the purity was 186 parts of 97% crude copper phthalocyanine were obtained. The yield was 92 mol%.

Claims (1)

【特許請求の範囲】 1 フタル酸及び/又はその誘導体、尿素及び/
又は尿素誘導体並びに銅化合物とを不活性反応媒
体及び触媒の存在下に反応せしめて銅フタロシア
ニン及び/又はの誘導体を製造する方法におい
て、モリブデン化合物を尿素に予め分散又は溶解
せしめて得られる融解物を触媒としてモリブデン
酸アンモニウムに換算して0.003〜0.05%(対フ
タル酸及び/又はその誘導体(無水フタル酸に換
算して))を使用して反応を行わせることを特徴
とする銅フタロシアニン及び/又はその誘導体の
製造法。 2 モリブデン化合物がモリブデン酸アンモニウ
ムである特許請求の範囲第1項記載の方法。 3 モリブデン化合物に対する尿素の量が約1.7
倍以上である特許請求の範囲第1項記載の方法。 4 モリブデン化合物に対する尿素の量が約2〜
約100倍である特許請求の範囲第1項記載の方法。 5 分散又は溶解温度が128〜160℃である特許請
求の範囲第1項記載の方法。 6 分散又は溶解温度が130〜140℃である特許請
求の範囲第5項記載の方法。
[Claims] 1. Phthalic acid and/or its derivatives, urea and/or
Alternatively, in a method for producing copper phthalocyanine and/or derivatives by reacting a urea derivative and a copper compound in the presence of an inert reaction medium and a catalyst, a melt obtained by dispersing or dissolving a molybdenum compound in urea in advance is used. Copper phthalocyanine and/or characterized in that the reaction is carried out using 0.003 to 0.05% in terms of ammonium molybdate (in terms of phthalic acid and/or its derivatives (in terms of phthalic anhydride)) as a catalyst. A method for producing its derivatives. 2. The method according to claim 1, wherein the molybdenum compound is ammonium molybdate. 3 The amount of urea relative to the molybdenum compound is approximately 1.7
The method according to claim 1, wherein the amount is more than twice as large. 4 The amount of urea relative to the molybdenum compound is about 2 to
10. The method of claim 1, which is approximately 100 times as large. 5. The method according to claim 1, wherein the dispersion or dissolution temperature is 128 to 160°C. 6. The method according to claim 5, wherein the dispersion or dissolution temperature is 130 to 140°C.
JP5628281A 1981-04-16 1981-04-16 Production of copper phthalocyanine and/or its derivative Granted JPS57170961A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5628281A JPS57170961A (en) 1981-04-16 1981-04-16 Production of copper phthalocyanine and/or its derivative

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5628281A JPS57170961A (en) 1981-04-16 1981-04-16 Production of copper phthalocyanine and/or its derivative

Publications (2)

Publication Number Publication Date
JPS57170961A JPS57170961A (en) 1982-10-21
JPH032911B2 true JPH032911B2 (en) 1991-01-17

Family

ID=13022733

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5628281A Granted JPS57170961A (en) 1981-04-16 1981-04-16 Production of copper phthalocyanine and/or its derivative

Country Status (1)

Country Link
JP (1) JPS57170961A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07119369B2 (en) * 1987-12-31 1995-12-20 川崎化成工業株式会社 Method for producing metal phthalocyanine and / or derivative thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52112628A (en) * 1976-03-18 1977-09-21 Bayer Ag Process for manufacture of copper phthalocyanine

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52112628A (en) * 1976-03-18 1977-09-21 Bayer Ag Process for manufacture of copper phthalocyanine

Also Published As

Publication number Publication date
JPS57170961A (en) 1982-10-21

Similar Documents

Publication Publication Date Title
US5318623A (en) Process for producing metal phthalocyanine pigment
JPH032911B2 (en)
JP3368797B2 (en) Method for producing copper phthalocyanine
US3300512A (en) Synthesis of metal-containing phthalocyanines
JPH0154373B2 (en)
KR940006069B1 (en) Process for producing a metal phthalocyanine
JPS5949217B2 (en) Method for producing substituted diphenyl ether
CN112358404A (en) Preparation method of 2-chloro-6-methylaniline
JP2001122858A (en) Production of phthalimide compound
US1886237A (en) Production of benzoyl-omioron-benzoic acid derivatives and anthraquinone bodies therefrom
JP3102293B2 (en) Method for producing copper phthalocyanine
JPS637547B2 (en)
CA1231095A (en) Process for the production of benzanthrone
US3428673A (en) Nitration of 4-acetamidobenzoic acid
JP5974661B2 (en) Method for producing copper phthalocyanine compound
JP3496276B2 (en) Method for producing copper phthalocyanine
JPS61190562A (en) Production of metal phthalocyanine
JP2824394B2 (en) Catalyst for producing fumaric acid and method for producing fumaric acid using the catalyst
JPH0586985B2 (en)
GB2053213A (en) Process for the production of 4-acylamido-2-nitro-1-alkoxybenzenes
JPH0770124A (en) Production of acetylguanine
JPH011766A (en) Method for producing copper phthalocyanine pigment
JPH0739551B2 (en) Method for producing copper phthalocyanine compound
CS223337B1 (en) Method of preparation of the copper ftalocyanine
JPS5850262B2 (en) Doufthalocyanin no seizouhou