JPH0329007B2 - - Google Patents

Info

Publication number
JPH0329007B2
JPH0329007B2 JP61087474A JP8747486A JPH0329007B2 JP H0329007 B2 JPH0329007 B2 JP H0329007B2 JP 61087474 A JP61087474 A JP 61087474A JP 8747486 A JP8747486 A JP 8747486A JP H0329007 B2 JPH0329007 B2 JP H0329007B2
Authority
JP
Japan
Prior art keywords
lead
precipitate
water
aqueous solution
chlorine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61087474A
Other languages
Japanese (ja)
Other versions
JPS62246820A (en
Inventor
Shinichi Shirasaki
Toshihiko Kakio
Hideki Tanaka
Shuichi Miki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KAGAKU GIJUTSUCHO MUKIZAISHITSU KENKYUSHOCHO
TAKI KAGAKU KK
Original Assignee
KAGAKU GIJUTSUCHO MUKIZAISHITSU KENKYUSHOCHO
TAKI KAGAKU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KAGAKU GIJUTSUCHO MUKIZAISHITSU KENKYUSHOCHO, TAKI KAGAKU KK filed Critical KAGAKU GIJUTSUCHO MUKIZAISHITSU KENKYUSHOCHO
Priority to JP8747486A priority Critical patent/JPS62246820A/en
Publication of JPS62246820A publication Critical patent/JPS62246820A/en
Publication of JPH0329007B2 publication Critical patent/JPH0329007B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、ペロブスカイト型結晶構造を有する
チタン酸鉛、ジルコン酸鉛あるいはチタン酸ジル
コン酸鉛等鉛を含むペロブスカイト型化合物の製
造方法に関するものである。 ペロブスカイト型結晶構造を有するチタン酸
鉛、ジルコン酸鉛あるいはチタン酸ジルコン酸鉛
は、誘電体セラミツク、抵抗体セラミツク、半導
体セラミツク等の分野に広く使用されている。こ
のような鉛を含む複合酸化物を合成する最も一般
的な製造方法は、ペロブスカイト型構成原料成分
の酸化物粉末を混合し、高温で固相反応させる方
法である。 しかしながら、このような固相反応によつて得
られる生成物は、組成的に極めて付均質であると
いう欠点を有している。このため、固相反応で得
られる複合酸化物を粉砕し再度焼成するという、
複雑で、費用のかかる操作を反復しなければなら
ない。 更に、この固相反応で得られた複合酸化物は、
高温での熱履歴をうけているので、粒径が粗大
で、反応性、焼結性に劣るという欠点を要してい
る。固相反応における上記欠点を改善するため
に、溶液法で製造することも既に知られている。 例えば、オキシ硝酸チタンを硝酸鉛等の水溶性
鉛塩とともに、シユウ酸を含有する水溶液中で反
応させて、シユウ酸塩を沈殿生成させ、この沈殿
物を700℃以上の温度で熱分解して、酸化物を得
ることという方法である。 しかし、この共沈法においては、各成分のシユ
ウ酸塩の水に対する溶解度が異なるため、所望す
る成分比で共沈させることが困難である。また、
成分元素のアルコキシドを加水分解して共沈する
方法も知られており、この方法によれば、高純度
で均一性の高いものが得られるが、各種成分を一
度アルコシキドとして合成しなければならないの
で、製造が煩雑となり、価格的にも高価なものと
なる。 このような、高価のアルコキシドや、オキシ硝
酸チタンを使用する湿式法が考えられた背景に
は、安価な四塩化チタンを原料として使用した場
合、四塩化チタンの塩素が鉛と反応して白色沈殿
が生じ、湿式共沈法を行うことができないことが
挙げられる。 従つて、鉛化合物と共に安価な塩化物を使用す
る方法として、最初に、鉛化合物をアルカリ性沈
殿剤で水酸化物として沈殿させ、当該沈殿物含有
溶液中に四塩化チタン等の塩化物及び他の化合物
を加え、更に、沈殿剤を加えてチタン等の水酸化
物を沈殿せしめることも考えられるが、このよう
な方法によるときは、先に、水酸化物として、沈
殿した水酸化鉛が塩素イオンと反応し、塩基性塩
化鉛、オキシ塩化鉛等の鉛塩化物を生成すると推
定される。 この鉛塩化物中の塩素は、水洗により除去する
ことは、甚だ困難であり、その結果ペロブスカイ
ト化合物中に残留し、乾燥、焼結後に物性に極め
て悪影響を及ぼすので、沈殿操作で塩素を極力排
除しておくことが必要である。このような技術背
景のもとに、本発明者らは、湿式法において塩素
含量の極めて少ないペロブスカイト型化合物を製
造する方法について検討を重ねた結果、以下に詳
記する本発明に到達した。 即ち、本発明は、原料として安価な塩化物を使
用し、ペロブスカイト型化合物の構成成分とし
て、鉛を使用するときに生起する問題を解決する
ことを目的とする。従つて、本発明は、水溶性塩
化物を少なくとも一原料として使用し、鉛を含む
ペロブスカイト型化合物を製造する方法に於て、
水溶性鉛化合物と炭酸または炭酸アルカリとを
CO3/Pb(モル比)1.1以上で反応させ、沈殿物を
生成せしめた後、塩素を含む鉛化合物以外の他の
化合物を水酸化物として沈殿せしめるか、また
は、少なくとも一化合物は塩素を含む、鉛化合物
以外の他の化合物を水酸化物として沈殿せしめた
後、この沈殿物を含む溶液中で、鉛化合物と炭酸
または、炭酸アルカリとをCO3/Pb(モル比)1.1
以上で反応させ、沈殿物を生成せしめることから
なる鉛を含むペロブスカイト型化合物の製造方法
に関する。 本発明のペロブスカイト型化合物は、一般式
(Pb、A)BO3として表わされ、A成分として
は、Ba、Sr、Ca等のアルカリ土類金属あるい
は、Laなどの希土類が、また、B成分としては、
Ti、Zr、Mg、W、Nb、Mn、Sn、Ni等が例示
され、これらの一種または、それ以上が目的に応
じて使用される。本発明に於ては、A成分、B成
分いずれの塩化物も使用されるが、高価な硝酸チ
タンに代えて、塩化チタンを使用するときに最も
本発明の効果が発揮される。 今、本発明方法について詳しく述べると、水溶
性鉛化合物、例えば、硝酸鉛、酢酸鉛等の鉛化合
物を水溶液中で炭酸、または炭酸アルカリ塩と反
応せしめ、鉛の炭酸塩を沈殿せしめる。両者の反
応割合はCO3/Pb(モル比)1.1以上とする。これ
以下では、沈殿物中に塩素が共存し、本発明の効
果が得られない。 この炭素鉛の生成に際し、他のアルカリ沈殿剤
も当然共用することができる。また、炭酸鉛を沈
殿せしめるに際し他のA成分、B成分の塩化物以
外の水溶性化合物を共存せしめ、水酸化物として
共沈せしめうることは勿論である。 この沈殿反応に於ける金属塩濃度としては、一
般に金属酸化物として、1〜10重量%の範囲が望
ましい。 次いでこのようにして得られた沈殿物含有溶液
中で、A成分、B成分の少なくとも一種は、塩化
物として使用し、これを水酸化物として沈殿せし
める。沈澱反応に際しては、成分を均一にするた
めに充分な撹拌をすることが望ましい。この場合
の沈殿剤としては、炭酸アルカリの他、水酸化ア
ンモニウム、水酸化アルカリ等のアルカリ性物質
を使用することができる。また、塩化物と共にA
成分、B成分の他の塩、例えば硝酸塩、酢酸塩等
を使用することは何ら支障ない。 このようにして得られたペロブスカイト型化合
物は、水溶液から分離、水洗次いで乾燥される
が、従来の塩化物使用ペロブスカイト型化合物に
比べ、水洗により充分除去しうる形態の塩素であ
り、その乾燥物中の塩素根は、痕跡程度である。 このように塩素根をほとんどとどめない他の製
造方法について言えば、先ずA成分、B成分の鉛
化合物を除く少なくとも一種の塩化物を水酸化物
として沈殿せしめ、次いでこの水酸化物含有溶液
中で、水溶性鉛化合物と炭酸または、炭酸アルカ
リとをCO3/Pb(モル比)1.1以上で反応させ、沈
殿物を生成せしめる。 この沈殿物生成に際し、鉛以外の他のA成分、
B成分の化合物を当然共存させうるが、塩化物と
して使用することは避けなければならない。ま
た、沈殿剤としては炭酸アルカリと共に、他の沈
殿剤を使用しうることは勿論である。本発明の沈
殿反応は全て常温で行われるが、必要に応じ加
熱、加圧することを防げるものではない。上記説
明から明らかなように、本発明は少くとも二段階
の沈殿反応を利用するものであつて、水溶性鉛化
合物を炭酸塩として沈殿せしめるときは、他の化
合物を塩化物として使用することを回避し、組成
均一の沈殿物を生成せしめ、塩素根の僅少でか
つ、物性の良好なペロブスカイト化合物を製造す
ることができる。 以下、本発明を実施例に従つて詳細に説明す
る。 実施例 1 硝酸鉛30.140g、硝酸ランタン6水和物6.897
gを含有する水溶液500c.c.を調整し、これを
CO3/Pbモル比1.6となるように、重炭酸アンモ
ニウム11.502g、濃アンモニウム水25.6gを含有
する沈殿剤300c.c.に撹はん下滴下して、塩基性炭
酸鉛を含む沈殿物を調整した。この懸濁した水溶
液を撹はんしつつ、これに四塩化チタン水溶液
(TiO220wt%)13.6479g、オキシ硝酸ジルコニ
ウム2水和物16.9897gを含有する水溶液500c.c.を
滴下し、鉛、ランタン、ジルコニウム、チタンを
含む沈殿物を得た。 この沈殿物の一部を硝酸に溶解させ AgNO3
による塩素の確認が不可能となるまで蒸留水で洗
浄した。この場合の洗浄水量は、約1500c.c.であつ
た。水洗後乾燥し、700℃で1時間仮焼し、
PPLZT原料粉末を得た。 比較例 1 実施例1と同量の鉛、ランタン溶液をCO3
Pbモル比0.9となるように、重炭酸アンモニウム
6.470g濃アンモニウム水29.5gを含有する沈殿
剤300c.c.に滴下し、これに、実施例1と同量のチ
タン、ジルコニウム溶液を滴下し、得た沈殿物を
1500c.c.の洗浄水で洗浄後、乾燥し、700℃で1時
間仮焼しPLZT原料粉末を得た。これらの仮焼粉
末を1.5t/cm2の圧力で直径12mmに成型し、酸素ガ
スと鉛蒸気の混合雰囲気下常圧で1100℃40時間焼
結した。
The present invention relates to a method for producing a perovskite compound containing lead, such as lead titanate, lead zirconate, or lead zirconate titanate, which has a perovskite crystal structure. Lead titanate, lead zirconate, or lead zirconate titanate having a perovskite crystal structure are widely used in fields such as dielectric ceramics, resistor ceramics, and semiconductor ceramics. The most common manufacturing method for synthesizing such a lead-containing composite oxide is to mix oxide powders of perovskite-type constituent raw materials and conduct a solid phase reaction at high temperature. However, the products obtained by such solid-phase reactions have the disadvantage of being extremely homogeneous in composition. For this reason, the composite oxide obtained by solid phase reaction is crushed and fired again.
Complex and expensive operations must be repeated. Furthermore, the composite oxide obtained by this solid phase reaction is
Since it is subjected to thermal history at high temperatures, it has the drawbacks of coarse particle size and poor reactivity and sinterability. In order to improve the above-mentioned drawbacks in solid-phase reactions, it is already known to produce by a solution method. For example, titanium oxynitrate is reacted with a water-soluble lead salt such as lead nitrate in an aqueous solution containing oxalic acid to form a precipitate of oxalate, and this precipitate is thermally decomposed at a temperature of 700°C or higher. , the method is to obtain oxides. However, in this coprecipitation method, it is difficult to coprecipitate at a desired component ratio because the oxalate of each component has a different solubility in water. Also,
A method is also known in which the alkoxides of the component elements are hydrolyzed and co-precipitated.This method yields highly pure and highly homogeneous products, but it requires that the various components be synthesized once as alkoxides. , manufacturing becomes complicated and the price becomes expensive. The reason why such a wet method using expensive alkoxides and titanium oxynitrate was considered is that when cheap titanium tetrachloride is used as a raw material, the chlorine in titanium tetrachloride reacts with lead and forms a white precipitate. occurs, making it impossible to perform a wet coprecipitation method. Therefore, as a method of using inexpensive chlorides together with lead compounds, first the lead compounds are precipitated as hydroxides with an alkaline precipitant, and chlorides such as titanium tetrachloride and other chlorides are added to the precipitate-containing solution. It is also possible to add a compound and then add a precipitant to precipitate a hydroxide such as titanium, but when using this method, the precipitated lead hydroxide is first converted into chloride ions as a hydroxide. It is estimated that lead chlorides such as basic lead chloride and lead oxychloride are produced by reacting with lead chloride. It is extremely difficult to remove the chlorine in this lead chloride by washing with water, and as a result it remains in the perovskite compound and has an extremely negative effect on the physical properties after drying and sintering, so chlorine is removed as much as possible by precipitation. It is necessary to do so. Based on such a technical background, the present inventors have repeatedly studied a method for producing a perovskite compound having an extremely low chlorine content using a wet method, and as a result, have arrived at the present invention as detailed below. That is, an object of the present invention is to solve the problems that occur when using inexpensive chloride as a raw material and lead as a constituent of a perovskite compound. Therefore, the present invention provides a method for producing a perovskite compound containing lead using a water-soluble chloride as at least one raw material.
Water-soluble lead compound and carbonic acid or alkali carbonate
After reacting at CO 3 /Pb (molar ratio) of 1.1 or more to generate a precipitate, other compounds other than lead compounds containing chlorine are precipitated as hydroxides, or at least one compound contains chlorine. After precipitating compounds other than lead compounds as hydroxides, in a solution containing this precipitate, the lead compound and carbonic acid or alkali carbonate were mixed with CO 3 /Pb (molar ratio) 1.1.
The present invention relates to a method for producing a perovskite compound containing lead, which comprises causing the above reaction to produce a precipitate. The perovskite compound of the present invention is represented by the general formula (Pb, A) BO 3 , and the A component is an alkaline earth metal such as Ba, Sr, Ca, etc., or a rare earth metal such as La, and the B component is an alkaline earth metal such as Ba, Sr, Ca, etc. as,
Examples include Ti, Zr, Mg, W, Nb, Mn, Sn, Ni, etc., and one or more of these may be used depending on the purpose. In the present invention, the chloride of either component A or component B can be used, but the effects of the present invention are best exhibited when titanium chloride is used in place of the expensive titanium nitrate. Describing the method of the present invention in detail, a water-soluble lead compound, such as lead nitrate or lead acetate, is reacted with carbonic acid or an alkali carbonate in an aqueous solution to precipitate a lead carbonate. The reaction ratio between the two is CO 3 /Pb (molar ratio) of 1.1 or more. Below this range, chlorine coexists in the precipitate and the effects of the present invention cannot be obtained. Naturally, other alkaline precipitants can also be used in the production of carbon lead. It goes without saying that when precipitating lead carbonate, water-soluble compounds other than the chlorides of component A and component B can be made to coexist and co-precipitated as hydroxides. The metal salt concentration in this precipitation reaction is generally desirably in the range of 1 to 10% by weight of the metal oxide. Next, in the precipitate-containing solution thus obtained, at least one of component A and component B is used as a chloride, and this is precipitated as a hydroxide. During the precipitation reaction, it is desirable to stir sufficiently to make the ingredients uniform. As the precipitant in this case, in addition to alkali carbonate, alkaline substances such as ammonium hydroxide and alkali hydroxide can be used. Also, along with chloride, A
There is no problem in using other salts of component B, such as nitrates and acetates. The perovskite-type compound thus obtained is separated from an aqueous solution, washed with water, and then dried, but compared to conventional perovskite-type compounds using chloride, the chlorine in the dried product is in a form that can be sufficiently removed by washing with water. There are only traces of chlorine. Regarding other production methods that hardly retain chlorine radicals, first, at least one type of chloride other than the lead compounds of components A and B is precipitated as a hydroxide, and then in this hydroxide-containing solution. , a water-soluble lead compound and carbonic acid or an alkali carbonate are reacted at a CO 3 /Pb (molar ratio) of 1.1 or more to form a precipitate. During the formation of this precipitate, other A components other than lead,
Naturally, the compound of component B can coexist, but it must be avoided to use it as a chloride. Moreover, as a precipitant, it is of course possible to use other precipitants in addition to the alkali carbonate. Although the precipitation reaction of the present invention is all carried out at room temperature, heating and pressurization may be applied as necessary. As is clear from the above description, the present invention utilizes at least a two-step precipitation reaction, and when a water-soluble lead compound is precipitated as a carbonate, it is preferable to use another compound as a chloride. It is possible to avoid this, produce a precipitate with a uniform composition, and produce a perovskite compound with a small amount of chlorine radicals and good physical properties. Hereinafter, the present invention will be explained in detail according to examples. Example 1 Lead nitrate 30.140g, lanthanum nitrate hexahydrate 6.897g
Prepare 500 c.c. of an aqueous solution containing g.
The precipitate containing basic lead carbonate was added dropwise to 300 c.c. of precipitant containing 11.502 g of ammonium bicarbonate and 25.6 g of concentrated ammonium water so that the CO 3 /Pb molar ratio was 1.6. It was adjusted. While stirring this suspended aqueous solution, 500 c.c. of an aqueous solution containing 13.6479 g of a titanium tetrachloride aqueous solution (TiO 2 20 wt%) and 16.9897 g of zirconium oxynitrate dihydrate was added dropwise, and lead, A precipitate containing lanthanum, zirconium, and titanium was obtained. A part of this precipitate was dissolved in nitric acid to form AgNO 3
The sample was washed with distilled water until no chlorine was detected. The amount of washing water in this case was about 1500 c.c. After washing with water, drying and calcining at 700℃ for 1 hour.
PPLZT raw material powder was obtained. Comparative Example 1 The same amount of lead and lanthanum solution as in Example 1 was mixed with CO 3 /
Ammonium bicarbonate so that the Pb molar ratio is 0.9.
6.470 g of concentrated ammonium water was added dropwise to 300 c.c. of the precipitant containing 29.5 g of concentrated ammonium water, and the same amount of titanium and zirconium solution as in Example 1 was added dropwise to the precipitant.
After washing with 1500 c.c. of washing water, it was dried and calcined at 700°C for 1 hour to obtain a PLZT raw powder. These calcined powders were molded to a diameter of 12 mm under a pressure of 1.5 t/cm 2 and sintered at 1100° C. for 40 hours at normal pressure in a mixed atmosphere of oxygen gas and lead vapor.

【表】 実施例 2 硝酸鉛19.12gを含有する水溶液300c.c.を調製
し、これをCO3/Pbモル比2.3となるように重炭
酸アンモニウム10.489g、濃アンモニア水8.46g
を含有する沈殿剤200c.c.に撹はん下滴下して、沈
殿物を生成させた。この懸濁した水溶液を撹はん
しつつ、これにオキシ塩化ジルコニウム2水和物
18.594gを含有する水溶液30c.c.を滴下し、鉛、ジ
ルコニウムを含む沈殿物を得た。ロ過後、蒸留水
1000c.c.で水洗いし、沈殿物中の塩素濃度を測定し
た。 比較例 2 実施例2と同量の鉛溶液を濃アンモニア水
16.52gを含有する沈殿剤200c.c.に滴下して得た沈
殿物を蒸留水1000c.c.で水洗いし、沈殿物中の塩素
濃度を測定した。 実施例 3 四塩化チタン水溶液(TiO220wt%)23.06gを
含有する水溶液300c.c.を調製し、濃アンモニア水
10g、重炭酸アンモニウム10.261gを含有する沈
殿剤200c.c.に撹はん下滴下して、沈殿物を生成さ
せた。この懸濁した水溶液を撹はんしつつ、これ
に硝酸鉛19.12gを含有する水溶液300c.c.を滴下
し、鉛、チタンを含む沈殿物を得た。ロ過後、蒸
留水1000c.c.で水洗いし、沈殿物中の塩素濃度を測
定した。 比較例 3 実施例3と同量の四塩化チタン水溶液を濃アン
モニア水20gを含有する沈殿剤200c.c.に滴下し、
これに実施例3と同量の硝酸鉛水溶液を滴下し、
得た沈殿物を蒸留水1000c.c.で水洗いし、沈殿物中
の塩素濃度を測定した。 実施例 4 四塩化チタン水溶液(TiO220wt%)11.53gオ
キシ硝酸ジルコニウム2水和物7.714gを含有す
る水溶液300c.c.を調製し、濃アンモニア水10gを
含有する沈殿剤150c.c.に撹はん下滴下して、沈殿
物を生成させた。この懸濁した水溶液を撹はんし
つつこれに重炭酸アンモニウム10.489gを含有す
る水溶液50c.c.を加え、次に、硝酸鉛19.12gを含
有する水溶液300c.c.を滴下し、鉛、ジルコニウム、
チタンを含む沈殿物を得た。ロ過後蒸留水1000c.c.
で水洗いし、沈殿物中の塩素濃度を測定した。 比較例 4 実施例4と同量の四塩化チタン、オキシ硝酸ジ
ルコニウム水溶液を濃アンモニア水20gを含有す
る沈殿剤200c.c.に滴下し、これに実施例4と同量
の硝酸鉛水溶液を滴下し、得た沈殿物を蒸留水
1000c.c.で水洗いし、沈殿物中の塩素濃度を測定し
た。 実施例 5 四塩化チタン水溶液(TiO220wt%)8.807g、
塩化バリウム2水和物1.54gを含有する水溶液
300c.c.を調製し、重炭酸アンモニウム11.97g、濃
アンモニア水15gを含有する沈殿剤200c.c.に撹は
ん下滴下して、沈殿物を生成させた。この懸濁し
た水溶液を撹はんしつつ、これに硝酸鉛16.90g、
硝酸ランタン6水和物2.46g、オキシ硝酸ジルコ
ニウム2水和物10.94gを含有する水溶液300c.c.を
滴下し、鉛、ランタン、バリウム、ジルコニウ
ム、チタンを含む沈殿物を得た。ロ過後、蒸留水
1000c.c.で水洗いし、沈殿物中の塩素濃度を測定し
た。 比較例 5 実施例5と同量の四塩化チタン、塩化バリウム
水溶液を濃アンモニア水30gを含有する沈殿剤
200c.c.に滴下し、これに実施例5と同量の硝酸鉛、
硝酸ランタン、オキシ硝酸ジルコニウム水溶液を
滴下し、得た沈殿物を蒸留水1000c.c.で水洗いし、
沈殿物中の塩素濃度を測定した。
[Table] Example 2 Prepare 300 c.c. of an aqueous solution containing 19.12 g of lead nitrate, and add 10.489 g of ammonium bicarbonate and 8.46 g of concentrated aqueous ammonia so that the CO 3 /Pb molar ratio is 2.3.
was added dropwise to 200 c.c. of a precipitant containing acetate while stirring to form a precipitate. While stirring this suspended aqueous solution, zirconium oxychloride dihydrate was added to it.
30 c.c. of an aqueous solution containing 18.594 g was added dropwise to obtain a precipitate containing lead and zirconium. After filtering, distilled water
It was washed with water at 1000 c.c., and the chlorine concentration in the precipitate was measured. Comparative Example 2 The same amount of lead solution as in Example 2 was added to concentrated ammonia water.
The precipitate obtained by dropping it into 200 c.c. of precipitant containing 16.52 g was washed with 1000 c.c. of distilled water, and the chlorine concentration in the precipitate was measured. Example 3 300 c.c. of an aqueous solution containing 23.06 g of titanium tetrachloride aqueous solution (TiO 2 20 wt%) was prepared, and concentrated aqueous ammonia was added.
10 g of ammonium bicarbonate, and 200 c.c. of precipitant containing 10.261 g of ammonium bicarbonate was added dropwise with stirring to form a precipitate. While stirring this suspended aqueous solution, 300 c.c. of an aqueous solution containing 19.12 g of lead nitrate was added dropwise to obtain a precipitate containing lead and titanium. After filtering, the precipitate was washed with 1000 c.c. of distilled water, and the chlorine concentration in the precipitate was measured. Comparative Example 3 The same amount of titanium tetrachloride aqueous solution as in Example 3 was dropped into 200 c.c. of precipitant containing 20 g of concentrated ammonia water,
The same amount of lead nitrate aqueous solution as in Example 3 was added dropwise to this,
The obtained precipitate was washed with 1000 c.c. of distilled water, and the chlorine concentration in the precipitate was measured. Example 4 300 c.c. of an aqueous solution containing 11.53 g of titanium tetrachloride aqueous solution (TiO 2 20 wt%) and 7.714 g of zirconium oxynitrate dihydrate was prepared, and added to 150 c.c. of a precipitant containing 10 g of concentrated aqueous ammonia. It was added dropwise with stirring to form a precipitate. While stirring this suspended aqueous solution, 50 c.c. of an aqueous solution containing 10.489 g of ammonium bicarbonate was added, and then 300 c.c. of an aqueous solution containing 19.12 g of lead nitrate was added dropwise. zirconium,
A precipitate containing titanium was obtained. Distilled water after filtration 1000c.c.
The precipitate was washed with water and the chlorine concentration in the precipitate was measured. Comparative Example 4 The same amount of titanium tetrachloride and zirconium oxynitrate aqueous solution as in Example 4 was dropped into 200 c.c. of precipitant containing 20 g of concentrated ammonia water, and the same amount of lead nitrate aqueous solution as in Example 4 was added dropwise thereto. and soak the resulting precipitate in distilled water.
It was washed with water at 1000 c.c., and the chlorine concentration in the precipitate was measured. Example 5 Titanium tetrachloride aqueous solution (TiO 2 20wt%) 8.807g,
Aqueous solution containing 1.54 g of barium chloride dihydrate
300 c.c. was prepared and added dropwise to 200 c.c. of a precipitant containing 11.97 g of ammonium bicarbonate and 15 g of concentrated aqueous ammonia while stirring to form a precipitate. While stirring this suspended aqueous solution, 16.90 g of lead nitrate was added to it.
300 c.c. of an aqueous solution containing 2.46 g of lanthanum nitrate hexahydrate and 10.94 g of zirconium oxynitrate dihydrate was dropped to obtain a precipitate containing lead, lanthanum, barium, zirconium, and titanium. After filtering, distilled water
It was washed with water at 1000 c.c., and the chlorine concentration in the precipitate was measured. Comparative Example 5 The same amount of titanium tetrachloride and barium chloride aqueous solution as in Example 5 was added to a precipitant containing 30 g of concentrated ammonia water.
200 c.c., and the same amount of lead nitrate as in Example 5 was added to this.
Lanthanum nitrate and zirconium oxynitrate aqueous solution were added dropwise, and the resulting precipitate was washed with 1000 c.c. of distilled water.
The chlorine concentration in the precipitate was measured.

【表】 前記実施例1及び比較例1に示した様にCO3
Pbモル比1.1以下では、沈殿物中の塩素が残留し
やすく、除去のためには、多量の洗浄水と時間が
必要となり、経済的でない事は、明らかであると
ともに、焼結が悪く、透光性も低い焼結体しか得
られない。
[Table] As shown in Example 1 and Comparative Example 1, CO 3 /
If the Pb molar ratio is less than 1.1, chlorine in the precipitate tends to remain, and removal requires a large amount of washing water and time, which is obviously not economical, and also causes poor sintering and transparency. Only sintered bodies with low optical properties can be obtained.

Claims (1)

【特許請求の範囲】[Claims] 1 水溶性塩化物を少なくとも一原料として使用
し、鉛を含むペロブスカイト型化合物を製造する
方法に於て、水溶性鉛化合物と炭酸または炭酸ア
ルカリとをCO3/Pb(モル比)1.1以上で反応さ
せ、沈殿物を生成せしめた後、塩素を含む他の化
合物を水酸化物として沈殿させるか、または、少
なくとも一化合物は塩素を含む、鉛化合物以外の
他の化合物を水酸化物として沈殿せしめた後、こ
の沈殿物を含む溶液中で、鉛化合物と炭酸または
炭酸アルカリとをCO3/Pb(モル比)1.1以上で反
応させ、沈殿物を生成せしめることからなる鉛を
含むペロブスカイト型化合物の製造方法。
1 In a method for producing a perovskite compound containing lead using a water-soluble chloride as at least one raw material, a water-soluble lead compound and carbonic acid or an alkali carbonate are reacted at a CO 3 /Pb (molar ratio) of 1.1 or more. or precipitate other compounds containing chlorine as hydroxides, or precipitate other compounds other than lead compounds, at least one of which contains chlorine, after forming a precipitate. After that, in a solution containing this precipitate, a lead compound is reacted with carbonic acid or an alkali carbonate at a CO 3 /Pb (molar ratio) of 1.1 or more to produce a precipitate, thereby producing a perovskite-type compound containing lead. Method.
JP8747486A 1986-04-15 1986-04-15 Production of perovskite-type compound containing lead Granted JPS62246820A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8747486A JPS62246820A (en) 1986-04-15 1986-04-15 Production of perovskite-type compound containing lead

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8747486A JPS62246820A (en) 1986-04-15 1986-04-15 Production of perovskite-type compound containing lead

Publications (2)

Publication Number Publication Date
JPS62246820A JPS62246820A (en) 1987-10-28
JPH0329007B2 true JPH0329007B2 (en) 1991-04-22

Family

ID=13915915

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8747486A Granted JPS62246820A (en) 1986-04-15 1986-04-15 Production of perovskite-type compound containing lead

Country Status (1)

Country Link
JP (1) JPS62246820A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6686444B2 (en) 2016-01-07 2020-04-22 株式会社リコー PZT film laminated structure, liquid ejection head, liquid ejection unit, device for ejecting liquid, and method for manufacturing PZT film laminated structure

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6236023A (en) * 1985-08-06 1987-02-17 Ube Ind Ltd Production of calcined powder of easily sinterable perovskite

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6236023A (en) * 1985-08-06 1987-02-17 Ube Ind Ltd Production of calcined powder of easily sinterable perovskite

Also Published As

Publication number Publication date
JPS62246820A (en) 1987-10-28

Similar Documents

Publication Publication Date Title
Kutty et al. Direct precipitation of lead zirconate titanate by the hydrothermal method
JPH0345025B2 (en)
JPS6214489B2 (en)
JPS6214490B2 (en)
JPH0159967B2 (en)
JPH0246531B2 (en)
JPH0329007B2 (en)
JPS63151672A (en) Manufacture of lead zirconate titanate base piezoelectric ceramic
JPH0210089B2 (en)
JPS6363511B2 (en)
JP2767584B2 (en) Method for producing fine perovskite ceramic powder
JPH0818870B2 (en) Method for manufacturing lead zirconate titanate-based piezoelectric ceramic
JPH0210091B2 (en)
JPH01294527A (en) Production of metallic oxide of perovskite type of abo3 type
JP2981553B1 (en) Spinel manufacturing method
JPH0159205B2 (en)
JPH013019A (en) Method for producing perovskite ceramic fine powder
JP2865975B2 (en) Method for producing lead perovski type compound
JP2866416B2 (en) Method for producing perovskite-type composite oxide powder
JPS6284B2 (en)
JPS6259529A (en) Production of powdery raw material of easily sinterable titanium-containing perovskite and solid solution thereof
JPH01122907A (en) Production of perovskite oxide powder
JPH0416408B2 (en)
JPH01164709A (en) Production of composite oxide precursor
JPS6363512B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term