JPH03289373A - Linear motor and method of forming linear motor - Google Patents

Linear motor and method of forming linear motor

Info

Publication number
JPH03289373A
JPH03289373A JP2088921A JP8892190A JPH03289373A JP H03289373 A JPH03289373 A JP H03289373A JP 2088921 A JP2088921 A JP 2088921A JP 8892190 A JP8892190 A JP 8892190A JP H03289373 A JPH03289373 A JP H03289373A
Authority
JP
Japan
Prior art keywords
movable body
electrostrictive element
frictional force
movement
inertial body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2088921A
Other languages
Japanese (ja)
Inventor
Koji Uchikoshi
打越 剛二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nakamichi Corp
Original Assignee
Nakamichi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nakamichi Corp filed Critical Nakamichi Corp
Priority to JP2088921A priority Critical patent/JPH03289373A/en
Publication of JPH03289373A publication Critical patent/JPH03289373A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve efficiency of movement by increasing movement of an inertial body made against a friction force to it when a voltage is applied to expand and contract an electrostrictive element. CONSTITUTION:When a pulse voltage (a) is applied to an electrostrictive element 3, a movable body 1 is moved in a direction shown by arrow A, by a pulling force which is greater than a friction force and obtained from a great force produced at the start of an expansion operation, and is stopped by a pulling force produced at the end of the expansion operation. Since at the following gradual shrinkage of the electrostrictive element 3, movement of the movable body 1 is stopped by a friction force, an inertia body 2 moves as being pulled by the movable body 1. Moreover, when a pulse b of a drive voltage signal s2 is input to an electrostrictive element 23, the movable body 1 is moved in a direction shown by arrow B, by a reverse effect.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、リニアモータに関し、特に電歪素子を用いた
りニアモータに関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a linear motor, and particularly to a linear motor using an electrostrictive element.

(従来の技術) 第8図に従来提唱されているこの種のりニアモータの原
理図を示す。
(Prior Art) FIG. 8 shows a principle diagram of this type of linear motor that has been proposed in the past.

同図中、質量m□の可動体21は、載置面24上に置か
れ、これ等の間には適当な摩擦力が生じて静止状態にな
っているものとする。質量m2の慣性体22は、電歪素
子23を介して可動体21に取付けられるが、載置面2
4との間には適当な隙間を設けて摩擦力が生しないよう
に構成されている。
In the figure, it is assumed that a movable body 21 having a mass m□ is placed on a mounting surface 24, and a suitable frictional force is generated between them and the movable body 21 is in a stationary state. The inertial body 22 with a mass m2 is attached to the movable body 21 via the electrostrictive element 23, but the mounting surface 2
4, an appropriate gap is provided so that no frictional force is generated.

この状態で第8図(b)に示す翻動電圧信号s2の鋸波
状の電圧パルスaを電歪素子23に印加すると、電歪素
子はこれに応じて矢印A、B方向への急激な伸張と緩や
かな収縮を繰り返す。この伸張の開始時に可動体21と
慣性体22は互いに離間する方向に等しい大きな力C以
下、斥力と称す)を受けるため、可動体21は摩擦力に
打ち勝ってA方向に移動する。また、伸張の終了時には
、可動体21と慣性体22は互いに近接する方向に等し
い力(以下、引力と称す)を受けるため、可動体21は
この引力と摩擦力によりその移動が停止される。一方、
これ等過渡時以外の電歪素子23の収縮時には特に大き
な力が発生しないため、摩擦力を受けない慣性体22が
可動体21に引き寄せられる。従って、第8図(b)に
示される鋸波状のパルスaからなる駆動電圧信号S1が
印加される間、可動体21はA方向に移動する。
In this state, when a sawtooth voltage pulse a of the oscillation voltage signal s2 shown in FIG. 8(b) is applied to the electrostrictive element 23, the electrostrictive element responds with rapid expansion in the directions of arrows A and B. Repeated slow contractions. At the start of this extension, the movable body 21 and the inertial body 22 receive an equal and large force C or less (referred to as a repulsive force) in the direction of separating them from each other, so the movable body 21 overcomes the frictional force and moves in the A direction. Furthermore, at the end of the extension, the movable body 21 and the inertial body 22 receive an equal force (hereinafter referred to as gravitational force) in the direction in which they approach each other, so the movement of the movable body 21 is stopped by this gravitational force and frictional force. on the other hand,
Since no particularly large force is generated when the electrostrictive element 23 contracts other than during these transient times, the inertial body 22, which is not subject to frictional force, is attracted to the movable body 21. Therefore, the movable body 21 moves in the direction A while the drive voltage signal S1 consisting of the sawtooth pulse a shown in FIG. 8(b) is applied.

逆に、第8図(b)に示す駆動電圧信号S2の鋸波状の
電圧パルスbを電歪素子23に印加すると、上記した作
用と逆の作用により可動体21はB方向に移動すること
になる。
Conversely, when the sawtooth voltage pulse b of the drive voltage signal S2 shown in FIG. 8(b) is applied to the electrostrictive element 23, the movable body 21 moves in the direction B due to an action opposite to the above-described action. Become.

次に、後述する各条件での移動の様子をシュミレーショ
ンにより演算した結果を示す。
Next, we will show the results of simulations of movement under various conditions, which will be described later.

第3図乃至第7図において、Po、 P、がそれぞれ可
動体21.慣性体22の各変位状態を示し。
In FIGS. 3 to 7, Po and P are movable bodies 21. Each displacement state of the inertial body 22 is shown.

xl、 X2が可動体21.慣性体22の各変位量を示
す。また、各図の矢印A、Hの方向は第8図(a)の矢
印A、Hの方向にそれぞれ対応し、駆動電圧信号S2は
電歪素子23に印加する最大波高値Vmの鋸波電圧を示
す。
xl, X2 is the movable body 21. Each displacement amount of the inertial body 22 is shown. Further, the directions of arrows A and H in each figure correspond to the directions of arrows A and H in FIG. shows.

第3図の場合における諸条件を以下に示す。Conditions in the case of FIG. 3 are shown below.

可動体21の質量 m、 =0.006 kg可動体2
1の動摩擦力fv□=0.2 Nにュートン)可動体2
1の静摩擦力fs1==1.2・fv1N慣性体22の
質量 m2=0.ool kg慣性体22の動摩擦力f
v2=0 慣性体22の静摩擦力fs、=0 電歪素子23のバネ定数σ =5.68X107N/m
電歪素子23の粘性係数p  =120 N’s/m電
歪素子23の変位係数v  =0.15μm/V・・・
・・・(1) 更に駆動電圧信号s2は、その最大波高値Vm、及び周
期Tをそれぞれ Vm=3.5V 周期T=30μS に設定しである。
Mass of movable body 21 m, =0.006 kg movable body 2
1 dynamic friction force fv□ = 0.2 N Newton) Movable body 2
1 static friction force fs1==1.2・fv1N Mass of inertial body 22 m2=0. ool kg Dynamic friction force f of the inertial body 22
v2=0 Static friction force fs of inertial body 22, =0 Spring constant σ of electrostrictive element 23 =5.68X107N/m
Viscosity coefficient p of electrostrictive element 23 = 120 N's/m Displacement coefficient v of electrostrictive element 23 = 0.15 μm/V...
(1) Furthermore, the maximum peak value Vm and period T of the drive voltage signal s2 are set to Vm=3.5V and period T=30 μS, respectively.

この場合、可動体21の摩擦力が小さいため、駆動電圧
信号s2のパルスが終了した後も所定時間その移動を続
ける。このような現象は、l!動電圧信号S2によって
可動体21の位置制御を行なうような場合好ましくない
。従って、駆動電圧信号s2のパルスが終了した時点で
速やかに可動体21の移動を停止させるべく、例えば第
8図(a)に点線で示すような、アーム支持軸252、
作用アーム25□、ローラ251.吸引バネ254等か
らなる摩擦付与手段25を設け、可動体21の摩擦力を
増加する方法が考えられる。この摩擦付与手段25は、
可動体21を載置面24に押し付ける作用をし、摩擦力
の増加のみに寄与する。
In this case, since the frictional force of the movable body 21 is small, the movable body 21 continues to move for a predetermined period of time even after the pulse of the drive voltage signal s2 ends. This phenomenon is l! It is not preferable to control the position of the movable body 21 using the dynamic voltage signal S2. Therefore, in order to immediately stop the movement of the movable body 21 when the pulse of the drive voltage signal s2 ends, the arm support shaft 252, for example, as shown by the dotted line in FIG. 8(a),
Working arm 25□, roller 251. A possible method is to increase the frictional force of the movable body 21 by providing a friction applying means 25 such as a suction spring 254. This friction applying means 25 is
It acts to press the movable body 21 against the mounting surface 24 and contributes only to an increase in frictional force.

これ等の方法により上記諸条件(1)の可動体21の動
摩擦力fv、を6Nにした時の移動の様子を第4図に示
す。
FIG. 4 shows the state of movement when the dynamic frictional force fv of the movable body 21 under the above conditions (1) is set to 6N using these methods.

この場合、駆動電圧信号s2のパルスaを入力すると、
電歪素子23の伸張開始時に発生する大きな斥力により
、可動体21は摩擦力より大きな矢印A方向の力を受け
て同方向に移動する。しかし、この時の移動量は可動体
21と慣性体22の質量の比に関係し、可動体21の比
が小さいほどこの時の斥力による移動量は大きくなる。
In this case, when pulse a of drive voltage signal s2 is input,
Due to the large repulsive force generated when the electrostrictive element 23 starts to expand, the movable body 21 receives a force in the direction of arrow A that is greater than the frictional force and moves in the same direction. However, the amount of movement at this time is related to the ratio of the masses of the movable body 21 and the inertial body 22, and the smaller the ratio of the movable body 21, the greater the amount of movement due to the repulsive force at this time.

そして伸張終了時に発生する引力により可動体21の移
動は停止し、続く電歪素子23の収縮時には、摩擦力に
よりその移動が阻止されるため慣性体22が可動体21
に引き寄せられる如く移動する。以後、パルスaが発生
する毎にこれ等の動きが繰り返されるが、同図ではパル
スが終了した時点で慣性体22に減衰振動が発生してい
る。
Then, the movement of the movable body 21 is stopped due to the attractive force generated at the end of the extension, and when the electrostrictive element 23 subsequently contracts, the movement is blocked by the frictional force, so that the inertial body 22
Move as if being drawn to. Thereafter, these movements are repeated every time the pulse a is generated, but in the figure, damped vibration is generated in the inertial body 22 at the time the pulse ends.

尚、電歪素子23力埴区動電圧信号s2のパルスしを入
力すると、逆の作用により可動体21は矢印B方向に移
動する。
Note that when a pulse of the dynamic voltage signal s2 is input to the electrostrictive element 23, the movable body 21 moves in the direction of arrow B due to the opposite effect.

第5図は、この減衰振動を抑えるべく慣性体22に適当
な動摩擦力、例えばfv2=INを付与した時の移動の
様子を示す。このように慣性体22に適当な摩擦力を付
与することにより余分な動きを抑えることが出来る。
FIG. 5 shows how the inertial body 22 moves when an appropriate dynamic friction force, for example fv2=IN, is applied to suppress this damped vibration. By applying an appropriate frictional force to the inertial body 22 in this manner, excessive movement can be suppressed.

(発明が解決しようとする問題点) 摩擦力の大きい方を可動体、摩擦力の小さい方を慣性体
と定義したとき、−殻内に可動体のほうが慣性体よりそ
の質量が大きく設定されているが、本発明の目的は、こ
れ等の一般的な方法より安定で、且つ移動効率の優れた
りニアモータを提供することにある。
(Problem to be solved by the invention) When we define the one with a larger frictional force as a movable body and the one with a smaller frictional force as an inertial body, - the mass of the movable body is set larger than that of the inertial body within the shell. However, an object of the present invention is to provide a near motor that is more stable and has better moving efficiency than these general methods.

(問題点を解決するための手段) l)印加される電圧に応じて伸縮する電歪素子と、該電
歪素子の伸縮する方向において、該電歪素子の両端に一
体的に取付けられた質量の異なる第1と第2の慣性体と
、 質量の小さい前記第1の慣性体に作用することにより、
該第1の慣性体に生じる摩擦力を大きくする摩擦力増加
手段とからなる。
(Means for solving the problem) l) An electrostrictive element that expands and contracts according to an applied voltage, and a mass that is integrally attached to both ends of the electrostrictive element in the direction in which the electrostrictive element expands and contracts. By acting on the first and second inertia bodies having different mass and the first inertia body having a small mass,
and friction force increasing means for increasing the friction force generated on the first inertial body.

2)リニアモータの形成方法が、印加される電圧に応じ
て伸縮する電歪素子の伸縮する方向において、該電歪素
子の一端に作用する第1の慣性を他端側に作用する第2
の慣性より小さく設定し、また前記電歪素子の伸縮に伴
って発生する摩擦力のうち、前記一端側に作用する摩擦
力f、と前記他端側に作用する摩擦力f2の関係が、 f工>f2≧0 となるようにする。
2) A method for forming a linear motor is such that in the direction of expansion and contraction of an electrostrictive element that expands and contracts in response to an applied voltage, a first inertia acting on one end of the electrostrictive element is replaced by a second inertia acting on the other end of the electrostrictive element.
Among the frictional forces generated as the electrostrictive element expands and contracts, the relationship between the frictional force f acting on the one end side and the frictional force f2 acting on the other end side is: Make sure that f2>f2≧0.

(作用) 前記電歪素子に、これを伸縮駆動すべく電圧を印加した
とき、前記第1の慣性体がその摩擦力にうち勝って移動
する時の移動量を大きくする。
(Function) When a voltage is applied to the electrostrictive element to cause it to expand and contract, the first inertial body overcomes the frictional force and increases the amount of movement.

(実施例) 先ず本発明の詳細な説明するため、第8図(a)の可動
体21の質量m0が慣性体22の質量より小さく、また
可動体21の摩擦力が慣性体22の摩擦力より大きく設
定された場合を想定してみる。
(Example) First, to explain the present invention in detail, the mass m0 of the movable body 21 in FIG. 8(a) is smaller than the mass of the inertial body 22, and the frictional force of the movable body 21 is equal to Let's assume a case where it is set larger.

シュミレーションによれば、この場合の各移動の様子は
、以下の諸条件のもとに第6図に示すものとなる。
According to the simulation, the state of each movement in this case is as shown in FIG. 6 under the following conditions.

可動体21の質量 m、=o、ool kg可動体21
の動摩擦力fv□=6Nにュートン)可動体21の静摩
擦力fs□=1.2・fv1N慣性体22の質量 m2
=0.006 kg慣性体22の動摩擦力fν2=0 慣性体22の静摩擦力fs2=0 (2) 尚、電歪素子23の各特性は前記(1)の条件と同じと
する。
Mass of movable body 21 m, = o, ool kg movable body 21
Dynamic frictional force fv□=6N in Newton) Static frictional force of movable body 21 fs□=1.2・fv1N Mass of inertial body 22 m2
=0.006 kg Dynamic frictional force fν2 of the inertial body 22 = 0 Static frictional force fs2 of the inertial body 22 = 0 (2) It is assumed that each characteristic of the electrostrictive element 23 is the same as the condition in (1) above.

この場合、電歪素子23に印加する駆動電圧信号s2の
パルス波形及びその波高値Vmが第4図の場合と同じに
も拘らず、可動体21の移動量が大幅に伸びることがわ
かる。この場合、電歪素子23にパルスaの電圧が印加
されると、その伸張開始時に発生する大きな斥力により
、可動体21は摩擦力より大きい矢印A方向の力を受け
て同方向に移動し、そして伸張終了時に発生する引力に
より可動体21の移動は停止する。そして続く電歪素子
23の緩やかな収縮時には、摩擦力により可動体21の
移動が阻止されるため慣性体22が可動体21に引き寄
せられる如く移動する。尚。
In this case, although the pulse waveform of the drive voltage signal s2 applied to the electrostrictive element 23 and its peak value Vm are the same as in the case of FIG. 4, it can be seen that the amount of movement of the movable body 21 increases significantly. In this case, when the voltage of pulse a is applied to the electrostrictive element 23, the movable body 21 receives a force in the direction of arrow A that is greater than the frictional force due to the large repulsive force generated at the start of its extension, and moves in the same direction. The movement of the movable body 21 is then stopped due to the attractive force generated at the end of the extension. Then, when the electrostrictive element 23 gradually contracts, the movement of the movable body 21 is prevented by the frictional force, so that the inertial body 22 moves as if attracted to the movable body 21. still.

上記斥力による可動体21の移動量は、可動体21と慣
性体22の質量の比に関係するが、可動体21の比が小
さく設定されてされているために前記第4図の場合より
大きくなる。以後、開動電圧信号s2のパルスaが発生
する毎にこれ等の動きが繰り返されるが、この場合パル
スaが終了した時点で慣性体22に減衰振動が発生して
いる。
The amount of movement of the movable body 21 due to the repulsive force is related to the ratio of the masses of the movable body 21 and the inertial body 22, but because the ratio of the movable body 21 is set small, it is larger than in the case of FIG. 4. Become. Thereafter, these movements are repeated every time the pulse a of the opening voltage signal s2 is generated, but in this case, damped vibration has occurred in the inertial body 22 at the time the pulse a ends.

第7図は、この減衰振動を抑えるべく慣性体22に適当
な動摩擦力fν2=INを付与した時の様子を示す。こ
のように慣性体22に適当な摩擦力を付与することによ
り余分な動きを抑えることが出来る。
FIG. 7 shows the situation when an appropriate dynamic frictional force fν2=IN is applied to the inertial body 22 in order to suppress this damped vibration. By applying an appropriate frictional force to the inertial body 22 in this manner, excessive movement can be suppressed.

尚、電歪素子23が開動電圧信号s2のパルスbを入力
した場合、逆の作用により可動体21は矢印B方向に移
動する。
Note that when the electrostrictive element 23 receives the pulse b of the opening voltage signal s2, the movable body 21 moves in the direction of arrow B due to the opposite effect.

第1図は、上記原理説明に基づいてなされた本発明の一
実施例を示す構成図で、同図(a)がその上面図、同図
(b)が正面図である。
FIG. 1 is a block diagram showing an embodiment of the present invention based on the above explanation of the principle, with FIG. 1(a) being a top view and FIG. 1(b) being a front view.

図中、1,2はそれぞれ可動体及び慣性体を示し、これ
等はその伸縮方向が中心線1方向にある電歪素子3を介
して一体的に結合されている。更に慣性体2は、その重
心が可動体1の重心と略−致するように可動体1を取り
囲むように形成されている。また可動体1と慣性体2間
には、電歪素子3の使用条件に適するようこれに適当な
押圧力を与えるべく圧縮された状態のバネ6が懸けられ
ている。更に、以上の如く形成された移動体上皇(塗り
つぶし部)は、これが載置面11上に置かれたとき、可
動体1の下面が載置面11と対接した状態に、また慣性
体2と載置面間が離間した状態になるよう形成されてい
る。
In the figure, 1 and 2 indicate a movable body and an inertial body, respectively, and these are integrally coupled via an electrostrictive element 3 whose expansion and contraction direction is in the direction of the center line 1. Further, the inertial body 2 is formed to surround the movable body 1 so that its center of gravity substantially coincides with the center of gravity of the movable body 1. Further, a compressed spring 6 is suspended between the movable body 1 and the inertial body 2 in order to apply an appropriate pressing force to the electrostrictive element 3 in order to suit the usage conditions of the electrostrictive element 3. Furthermore, when the movable body 1 (filled part) formed as described above is placed on the mounting surface 11, the lower surface of the movable body 1 is in contact with the mounting surface 11, and the inertial body 2 is in contact with the mounting surface 11. and the mounting surface are spaced apart from each other.

一方、可動体の上面を押圧する回動アーム7は、載置面
11から植立する支柱8にその一端が回動自在に保持さ
れ、その他端にローラ7、を回転自在に保持している。
On the other hand, the rotating arm 7 that presses the upper surface of the movable body is rotatably held at one end by a support 8 raised from the mounting surface 11, and rotatably holds a roller 7 at the other end. .

また回動アーム7は、これと載置面間に伸張した状態で
懸けられたバネ9により矢印C方向に偏倚されている。
Further, the rotating arm 7 is biased in the direction of arrow C by a spring 9 stretched between the rotating arm 7 and the mounting surface.

以上の如く構成された摩擦増加手段により、可動体1の
下面と載置面11間に発生する摩擦力は増加し、その強
さはバネ9の張力によって適当に設定可能となる。
The friction increasing means configured as described above increases the frictional force generated between the lower surface of the movable body 1 and the mounting surface 11, and its strength can be appropriately set by the tension of the spring 9.

以上の如く構成されたりニアモータにおいて、諸条件を
以下の如く、 可動体1の質量 m、=0.OOl kg可動体lの動
摩擦力fv1=6Nにュートン)可動体1の静摩擦力f
 sx =1−2・f vx N慣性体2の質量 m2
=0.006 kg慣性体2の動摩擦力fv2=0 慣性体2の静摩擦力fs2=0 電歪素子3のバネ定数a  =5.68xlO’ No
va電歪素子3の粘性係数p  =12Of?s/++
+電歪素子3の変位係数ツ −0,15μm/V設定し
、脈波電圧発生手段13により電歪素子3の電圧印加端
子4.5間に第6図に示す最大波高値Vmが3.5v、
周期Tが30μSの鋸波状の駆動電圧信号s2を印加す
ることにより、可動体1.及び慣性体2の各変位量は、
それぞれ同図にPユ、P、で示される状態となる。
In the near motor configured as above, the conditions are as follows: Mass of movable body 1, m, = 0. OOl kg Dynamic friction force of movable body 1 fv1 = 6N Newton) Static friction force of movable body 1 f
sx = 1-2・f vx N Mass of inertial body 2 m2
= 0.006 kg Dynamic frictional force fv2 of inertial body 2 = 0 Static frictional force fs2 of inertial body 2 = 0 Spring constant a of electrostrictive element 3 = 5.68xlO' No
Viscosity coefficient p of va electrostrictive element 3 = 12Of? s/++
+The displacement coefficient of the electrostrictive element 3 is set to -0.15 μm/V, and the maximum wave height value Vm shown in FIG. 5v,
By applying a sawtooth drive voltage signal s2 with a period T of 30 μS, the movable body 1. And each displacement amount of the inertial body 2 is,
The states are respectively indicated by Pyu and P in the figure.

また第5図で説明した効果、即ち駆動電圧信号S2のパ
ルスが終了した後の慣性体2の余分な減衰振動を抑える
ために、慣性体2においてもその下面にゴム12等を貼
付し、又は直接その下面を載置面と対接させるなどして
適当な動摩擦力fv2が得られるように構成してもよい
Further, in order to suppress the effect explained in FIG. 5, that is, the extra damped vibration of the inertial body 2 after the pulse of the drive voltage signal S2 ends, a rubber 12 or the like is attached to the lower surface of the inertial body 2, or It may also be configured such that an appropriate dynamic frictional force fv2 can be obtained by directly bringing its lower surface into contact with the mounting surface.

第2図は、本発明のりニアモータを磁気記録再生装置の
磁気ヘットのアジマス調整装置に応用した例を示すが、
第1図と共通する部分は同符号を付してその説明を省略
する。
FIG. 2 shows an example in which the linear motor of the present invention is applied to an azimuth adjustment device for a magnetic head of a magnetic recording and reproducing device.
Components common to those in FIG. 1 are designated by the same reference numerals and their explanations will be omitted.

同図の可動体1″の上面は、載置面11に対して所定の
傾斜角θとなるように形成され、また回動アーム7′に
は、可動体Pが基準位置にあるとき、回動アーム7″の
回転軸を通る垂直線mとギャップが平行状態となるよう
に磁気ヘット14が載置されている。また、磁気記録再
生装置が動作状態のとき、磁気ヘッド14のテープ対接
面に対して磁気テープ15がm接した状態で矢印B方向
に移動するものとする。以上の構成において、電歪素子
3に所定の駆動電圧信号s2を印加して移動体10をA
、B方向に移動すると、回動アーム7′が回動して磁気
ヘッド14のアジマスを調整することが出来る。
The upper surface of the movable body 1'' in the figure is formed to form a predetermined inclination angle θ with respect to the mounting surface 11, and the rotary arm 7' has a rotary arm 7' that rotates when the movable body P is at the reference position. The magnetic head 14 is placed so that the gap is parallel to a vertical line m passing through the rotation axis of the movable arm 7''. Further, when the magnetic recording/reproducing apparatus is in operation, it is assumed that the magnetic tape 15 moves in the direction of arrow B with the magnetic tape 15 in m contact with the tape-contacting surface of the magnetic head 14. In the above configuration, by applying a predetermined drive voltage signal s2 to the electrostrictive element 3, the moving body 10 is
, B, the rotating arm 7' rotates and the azimuth of the magnetic head 14 can be adjusted.

但し、この場合、回動アーム7′とこれと一体的に形成
された磁気ヘッド14の質量が影響し、可動体1″の質
量m□、及び摩擦力がその移動方向に応して実質上変化
することを考慮する必要があるが、傾斜角Oが十分小さ
ければこの影響は無視できる。
However, in this case, the mass of the rotating arm 7' and the magnetic head 14 formed integrally therewith is affected, and the mass m of the movable body 1'' and the frictional force are substantially reduced depending on the direction of movement thereof. Although it is necessary to take this change into account, this effect can be ignored if the inclination angle O is sufficiently small.

以上、本発明の一構成例、及び一応用例を示したが、本
発明は、これ等の実施例に限定されるものではなく種々
の態様を取りえることは明らかである。
Although one configuration example and one application example of the present invention have been shown above, it is clear that the present invention is not limited to these embodiments and can take various forms.

(発明の効果) 本発明によれば、電歪素子に印加する駆動電圧のtパル
ス当りの移動量が従来のものに比べて大きく、且つパル
スの終了時に直ちにその移動が停止するりニアモータを
提供できるため、安定した動作が必要なサーボ制御等に
用いて好適なものとなる。
(Effects of the Invention) According to the present invention, a near motor is provided in which the amount of movement per t pulse of the drive voltage applied to the electrostrictive element is larger than that of the conventional one, and the movement stops immediately at the end of the pulse. Therefore, it is suitable for use in servo control and the like that require stable operation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例のりニアモータの構成図、第
2図は本発明の他の実施例のりニアモータの構成図、第
3図乃至第7図はそれぞれ本発明の説明に供する図、第
8図は従来例を示す図である。 1・・・可動体、2・・・慣性体、3・・・電歪素子、
6・・・バネ、7・・・回動アーム、8・・支柱、9・
・・バネ、よ立・・・移動体、13・・・脈波電圧発生
手段、14・・・磁気ヘッド、15・・・磁気テープ。
FIG. 1 is a block diagram of a linear motor according to an embodiment of the present invention, FIG. 2 is a block diagram of a linear motor according to another embodiment of the present invention, and FIGS. 3 to 7 are diagrams for explaining the present invention. FIG. 8 is a diagram showing a conventional example. 1... Movable body, 2... Inertial body, 3... Electrostrictive element,
6... Spring, 7... Rotating arm, 8... Support column, 9...
. . . Spring, standing . . . Moving body, 13 . . . Pulse wave voltage generating means, 14 . . . Magnetic head, 15 . . . Magnetic tape.

Claims (1)

【特許請求の範囲】 1)印加される電圧に応じて伸縮する電歪素子と、該電
歪素子の伸縮する方向において、該電歪素子の両端に一
体的に取付けられた質量の異なる第1と第2の慣性体と
、 質量の小さい前記第1の慣性体に作用することにより、
該第1の慣性体に生じる摩擦力を大きくする摩擦力増加
手段とからなるリニアモータ。 2)印加される電圧に応じて伸縮する電歪素子の伸縮す
る方向において、該電歪素子の一端に作用する第1の慣
性を他端側に作用する第2の慣性より小さく設定し、ま
た前記電歪素子の伸縮に伴って発生する摩擦力のうち、
前記一端側に作用する摩擦力f_1と前記他端側に作用
する摩擦力f_2の関係が、 f_1>f_2≧0 となるようにしたリニアモータの形成方法。
[Scope of Claims] 1) An electrostrictive element that expands and contracts according to an applied voltage, and a first element that has a different mass and is integrally attached to both ends of the electrostrictive element in the direction in which the electrostrictive element expands and contracts. By acting on the second inertial body and the first inertial body having a small mass,
a linear motor comprising a frictional force increasing means for increasing the frictional force generated in the first inertial body. 2) The first inertia acting on one end of the electrostrictive element is set to be smaller than the second inertia acting on the other end in the direction of expansion and contraction of the electrostrictive element that expands and contracts in accordance with the applied voltage, and Among the frictional forces generated as the electrostrictive element expands and contracts,
A method for forming a linear motor, wherein the relationship between the frictional force f_1 acting on the one end side and the frictional force f_2 acting on the other end side is f_1>f_2≧0.
JP2088921A 1990-04-03 1990-04-03 Linear motor and method of forming linear motor Pending JPH03289373A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2088921A JPH03289373A (en) 1990-04-03 1990-04-03 Linear motor and method of forming linear motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2088921A JPH03289373A (en) 1990-04-03 1990-04-03 Linear motor and method of forming linear motor

Publications (1)

Publication Number Publication Date
JPH03289373A true JPH03289373A (en) 1991-12-19

Family

ID=13956381

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2088921A Pending JPH03289373A (en) 1990-04-03 1990-04-03 Linear motor and method of forming linear motor

Country Status (1)

Country Link
JP (1) JPH03289373A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007116619A1 (en) * 2006-04-10 2007-10-18 Panasonic Corporation Piezoelectric drive device, imaging device, and mobile terminal device
JP2007282423A (en) * 2006-04-10 2007-10-25 Matsushita Electric Ind Co Ltd Piezoelectric drive unit, image pickup device, and portable terminal device
JP2007300708A (en) * 2006-04-28 2007-11-15 Matsushita Electric Ind Co Ltd Piezoelectric drive unit, image forming device, and portable terminal device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007116619A1 (en) * 2006-04-10 2007-10-18 Panasonic Corporation Piezoelectric drive device, imaging device, and mobile terminal device
JP2007282423A (en) * 2006-04-10 2007-10-25 Matsushita Electric Ind Co Ltd Piezoelectric drive unit, image pickup device, and portable terminal device
US7929229B2 (en) 2006-04-10 2011-04-19 Panasonic Corporation Piezoelectric actuator device, image pickup unit and mobile terminal apparatus
JP2007300708A (en) * 2006-04-28 2007-11-15 Matsushita Electric Ind Co Ltd Piezoelectric drive unit, image forming device, and portable terminal device

Similar Documents

Publication Publication Date Title
JP2546465B2 (en) Vibration control device for structures
JP3788053B2 (en) Actuator using electromechanical transducer
JPH03289373A (en) Linear motor and method of forming linear motor
JP3454026B2 (en) Driving device using electromechanical transducer
JPH09133179A (en) Variable resistance force unit
CN209919324U (en) Rigid-flexible coupling platform with cylinder type rigidity switching device and motion platform
JPH03289368A (en) Ultrasonic linear motor
JP3586506B2 (en) Drum type frictional resistance variable device
JPH0356738A (en) Vibration controller
JP2538850B2 (en) Vibration control device
JPH0788875B2 (en) Vibration control device
US5686778A (en) Movement device utilizing electromechanical conversion elements and control method therefore
JPH07274543A (en) Driving gear using electromechanical transducer
Cheng et al. Transient vibration analysis of a high-speed feed drive system
JP3582310B2 (en) Driving device using electromechanical transducer
JPH04207982A (en) Micro motion device and moving method employing piezoelectric element producing impact force
JPH07127306A (en) Vibration controller
JP2543161B2 (en) Head drum device of magnetic recording / reproducing apparatus
JPS61148681A (en) Floating head supporting mechanism
JPS63180745A (en) Vibration controller
JPH1082204A (en) Frictional-force control type vibration damper
SE8202031L (en) vibrating device
JPS59187129A (en) Vibration control device
JPS5954238U (en) Vibration control device
JPH0866060A (en) Movement apparatus and its control method