JPH0329049B2 - - Google Patents

Info

Publication number
JPH0329049B2
JPH0329049B2 JP59055184A JP5518484A JPH0329049B2 JP H0329049 B2 JPH0329049 B2 JP H0329049B2 JP 59055184 A JP59055184 A JP 59055184A JP 5518484 A JP5518484 A JP 5518484A JP H0329049 B2 JPH0329049 B2 JP H0329049B2
Authority
JP
Japan
Prior art keywords
ruthenium
catalyst
weight
present
alumina gel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59055184A
Other languages
Japanese (ja)
Other versions
JPS60199837A (en
Inventor
Shuichi Niwa
Fujio Mizukami
Juichi Imamura
Kazuo Shimizu
Tooru Tsucha
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP59055184A priority Critical patent/JPS60199837A/en
Publication of JPS60199837A publication Critical patent/JPS60199837A/en
Publication of JPH0329049B2 publication Critical patent/JPH0329049B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳細な説明】 本発明は芳香族炭化水素の部分核水素化法に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for partial nuclear hydrogenation of aromatic hydrocarbons.

芳香族炭化水素の部分核水素化物、例えば、シ
クロヘキセンやアルキルシクロヘキセン等は、合
成原料として重要な化合物であり、その工業的に
有利な製法の開発が望まれている。しかしなが
ら、このような芳香族炭化水素の部分核水素化物
の製造は困難であり、芳香族炭化水素を通常の方
法で水素化すると、芳香核は部分水素化されずに
完全水素化され、シクロパラフインを与える。
Partial nuclear hydrides of aromatic hydrocarbons, such as cyclohexene and alkylcyclohexene, are important compounds as raw materials for synthesis, and it is desired to develop an industrially advantageous method for producing them. However, it is difficult to produce such partial nuclear hydrides of aromatic hydrocarbons, and when aromatic hydrocarbons are hydrogenated by the usual method, the aromatic nuclei are completely hydrogenated without being partially hydrogenated, resulting in cycloparaffin give.

従来、このような部分核水素化に関する方法と
しては、アルカリ金属の存在下、液体アンモニア
を溶媒として水素化を行う方法(西ドイツ特許第
1443377号及び第1793757号明細書)が知られてい
る。この方法は、比較的良好な部分核水素化物の
収率を与えるものの、複雑な反応操作を必要とす
るため工業的方法としては不当である。
Conventionally, as a method for such partial nuclear hydrogenation, a method of hydrogenation using liquid ammonia as a solvent in the presence of an alkali metal (West German Patent No.
1443377 and 1793757) are known. Although this method provides a relatively good yield of partial nuclear hydrides, it is unsuitable as an industrial method because it requires complicated reaction operations.

一方、工業的に見て比較的興味ある方法とし
て、水の存在下において、ルテニウム触媒を用い
て水素化を行う方法が知られている。(特開昭53
−46938号、53−65849号、53−63350号等)。この
場合のルテニウム触媒は、シリカやアルミナ等の
多孔質担体にルテニウムを担持させたものである
が、部分核水素化物の収率は低く工業的見地から
は末だ満足し得るものではなかつた。
On the other hand, a method of hydrogenation using a ruthenium catalyst in the presence of water is known as a relatively interesting method from an industrial perspective. (Unexamined Japanese Patent Publication 1973)
-46938, 53-65849, 53-63350, etc.). The ruthenium catalyst in this case is one in which ruthenium is supported on a porous carrier such as silica or alumina, but the yield of partial nuclear hydrides is low and is far from satisfactory from an industrial standpoint.

本発明者らは、芳香族炭化水素の部分核水素化
において、工業的に有利な方法を開発すべく種々
研究を重ねた結果、本発明を完成するに到つた。
The present inventors have completed the present invention as a result of various studies aimed at developing an industrially advantageous method for partial nuclear hydrogenation of aromatic hydrocarbons.

即ち、本発明によれば、芳香族炭化水素を、水
及び水素化触媒の存在下、水素ガスと反応させて
部分核水素化する方法において、該水素化触媒と
して、アルミニウムアルコキシドの加水分解生成
物から誘導されたアルミナゲル中に分散されたル
テニウム触媒を用いることを特微とするベンゼン
の部分核水素化法が提供される。
That is, according to the present invention, in a method of partially hydrogenating an aromatic hydrocarbon by reacting it with hydrogen gas in the presence of water and a hydrogenation catalyst, the hydrogenation catalyst is a hydrolysis product of aluminum alkoxide. A process for the partial nuclear hydrogenation of benzene is provided which features the use of a ruthenium catalyst dispersed in an alumina gel derived from.

本発明においては、水素化触媒として、アルミ
ニウムアルコキシドの加水分解生成物から誘導さ
れたアルミナゲル中に分散されたルテニウム触媒
を用いることを特微とする。
The present invention is characterized in that a ruthenium catalyst dispersed in alumina gel derived from a hydrolysis product of aluminum alkoxide is used as a hydrogenation catalyst.

本発明において用いる触媒は、前記アルミニウ
ムアルコキシドの加水分解物の持つゲル化作用を
利用して製造される。例えば、一価又は多価アル
コールから誘導されるアルミニウムアルコキシド
とルテニウム化合物を溶解させた有機溶触溶液に
水を加えて加熱攬拌する。この加熱攬拌操作によ
り、アルミニウムアルコキシドは加水分解される
と時に、次第にゲル化され、ゲル状物質を生成す
る。このゲル状物質を加熱乾燥すると、内部にル
テニウム化合物が均一に分散したアルミナゲルが
得られる。
The catalyst used in the present invention is produced by utilizing the gelling effect of the aluminum alkoxide hydrolyzate. For example, water is added to an organic catalytic solution in which an aluminum alkoxide derived from a monohydric or polyhydric alcohol and a ruthenium compound are dissolved, and the mixture is heated and stirred. By this heating and stirring operation, when the aluminum alkoxide is hydrolyzed, it is gradually gelled to produce a gel-like substance. When this gel-like substance is dried by heating, an alumina gel in which a ruthenium compound is uniformly dispersed is obtained.

前記ルテニウム化合物の有機溶媒溶液として
は、塩化ルテニウムや臭化ルテニウム等のルテニ
ウム塩やアセチルアセトンルテニウム等の他、エ
チレンジアミン、フエナンスロリン、ビピリジル
等のキレート化剤と結合したルテニウムアンミン
錯体、及びカルボニルルテニウム錯体やテノセン
等の有機ルテニウム錯体、あるいはルテニウムア
ルコキシド等のルテニウム化合物をメタノール、
エタノール等の一価アルコールや、エチレングリ
コール、プロピレングリール、グリセリン等の多
価アルコール、アセチルアセトン等の極性有機溶
媒に溶解させた溶液を用いることができる。
Examples of the organic solvent solution of the ruthenium compound include ruthenium salts such as ruthenium chloride and ruthenium bromide, ruthenium acetylacetonate, ruthenium ammine complexes combined with chelating agents such as ethylenediamine, phenanthroline, and bipyridyl, carbonylruthenium complexes, and thenocene. Organic ruthenium complexes such as
A solution dissolved in a monohydric alcohol such as ethanol, a polyhydric alcohol such as ethylene glycol, propylene glycol, or glycerin, or a polar organic solvent such as acetylacetone can be used.

本発明で用いる前記アルミナゲル中に分散させ
たルテニウム触媒において、ルテニウム担持量
は、金属換算で、0.01〜20重量%、好ましくは
0.1〜5重量である。
In the ruthenium catalyst dispersed in the alumina gel used in the present invention, the amount of ruthenium supported is 0.01 to 20% by weight, preferably 0.01 to 20% by weight in terms of metal.
The weight is 0.1-5.

本発明におて用いる触媒は、使用に際し、通常
の水素ガス流通還元法で還元処理を行う。この場
合の還元処理温度は、50〜900℃、好ましくは200
〜600℃である。本発明の触媒はこの還元処理後
に反応器に充填使用する。
Before use, the catalyst used in the present invention is subjected to a reduction treatment using a conventional hydrogen gas flow reduction method. In this case, the reduction treatment temperature is 50 to 900℃, preferably 200℃.
~600℃. After this reduction treatment, the catalyst of the present invention is charged into a reactor and used.

本発明における芳香族炭化水素の部分核水素化
法は、水と前記ルテニウム触媒の存在下におい
て、芳香族炭化水素と水素ガスとを反応させるこ
とによつて実施される。この場合、水の使用量
は、芳香族炭化水素1重量部に対して0.01〜20重
量部、好ましくは0.1〜5重量部であり、触媒の
使用量は、芳香族炭化水素に対し、0.01〜50重量
%、好ましくは0.1〜1重量%である。反応温度
は0〜300℃、好ましくは50〜220℃であり、反応
圧力は0.01〜500Kg/cm2、好ましくは1〜200Kg/
cm2である。
The partial nuclear hydrogenation method of aromatic hydrocarbons in the present invention is carried out by reacting aromatic hydrocarbons with hydrogen gas in the presence of water and the ruthenium catalyst. In this case, the amount of water used is 0.01 to 20 parts by weight, preferably 0.1 to 5 parts by weight, per 1 part by weight of aromatic hydrocarbons, and the amount of catalyst used is 0.01 to 20 parts by weight, preferably 0.1 to 5 parts by weight, per 1 part by weight of aromatic hydrocarbons. 50% by weight, preferably 0.1-1% by weight. The reaction temperature is 0 to 300°C, preferably 50 to 220°C, and the reaction pressure is 0.01 to 500Kg/ cm2 , preferably 1 to 200Kg/cm2.
cm2 .

本発明の方法を実施する場合、反応は連続式又
は回分式で行うことができ、必要に応じ、補助添
加物、例えば、リン酸コバルト、硫酸コバルト、
塩化ニツケル、塩化鉄などの金属塩やNaOH、
KOH等のアルカリ、HClなどの酸を反応系に添
加することができる。本発明においては、反応溶
媒の使用は特に必要なとされないが、エタノール
イソプロアルコール、ジオキサンヘキサン、ジメ
チルホルムアミド、ジメチルスルホキシド等の溶
媒を用いることができる。本発明で原料として用
いる芳香族炭化水素の具体例としては、例えば、
ベンゼン、トルエン、キシレン等が挙げられる。
When carrying out the process of the invention, the reaction can be carried out continuously or batchwise, and if necessary, auxiliary additives, such as cobalt phosphate, cobalt sulfate,
Metal salts such as nickel chloride and iron chloride, NaOH,
An alkali such as KOH or an acid such as HCl can be added to the reaction system. In the present invention, the use of a reaction solvent is not particularly required, but solvents such as ethanol isoproalcohol, dioxane hexane, dimethylformamide, dimethyl sulfoxide, etc. can be used. Specific examples of aromatic hydrocarbons used as raw materials in the present invention include, for example:
Examples include benzene, toluene, xylene and the like.

次に本発明を実施例によりさらに詳細に説明す
る。
Next, the present invention will be explained in more detail with reference to Examples.

なお、実施例において示した転化率及び選択率
はいずれも反応により生成した有機液層をガスク
ロトグラフイーで分折してそれぞれ指定する物質
について次式によつて求めた値である。
It should be noted that the conversion rates and selectivities shown in the examples are both values determined by the following equations for the respective designated substances by analyzing the organic liquid layer produced by the reaction using gas chromatography.

転化率(モル%)=〔1−(A/B)〕×100 A…反応液中の芳香族炭化水素モル数 B…原料芳香族炭化水素モル数 選択率(モル%)=〔1−(C/D)〕×100 C…シクロヘキセンのモル数 D…反応生成物の全モル数 参考例(触媒調整法) 550mlのナス型フラスコに塩化ルテニウム1.0g
を取り、エチレングリコール100mlを加えて60℃
で2時間攬拌する。この液にアルミニエウムイソ
プロポキシド76.3gを加えて60℃で2時間攬拌す
る。この混合溶液に、水100mlを加えて60℃で10
〜48時間攬拌を続けると、黒縁色のゲル状の物質
が生成してくる。このゲル状物質をエバポレータ
ーで80℃で真空乾操すると粒状物が得られ、これ
を乳鉢で細粉化することにより、ルテニウム含量
2重量%のアルミナゲル(A)約77g得られる。
Conversion rate (mol%) = [1-(A/B)] x 100 A...Number of moles of aromatic hydrocarbon in the reaction solution B...Number of moles of raw material aromatic hydrocarbon Selectivity (mol%) = [1-( C/D)〕×100 C... Number of moles of cyclohexene D... Total number of moles of reaction products Reference example (catalyst preparation method) 1.0 g of ruthenium chloride in a 550 ml eggplant-shaped flask
Add 100ml of ethylene glycol and heat at 60℃.
Stir for 2 hours. Add 76.3 g of aluminum isopropoxide to this liquid and stir at 60°C for 2 hours. Add 100ml of water to this mixed solution and heat at 60℃ for 10 minutes.
After stirring for ~48 hours, a black-rimmed gel-like substance forms. This gel-like substance is vacuum-dried at 80°C in an evaporator to obtain granules, which are pulverized in a mortar to obtain about 77 g of alumina gel (A) with a ruthenium content of 2% by weight.

実施例 1 前記で得たルテニウム含量2重量%のアルミナ
ゲル2gを毎時6の水素気流中400℃で8時間還
元処理し活性化した。
Example 1 2 g of the alumina gel containing 2% by weight of ruthenium obtained above was activated by reduction treatment at 400° C. for 8 hours in a hydrogen flow of 6 times per hour.

次に、内容積500mlのオートクレーブに、ベン
ゼン160ml、水50mlを仕込み、さらに前記の活性
化したルテニウム含有アルミナゲル2gを加えた
後、容器内部空間を十分に水素ガスを置換し、水
素圧力70Kg/cm2、温度180℃の条件下で反応を行
つた。この場合、電磁誘導回転式により、800回
転/分で攬拌を行つた。反応液を適宜抜出してガ
スクロマトグラフイーで分折した結果、反応時間
1時間で、ベンゼン転化率40.07モル%、シクロ
ヘキセン収率11.5%の成積を得た。
Next, in an autoclave with an internal volume of 500 ml, 160 ml of benzene and 50 ml of water were charged, and after adding 2 g of the activated ruthenium-containing alumina gel, the interior space of the container was sufficiently replaced with hydrogen gas, and the hydrogen pressure was 70 kg/ The reaction was carried out under conditions of cm 2 and temperature of 180°C. In this case, stirring was performed at 800 revolutions/minute using an electromagnetic induction rotation type. The reaction solution was appropriately extracted and analyzed by gas chromatography. As a result, a benzene conversion rate of 40.07 mol% and a cyclohexene yield of 11.5% were obtained in 1 hour of reaction time.

比較例 実施例1において、ルテニウム含量2重量%の
本発明によるアルミナゲルの代りに、市販のアル
ミナゲルに含浸法によりルテニウムを塩化ルテニ
ウムとして含浸させたものを用いた以外は同様に
して実験を行つた。
Comparative Example An experiment was carried out in the same manner as in Example 1, except that instead of the alumina gel according to the present invention having a ruthenium content of 2% by weight, a commercially available alumina gel impregnated with ruthenium as ruthenium chloride by an impregnation method was used. Ivy.

その結果、ベンゼン転化率54.5モル%における
シクロヘキセン収率は5.33モル%であり、本発明
の反応成積に比較して著しく劣つたものであつ
た。このことから、本発明によるアルミニウムア
ルコキシドの加水分解生成物から誘導されたアル
ミナゲル中に分散されたルテニウム触媒は、部分
核水素化に対する触媒としてすぐれた効果を示す
ことがわかる。
As a result, the cyclohexene yield at a benzene conversion rate of 54.5 mol% was 5.33 mol%, which was significantly inferior to the reaction product of the present invention. This shows that the ruthenium catalyst dispersed in the alumina gel derived from the hydrolysis product of aluminum alkoxide according to the present invention exhibits excellent effects as a catalyst for partial nuclear hydrogenation.

実施例 2 実施例1において、ルテニウム含量2%のアル
ミナゲルの代りに、ルテニウム含量1%のアルミ
ナゲルを用いた以外は同様にして実験を行つたと
ころ、ベンゼン転化率43.5モル%において、シク
ロヘキセン選択率9.8モル%の結果を得た。
Example 2 An experiment was carried out in the same manner as in Example 1, except that alumina gel with a ruthenium content of 1% was used instead of alumina gel with a ruthenium content of 2%. At a benzene conversion rate of 43.5 mol%, cyclohexene was selected. A result of 9.8 mol% was obtained.

Claims (1)

【特許請求の範囲】[Claims] 1 芳香族炭化水素を、水及び水素化触媒の存在
下、水素ガスと反応させて部分核水素化する方法
において、核水素化触媒として、アルミニウムア
ルコキシドの加水分解生成物から誘導されたアル
ミナゲル中に分散されたルテニウム触媒を用いる
ことを特微とするベンゼンの部分核水素化法。
1. In a method of partially nuclear hydrogenating aromatic hydrocarbons by reacting them with hydrogen gas in the presence of water and a hydrogenation catalyst, alumina gel derived from a hydrolysis product of aluminum alkoxide is used as a nuclear hydrogenation catalyst. A method for partial nuclear hydrogenation of benzene characterized by the use of a ruthenium catalyst dispersed in
JP59055184A 1984-03-22 1984-03-22 Ruthenium-alumina catalyst for partial nucleus-hydrogenation of aromatic hydrocarbon Granted JPS60199837A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59055184A JPS60199837A (en) 1984-03-22 1984-03-22 Ruthenium-alumina catalyst for partial nucleus-hydrogenation of aromatic hydrocarbon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59055184A JPS60199837A (en) 1984-03-22 1984-03-22 Ruthenium-alumina catalyst for partial nucleus-hydrogenation of aromatic hydrocarbon

Publications (2)

Publication Number Publication Date
JPS60199837A JPS60199837A (en) 1985-10-09
JPH0329049B2 true JPH0329049B2 (en) 1991-04-23

Family

ID=12991624

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59055184A Granted JPS60199837A (en) 1984-03-22 1984-03-22 Ruthenium-alumina catalyst for partial nucleus-hydrogenation of aromatic hydrocarbon

Country Status (1)

Country Link
JP (1) JPS60199837A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5363350A (en) * 1976-11-17 1978-06-06 Toray Ind Inc Preparation of cyclohexenes
JPS564536A (en) * 1979-06-20 1981-01-17 Sayama Kakou Kk Distribution slip application method
JPS5635646A (en) * 1979-08-29 1981-04-08 Nippon Denso Co Ltd Armature core for electric rotary machine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5363350A (en) * 1976-11-17 1978-06-06 Toray Ind Inc Preparation of cyclohexenes
JPS564536A (en) * 1979-06-20 1981-01-17 Sayama Kakou Kk Distribution slip application method
JPS5635646A (en) * 1979-08-29 1981-04-08 Nippon Denso Co Ltd Armature core for electric rotary machine

Also Published As

Publication number Publication date
JPS60199837A (en) 1985-10-09

Similar Documents

Publication Publication Date Title
SU1109047A3 (en) Method of obtaining magnesium hydride
JPS6059215B2 (en) Process for producing cyclohexene from benzene
EP0002899A1 (en) Method for preparing aluminosilicates and their use as catalyst supports and catalysts
US4780448A (en) Preparation of a catalyst containing copper and silica
KR930005254B1 (en) Method for producing cycloolefins
CA1306597C (en) Process for preparing halogen magnesium alanate and use thereof
JP3955349B2 (en) Nuclear hydrogenation process for substituted aromatic compounds
JPH0329049B2 (en)
JPH0229053B2 (en)
JP3159010B2 (en) Method for producing α-phenylethyl alcohol
US2805207A (en) Silver catalysts
JPS6028429A (en) Catalyst for preparing polyethylene glycol dialkyl ether
JP2611184B2 (en) Method for producing ethanol from carbon dioxide and catalyst for production
JPS62255438A (en) Method for partially hydrogenating nucleus of aromatic hydrocarbon
Savoia et al. Active metals from potassium–graphite. Palladium–graphite as catalyst in the hydrogenation of nitro-compounds, alkenes, and alkynes
JPS6140226A (en) Production of cycloolefin
CA1064007A (en) Process for preparing cyclohexanone
IE44036B1 (en) Hydration of nitriles to amides
JP2764080B2 (en) Method for producing alcohol
JPS60184031A (en) Production of cycloolefin
JPS6185334A (en) Production of cycloolefin
JPH08245477A (en) Production of formaldehyde by catalytic hydrogenation of carbon dioxide
JPH0316930B2 (en)
JPS5852255A (en) Preparation of unsaturated amide
US2206917A (en) Process for preparing cyclopropane

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term