JP3586506B2 - Drum type frictional resistance variable device - Google Patents

Drum type frictional resistance variable device Download PDF

Info

Publication number
JP3586506B2
JP3586506B2 JP32622095A JP32622095A JP3586506B2 JP 3586506 B2 JP3586506 B2 JP 3586506B2 JP 32622095 A JP32622095 A JP 32622095A JP 32622095 A JP32622095 A JP 32622095A JP 3586506 B2 JP3586506 B2 JP 3586506B2
Authority
JP
Japan
Prior art keywords
friction
frictional resistance
screw
pair
worm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP32622095A
Other languages
Japanese (ja)
Other versions
JPH09151624A (en
Inventor
久徳 阿比留
秀秋 原田
潤 平井
元悦 石井
健二 今田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP32622095A priority Critical patent/JP3586506B2/en
Publication of JPH09151624A publication Critical patent/JPH09151624A/en
Application granted granted Critical
Publication of JP3586506B2 publication Critical patent/JP3586506B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Vibration Prevention Devices (AREA)
  • Vibration Dampers (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、例えばビル、高層煙突のような高層構造物に適用される制振装置に関する。
【0002】
【従来の技術】
阪神大震災の例を見るまでもなく、構造物特にビル、高層煙突のような高層構造物に例えば図8に示すように地震力Gが作用すると構造物Cは振動し、その振動変位xは上層になるほど増幅されて大きくなり、構造物に損害を与えるようになる。
【0003】
これに対処するため、最近の高層構造物には各種の制振装置が設置されている。従来、一般に採用されている制振方法には以下に示すものがある。
【0004】
(1)パッシブ制振方法
構造物の適所に摩擦ダンパーや塑性化してエネルギーを吸収する抵抗体を組込んで振動エネルギーを吸収させ、振動を低減する方法である。
【0005】
(2)アクティブ制御方法(A)
構造物の適所にアクチュエータを組込み、地震エネルギーと同等の力を発動して振動を低減する方法である。
【0006】
(3)アクティブ制御方法(B)
構造物の適所にブレース等の構造材を着脱自在に取付け、振動波に応じてブレースを接ぎまたは外して構造物の剛性を変えて共振を避ける方法である。
【0007】
【発明が解決しようとする課題】
ところで前述のような従来の高層構造物での制振手段には次のような不具合点が存在する。
【0008】
即ち、前記(1)の方法(パッシブ制振方法)は、大地震に対しては比較的有効であるが、装置のストロークが制限される。また、中小地震に対しては作動しない場合がある。
【0009】
また、(2)の方法(アクティブ制振方法A)は、制振効果は大きいが、アクチュエータが大型化するほか、停電時における動力の確保に難がある。
【0010】
また、(3)の方法(アクティブ制振方法B)は、特定の振動波が卓越する場合は効果があるが、種々の振動波が混在して作用する地震に対しては効果は小さい。
【0011】
本発明は、上記各不具合点を解消し、二つの架構間に作用する相対振動を振動速度に関係なく効果的に減衰させることを可能とした新たな摩擦抵抗力可変装置を提供することを目的としている。
【0012】
【課題を解決するための手段】
前記目的を達成するための構成として本発明のドラム式摩擦抵抗力可変装置は、相対振動する二つの架構のうちの一方の架構に回動自在に支持された一対のアームの先端にそれぞれ取付けられ、その外周に傾斜摩擦面が形成された摩擦円板と、他方の架構に支持され、その内部に前記摩擦円板の傾斜摩擦面と対応する傾斜摩擦面が形成されると共に、この傾斜摩擦面同士を当接させて、その内部空間に摩擦円板が収納された受台と、傾斜摩擦面同士が当接するように、前記一対の摩擦円板を対称方向に移動させる機構及びその駆動手段と、前記傾斜摩擦面間に発生する摩擦抵抗力を検出する手段と、この摩擦抵抗力が所定値となるように前記駆動手段の出力を制御する手段とで構成されたことを特徴としている。
【0013】
また、前記摩擦円板の移動機構を、この一対の摩擦円板の中央部に内孔を設けてその周縁に左ネジと右ネジを刻設すると共に、両端の外周に、前記内孔周縁の各ネジと係合するネジが刻設された軸に支持されたウォームと、同ウォームと係合し、前記駆動手段によって回転するウォームギヤより成るウォームギヤ機構で構成することも好ましい。
【0014】
さらに、前記摩擦円板の移動機構を、この一対の摩擦円板の中央部に内孔を設けてその周縁に左ネジと右ネジを刻設すると共に、両端の外周に前記内孔周縁の各ネジと係合するネジが刻設された軸と、一端がこの軸と、他端が前記駆動手段とそれぞれ連結されたテコより成るテコ機構で構成することも効果的である。
【0015】
【発明の実施の形態】
以下図面により本発明の好適と思われる実施の形態を実施例1、実施例2として説明する。
【0016】
図1は本発明の第1実施例に係る摩擦抵抗力可変装置の縦断正面図、図2は同装置の側面図である。
【0017】
これらの図において、本発明摩擦抵抗力可変装置(制振装置)は高層構造物等における相対振動する二つの架構即ち架構Aと架構Bとの間に挿設される。
【0018】
架構B側には、一端がプレート10及びピン3を介して架構Bに回動自在に一対のアーム2a,2bが支持されており、該アーム2a,2bの他端には、外周両側面にそれぞれ傾斜摩擦面4c,4dが形成された摩擦円板4a,4bが一体的に設けられ、該摩擦円板の中央部には内孔4e,4fが穿設されている。
【0019】
この内孔4e,4fに面した各周縁にはそれぞれ左ネジと右ネジが刻設されると共に、両端の外周に、前記内孔周縁の各ネジと係合するネジが刻設された軸5に支持されたウォーム7と、該ウォーム7と係合するウォームギヤ6と、該ウォームギヤ6を駆動するモータ9とよりなるウォームギヤ機構を摩擦円板4a,4bの移動機構として配設している。
【0020】
一方架構A側には、内部の壁面に前記摩擦円板4a,4bの摩擦面4c,4dと対応する傾斜した摩擦面8a,8bが形成され、その内部空間に傾斜摩擦面4cと8a及び4dと8bとを当接させた状態で摩擦円板4a,4bを収納した受台8が支持されると共に、前記プレート10と架構Bとの間に挿設され、本装置が発生させる摩擦抵抗力を検出するロードセル15と、この検出値に基づいてモータ9の出力を制御する制御装置16とが配設されており、これら各部材で摩擦抵抗力可変装置が構成される。
【0021】
以下、本実施例装置の作用を説明する。いま、摩擦円板4a,4bの摩擦面4c,4dと、受台8の摩擦面8a,8bとが所定の押付け力で押付けられた状態で装置が架構Aと架構Bとの間に挿設されている。
【0022】
この状態で、地震等の外力を受けて架構AとBとが相対振動すると、一対のアーム2a,2bを介してアーム先端の摩擦円板4a,4bが受台8に対して相対的に回動し、これによって当接する摩擦円板外周の傾斜摩擦面4c,4dと受台側傾斜摩擦面8a,8bとの間に所定の摩擦抵抗力が発生し、架構Aと架構Bとの間の相対振動を減衰させる。
【0023】
この場合、傾斜摩擦面間に発生する上記摩擦抵抗力はロードセル15によって逐一検出され、またこの検出値は制御装置16に送られ、その出力信号に基づいてモータ9が駆動される。
【0024】
そしてモータ9の回転はウォームギヤ6を介してウォーム7に伝達され、軸5を回転させる。
【0025】
すると、内孔周縁のネジ部を介して軸5と係合している一対の摩擦円板4aと4bは互いに対称方向へ移動し、摩擦面4cは摩擦面8aへ、また、摩擦面4dは摩擦面8bへそれぞれ所定の押圧力で押付けられ、こうして発生したその振動に最適な摩擦抵抗力によって架構AとB間の相対振動を精度よく減衰させることができる。
【0026】
図7は両摩擦面接触部の詳細を示したもので、いま、両摩擦面4c,8aの傾斜角をα、軸5による摩擦円板4aの押込み力をPとすると、摩擦面4cと8a間に生ずる押圧力Qは、
Q=P/sinα
で表わされる。
【0027】
また両摩擦面4c,8a間の摩擦係数が一定ならばその間に生ずる摩擦抵抗力Fは押圧力Qに比例するから、傾斜角αを適切に設定することにより、小さな押込み力Pによって大きな摩擦抵抗力Fを得ることができる。
【0028】
また押込み力Pは上記ウォームギヤ機構によって増幅されて出力されるから、小さなモータ出力で充分であり、結局モータ9の出力をロードセル15の検出値に基づいて制御装置16によって適切に制御することにより、最適摩擦抵抗力を精度よく発生させることができる。
【0029】
次に図3、図4により本発明の第2実施例について説明する。図3は第2実施例に係る摩擦抵抗力可変装置の縦断正面図、図3は同側面図である。
【0030】
図示するように、本例の摩擦抵抗力可変装置は、架構Bに支持された一対のアーム2a,2b、摩擦円板4a,4b、軸5及び、架構Aに支持された受台8の各構成並びにその組合せ構造は前記実施例1と同様であり、重複説明は省略する。
【0031】
本実施例では摩擦円板の移動機構として、テコ機構を採用する。
【0032】
即ち、その両端のネジ部を摩擦円板4a,4bの内孔周縁の左ネジ及び右ネジと係合させて内孔4e,4f内に挿着されている軸5にテコ12の一端が取付けられ、そのテコ12の他端はアクチュエータ11と連結されている。
【0033】
なお、前記実施例1同様、プレート10と架構Bとの間にはロードセル15が挿設され、このロードセル15の検出値に基づいてアクチュエータ11の出力を制御する制御装置16が設置されている。
【0034】
本例の摩擦円板の移動機構は、アクチュエータ11を伸縮作動させてテコ12を回動させることにより軸5を回動させるようにしたもので、実施例1同様、軸5とネジ嵌合された摩擦円板4aと4bを互いに対称方向へ移動させ、摩擦面4c,4dを受台8側摩擦面8a,8bへ押圧させる。
【0035】
かくして、摩擦面4c,4dと8a,8b間に発生する摩擦抵抗力がロードセル15によって刻々検出され、この検出値は制御装置16に送られ、その出力信号に基づいてアクチュエータ11の出力が制御され、こうして、最適な摩擦抵抗力を発生させて、架構AとB間の相対振動を精度よく減衰させることができる。
【0036】
また、本例でも、摩擦円板4a,4bの摩擦面4c,4dの受台8側摩擦面8a,8bに対する押込み力はテコ機構によって増幅されるので、小さなアクチュエータ出力で充分であり、実施例1同様最適摩擦抵抗力を精度よく制御することができる。
【0037】
次に、図5、図6は実施例1,2で述べた本発明の摩擦抵抗力可変装置1の適用例を示す。
【0038】
図5は柱23、梁20,22及び壁21とで構成される構造物において、柱23及び梁22との接合が解除された壁21と梁22との間に本発明装置1を挿設したものであり、また、図6は柱23、梁20,22及びブレース24とで構成される構造物において、梁22との接合が解除されたブレース24と梁22との間に本発明装置1を挿設したものであり、本適用例に示すように複数の装置1を各層間に適宜配設することによって構造物の振動を効果的に減衰させることができる。
【0039】
【発明の効果】
以上、詳細に説明したように、本発明の摩擦抵抗力可変装置によると、摩擦円板の移動機構用駆動手段の出力を、摩擦抵抗力の検出値に基づいて制御することにより、装置が発生する摩擦抵抗力を高精度で最適値に制御することができ、これによって、二つの架構間に作用する相対振動を振動速度に関係なく効果的に減衰させることができる。
【0040】
この際、摩擦抵抗力を発生させる二つの摩擦面を傾斜させ、また、移動機構をウォームギヤ機構またはテコ機構で構成したので、小さい駆動手段出力で大きい摩擦抵抗力を得ることができ、これによって摩擦抵抗力を精度よく制御することができる。
【図面の簡単な説明】
【図1】本発明の第1実施例に係る摩擦抵抗力可変装置の縦断正面図である。
【図2】同装置の側面図である。
【図3】本発明の第2実施例に係る摩擦抵抗力可変装置の縦断正面図である。
【図4】同装置の側面図である。
【図5】本発明の第1、第2実施例に係る摩擦抵抗力可変装置の適用例を示す説明図である。
【図6】本発明の第1、第2実施例に係る摩擦抵抗力可変装置の他の適用例を示す説明図である。
【図7】本発明装置の要部の詳細を示す作用説明図である。
【図8】本発明が適用される構造物の地震時等の振動状況を示す説明図である。
【符号の説明】
1 摩擦抵抗力可変装置
2a,2b アーム
3 ピン
4a,4b 摩擦円板
4c,4d 摩擦面
4e,4f 内孔
5 軸(ネジ付軸)
6 ウォームギヤ
7 ウォーム
8 受台
8a,8b 摩擦面
9 モータ
10 プレート
11 アクチュエータ
12 テコ
15 ロードセル
16 制御装置
20,22 梁
21 壁
23 柱
24 ブレース
A,B 架構
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a vibration damping device applied to a high-rise structure such as a building or a high-rise chimney.
[0002]
[Prior art]
Not to mention the example of the Great Hanshin Earthquake, when a seismic force G acts on a structure, especially a building or a high-rise structure such as a high-rise chimney, as shown in FIG. 8, for example, the structure C vibrates, and its vibration displacement x becomes higher. The more they become, the larger they become, and they damage the structure.
[0003]
In order to deal with this, various vibration damping devices are installed in recent high-rise structures. Conventionally, the following vibration control methods are generally employed.
[0004]
(1) Passive vibration damping method This is a method of reducing vibration by incorporating a vibration damper or a resistor that plasticizes and absorbs energy in a proper place in a structure to absorb vibration energy.
[0005]
(2) Active control method (A)
In this method, actuators are installed at appropriate places in a structure, and a force equivalent to seismic energy is activated to reduce vibration.
[0006]
(3) Active control method (B)
In this method, a structural material such as a brace is removably attached to an appropriate position of the structure, and the brace is connected or detached according to the vibration wave to change the rigidity of the structure to avoid resonance.
[0007]
[Problems to be solved by the invention]
By the way, the following problems exist in the conventional vibration damping means for a high-rise structure.
[0008]
That is, the method (1) (passive vibration control method) is relatively effective for a large earthquake, but the stroke of the device is limited. In addition, it may not work for small and medium earthquakes.
[0009]
The method (2) (active vibration suppression method A) has a large vibration damping effect, but has a problem in that the size of the actuator is increased and power is not secured during a power failure.
[0010]
Further, the method (3) (active vibration suppression method B) is effective when a specific vibration wave is dominant, but has a small effect on an earthquake in which various vibration waves coexist.
[0011]
An object of the present invention is to solve the above-mentioned disadvantages and to provide a new frictional resistance variable device capable of effectively attenuating relative vibration acting between two frames regardless of the vibration speed. And
[0012]
[Means for Solving the Problems]
As a configuration for achieving the above object, a drum-type frictional resistance varying device according to the present invention is attached to the ends of a pair of arms rotatably supported on one of two frames that are relatively vibrated. A friction disk having an inclined friction surface formed on the outer periphery thereof, and an inclined friction surface corresponding to the inclined friction surface of the friction disk formed therein, supported by the other frame. And a mechanism for moving the pair of friction disks in a symmetrical direction and a driving means thereof so that the friction table is stored in the inner space of the receiving table and the inclined friction surfaces are brought into contact with each other. A means for detecting a frictional resistance generated between the inclined friction surfaces, and means for controlling an output of the driving means so that the frictional resistance becomes a predetermined value.
[0013]
Also, the friction disk moving mechanism is provided with an inner hole in the center of the pair of friction disks, engraving left and right screws on the periphery thereof, and the outer periphery of both ends, the inner hole peripheral edge is provided. It is also preferable that the worm is configured by a worm supported by a shaft provided with a screw engaged with each screw, and a worm gear mechanism including a worm gear engaged with the worm and rotated by the driving means.
[0014]
Further, the friction disc moving mechanism is provided with an inner hole in the center of the pair of friction discs, engraving left and right screws on the periphery thereof, and each of the inner hole peripheral edges on the outer periphery of both ends. It is also effective to form a lever having a shaft on which a screw engaged with the screw is engraved, one end of which is connected to the shaft, and the other end of which is connected to the driving means.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described as Example 1 and Example 2 with reference to the drawings.
[0016]
FIG. 1 is a longitudinal sectional front view of a frictional resistance varying device according to a first embodiment of the present invention, and FIG. 2 is a side view of the device.
[0017]
In these figures, the frictional resistance varying device (vibration damping device) of the present invention is inserted between two frames, that is, frames A and B, which relatively vibrate in a high-rise structure or the like.
[0018]
On the frame B side, a pair of arms 2a and 2b are rotatably supported at one end by the frame B via a plate 10 and a pin 3. The other ends of the arms 2a and 2b Friction disks 4a and 4b having inclined friction surfaces 4c and 4d, respectively, are provided integrally, and inner holes 4e and 4f are formed in the center of the friction disks.
[0019]
A shaft 5 having left and right screws engraved on the respective peripheral edges facing the inner holes 4e and 4f, and screws engraved on the outer periphery at both ends to engage with the respective screws on the inner hole peripheral edges. A worm gear mechanism comprising a worm 7 supported by the worm, a worm gear 6 engaged with the worm 7, and a motor 9 for driving the worm gear 6 is provided as a moving mechanism for the friction disks 4a and 4b.
[0020]
On the other hand, on the frame A side, inclined friction surfaces 8a and 8b corresponding to the friction surfaces 4c and 4d of the friction disks 4a and 4b are formed on the inner wall surface, and the inclined friction surfaces 4c, 8a and 4d are formed in the internal space. The receiving table 8 containing the friction disks 4a and 4b is supported in a state where the friction disks 4a and 8b are in contact with each other, and is inserted between the plate 10 and the frame B to generate the frictional resistance generated by the apparatus. And a control device 16 for controlling the output of the motor 9 based on the detected value, and these members constitute a frictional resistance varying device.
[0021]
Hereinafter, the operation of the present embodiment will be described. Now, the apparatus is inserted between the frame A and the frame B in a state where the friction surfaces 4c and 4d of the friction disks 4a and 4b and the friction surfaces 8a and 8b of the receiving table 8 are pressed with a predetermined pressing force. Have been.
[0022]
In this state, when the frames A and B are relatively vibrated by an external force such as an earthquake, the friction disks 4a and 4b at the tip of the arms are rotated relatively to the cradle 8 via the pair of arms 2a and 2b. As a result, a predetermined frictional resistance force is generated between the inclined friction surfaces 4c, 4d on the outer periphery of the friction disk and the receiving-side inclined friction surfaces 8a, 8b, whereby the friction between the frame A and the frame B is generated. Damping relative vibration.
[0023]
In this case, the frictional resistance generated between the inclined friction surfaces is detected one by one by the load cell 15, and the detected value is sent to the control device 16, and the motor 9 is driven based on the output signal.
[0024]
The rotation of the motor 9 is transmitted to the worm 7 via the worm gear 6 to rotate the shaft 5.
[0025]
Then, the pair of friction disks 4a and 4b engaged with the shaft 5 via the threaded portion of the inner peripheral edge move in symmetric directions with each other, the friction surface 4c is moved to the friction surface 8a, and the friction surface 4d is moved to the friction surface 8d. Each of the frames A and B is pressed against the friction surface 8b with a predetermined pressing force, and the relative vibration between the frames A and B can be accurately attenuated by the frictional resistance optimum for the generated vibration.
[0026]
FIG. 7 shows the details of the contact portions of both friction surfaces. Assuming that the inclination angle of both friction surfaces 4c and 8a is α and the pushing force of friction disk 4a by shaft 5 is P, friction surfaces 4c and 8a The pressing force Q generated between
Q = P / sinα
Is represented by
[0027]
If the friction coefficient between the two friction surfaces 4c and 8a is constant, the frictional resistance F generated between them is proportional to the pressing force Q. Therefore, by appropriately setting the inclination angle α, a large frictional resistance can be obtained by a small pressing force P. A force F can be obtained.
[0028]
Further, since the pushing force P is amplified and output by the worm gear mechanism, a small motor output is sufficient. In the end, by appropriately controlling the output of the motor 9 by the control device 16 based on the detection value of the load cell 15, Optimal frictional resistance can be generated with high accuracy.
[0029]
Next, a second embodiment of the present invention will be described with reference to FIGS. FIG. 3 is a longitudinal sectional front view of a frictional resistance varying device according to a second embodiment, and FIG. 3 is a side view of the same.
[0030]
As shown in the figure, the frictional resistance varying device of the present example includes a pair of arms 2a and 2b supported by a frame B, friction disks 4a and 4b, a shaft 5, and a receiving table 8 supported by a frame A. The configuration and the combination thereof are the same as those in the first embodiment, and the description thereof will not be repeated.
[0031]
In this embodiment, a lever mechanism is employed as a mechanism for moving the friction disk.
[0032]
That is, one end of the lever 12 is attached to the shaft 5 inserted into the inner holes 4e, 4f by engaging the threaded portions at both ends with the left and right screws on the peripheral edges of the inner holes of the friction disks 4a, 4b. The other end of the lever 12 is connected to the actuator 11.
[0033]
As in the first embodiment, a load cell 15 is inserted between the plate 10 and the frame B, and a control device 16 for controlling the output of the actuator 11 based on the detected value of the load cell 15 is provided.
[0034]
The moving mechanism of the friction disk of the present embodiment is configured to rotate the shaft 5 by rotating the lever 12 by expanding and contracting the actuator 11, and the shaft 5 is screwed to the shaft 5 similarly to the first embodiment. The friction disks 4a and 4b are moved in a symmetrical direction with respect to each other, so that the friction surfaces 4c and 4d are pressed against the cradle 8 side friction surfaces 8a and 8b.
[0035]
Thus, the frictional resistance generated between the friction surfaces 4c, 4d and 8a, 8b is detected every moment by the load cell 15, and the detected value is sent to the control device 16, and the output of the actuator 11 is controlled based on the output signal. Thus, an optimal frictional resistance can be generated, and the relative vibration between the frames A and B can be accurately attenuated.
[0036]
Also in this example, the pushing force of the friction surfaces 4c, 4d of the friction disks 4a, 4b against the friction surfaces 8a, 8b on the receiving table 8 side is amplified by the lever mechanism, so that a small actuator output is sufficient. 1, the optimal frictional resistance can be accurately controlled.
[0037]
Next, FIGS. 5 and 6 show an application example of the frictional resistance varying device 1 of the present invention described in the first and second embodiments.
[0038]
FIG. 5 shows a structure composed of columns 23, beams 20, 22 and wall 21, in which device 1 of the present invention is inserted between wall 21 and beam 22 where the connection with column 23 and beam 22 has been released. FIG. 6 shows an apparatus of the present invention between a brace 24 and a beam 22 in which a connection with the beam 22 has been released in a structure composed of columns 23, beams 20, 22 and a brace 24. The vibration of the structure can be effectively attenuated by appropriately arranging a plurality of devices 1 between the respective layers as shown in this application example.
[0039]
【The invention's effect】
As described in detail above, according to the frictional resistance varying device of the present invention, the output of the driving means for the friction disk moving mechanism is controlled based on the detected value of the frictional resistance, thereby generating the device. It is possible to control the frictional resistance force to an optimum value with high accuracy, and thereby effectively attenuate the relative vibration acting between the two frames regardless of the vibration speed.
[0040]
At this time, the two friction surfaces for generating the frictional resistance are inclined, and the moving mechanism is constituted by a worm gear mechanism or a lever mechanism, so that a large frictional resistance can be obtained with a small driving means output. Resistance can be controlled accurately.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional front view of a frictional resistance varying device according to a first embodiment of the present invention.
FIG. 2 is a side view of the same device.
FIG. 3 is a vertical sectional front view of a frictional resistance varying device according to a second embodiment of the present invention.
FIG. 4 is a side view of the same device.
FIG. 5 is an explanatory view showing an application example of the frictional resistance varying device according to the first and second embodiments of the present invention.
FIG. 6 is an explanatory view showing another application example of the frictional resistance varying device according to the first and second embodiments of the present invention.
FIG. 7 is an operation explanatory view showing details of a main part of the device of the present invention.
FIG. 8 is an explanatory diagram showing a vibration state of a structure to which the present invention is applied at the time of an earthquake or the like.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Variable frictional force 2a, 2b Arm 3 Pin 4a, 4b Friction disk 4c, 4d Friction surface 4e, 4f Inner hole 5 axis (axis with screw)
Reference Signs List 6 worm gear 7 worm 8 cradle 8a, 8b friction surface 9 motor 10 plate 11 actuator 12 lever 15 load cell 16 control device 20, 22 beam 21 wall 23 pillar 24 brace A, B frame

Claims (3)

相対振動する二つの架構のうちの一方の架構に回動自在に支持された一対のアームの先端にそれぞれ取付けられ、その外周に傾斜摩擦面が形成された摩擦円板と、他方の架構に支持され、その内部に前記摩擦円板の傾斜摩擦面と対応する傾斜摩擦面が形成されると共に、この傾斜摩擦面同士を当接させて、その内部空間に摩擦円板が収納された受台と、傾斜摩擦面同士が当接するように、前記一対の摩擦円板を対称方向に移動させる機構及びその駆動手段と、前記傾斜摩擦面間に発生する摩擦抵抗力を検出する手段と、この摩擦抵抗力が所定値となるように前記駆動手段の出力を制御する手段とで構成されたことを特徴とする摩擦抵抗力可変装置。A pair of arms rotatably supported on one of the two frames that are relatively vibrated are attached to the ends of a pair of arms, respectively, and a friction disk having an inclined friction surface formed on the outer periphery thereof and supported on the other frame A tilted friction surface corresponding to the inclined friction surface of the friction disk is formed therein, and the inclined friction surfaces are brought into contact with each other to form a cradle in which the friction disk is stored in the internal space. A mechanism for moving the pair of friction disks in a symmetrical direction so that the inclined friction surfaces come into contact with each other, and a driving means therefor; a means for detecting a frictional resistance generated between the inclined friction surfaces; Means for controlling the output of the driving means so that the force becomes a predetermined value. 前記摩擦円板の移動機構を、この一対の摩擦円板の中央部に内孔を設けてその周縁に左ネジと右ネジを刻設すると共に、両端の外周に、前記内孔周縁の各ネジと係合するネジが刻設された軸に支持されたウォームと、同ウォームと係合し、前記駆動手段によって回転するウォームギヤより成るウォームギヤ機構で構成したことを特徴とする請求項1記載の摩擦抵抗力可変装置。The friction disc moving mechanism is provided with an inner hole in the center of the pair of friction discs, engraving a left screw and a right screw on the peripheral edge thereof. 2. A friction device according to claim 1, further comprising a worm supported by a shaft provided with a screw engaged with said worm, and a worm gear mechanism comprising a worm gear engaged with said worm and rotated by said driving means. Variable resistance device. 前記摩擦円板の移動機構を、この一対の摩擦円板の中央部に内孔を設けてその周縁に左ネジと右ネジを刻設すると共に、両端の外周に前記内孔周縁の各ネジと係合するネジが刻設された軸と、一端がこの軸と、他端が前記駆動手段とそれぞれ連結されたテコより成るテコ機構で構成したことを特徴とする請求項1記載の摩擦抵抗力可変装置。The friction disk moving mechanism is provided with an inner hole at the center of the pair of friction disks, and engraving left and right screws on the periphery thereof, and each screw of the inner hole peripheral edge on the outer periphery of both ends. 2. A frictional resistance according to claim 1, wherein said shaft is provided with a screw on which said screw is engaged, said lever is constituted by a lever having one end connected to said shaft and said lever connected to said drive means at the other end. Variable device.
JP32622095A 1995-11-22 1995-11-22 Drum type frictional resistance variable device Expired - Fee Related JP3586506B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32622095A JP3586506B2 (en) 1995-11-22 1995-11-22 Drum type frictional resistance variable device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32622095A JP3586506B2 (en) 1995-11-22 1995-11-22 Drum type frictional resistance variable device

Publications (2)

Publication Number Publication Date
JPH09151624A JPH09151624A (en) 1997-06-10
JP3586506B2 true JP3586506B2 (en) 2004-11-10

Family

ID=18185336

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32622095A Expired - Fee Related JP3586506B2 (en) 1995-11-22 1995-11-22 Drum type frictional resistance variable device

Country Status (1)

Country Link
JP (1) JP3586506B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220040061A (en) * 2020-09-23 2022-03-30 송지훈 Seismic device for structure using rotational friction amplifying damper

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003042221A (en) * 2001-07-27 2003-02-13 Tomoe Giken:Kk Rotational friction damper
WO2010116779A1 (en) * 2009-03-30 2010-10-14 国立大学法人名古屋大学 Vibration control device for beam frame body
FR2944076B1 (en) * 2009-04-06 2012-09-21 Messier Dowty Sa SELECTIVE EFFORT TRANSMISSION DEVICE, AND A REALIZER USING THE SAME
CN112483574B (en) * 2020-11-17 2023-07-21 东北林业大学 Spiral friction metal damper
WO2024011284A1 (en) * 2022-07-12 2024-01-18 Pring Glen Haydn Relief of instability transfer to non-structural bodies
CN115262792B (en) * 2022-08-04 2023-04-21 湖北工业大学 Civil engineering shock-resistant structure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220040061A (en) * 2020-09-23 2022-03-30 송지훈 Seismic device for structure using rotational friction amplifying damper
KR102433270B1 (en) * 2020-09-23 2022-08-16 송지훈 Seismic device for structure using rotational friction amplifying damper

Also Published As

Publication number Publication date
JPH09151624A (en) 1997-06-10

Similar Documents

Publication Publication Date Title
JP3530301B2 (en) Lever type frictional resistance variable device
JP3586506B2 (en) Drum type frictional resistance variable device
JP3456349B2 (en) Rotary drive using electromechanical transducer
JPH0726785A (en) Vibration suppressing method and device for building
JP3790326B2 (en) Friction damper
JP4021947B2 (en) Friction resistance type braking device
JPH0658006A (en) Damping device
US5245807A (en) Vibration suppressing apparatus for a structure
JP2007132015A (en) Toggle vibration control equipment
US5189331A (en) Vibration wave driven motor
JP3536439B2 (en) Electric switchgear
JPH0734721A (en) Active shock absorber
JP2813319B2 (en) Oscillating force control method for eccentric weight and eccentric weight mechanism for oscillating weight
JPS61277383A (en) Ultrasonic wave motor
JPH0684309A (en) Magnetic head supporting device and controller
JP2662621B2 (en) Friction damper
JPH0738747Y2 (en) Vibration control device when traveling device is stopped
JP2001256762A (en) Disk device
JP2538850B2 (en) Vibration control device
JP2606435B2 (en) Roll blind
JPH0522025B2 (en)
JP3174137B2 (en) Structure damping device
JP4062259B2 (en) Displacement amplification type vibration control structure of detached house building
JP3015951B1 (en) Optical disk drive vibration damping device
JPH01122374A (en) Ultrasonic driving device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040701

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040713

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040809

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070813

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080813

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080813

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090813

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees