JPH03288593A - Treatment of organic waste water - Google Patents

Treatment of organic waste water

Info

Publication number
JPH03288593A
JPH03288593A JP2087422A JP8742290A JPH03288593A JP H03288593 A JPH03288593 A JP H03288593A JP 2087422 A JP2087422 A JP 2087422A JP 8742290 A JP8742290 A JP 8742290A JP H03288593 A JPH03288593 A JP H03288593A
Authority
JP
Japan
Prior art keywords
oxygen
treated water
organic wastewater
dissolved
treated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2087422A
Other languages
Japanese (ja)
Other versions
JPH0630776B2 (en
Inventor
Koji Mishima
浩二 三島
Eiji Tochikubo
栃久保 英二
Kazuaki Sato
和明 佐藤
Masahiro Takahashi
正宏 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Minister for Public Works for State of New South Wales
Ebara Corp
National Research and Development Agency Public Works Research Institute
Original Assignee
Minister for Public Works for State of New South Wales
Ebara Infilco Co Ltd
Public Works Research Institute Ministry of Construction
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minister for Public Works for State of New South Wales, Ebara Infilco Co Ltd, Public Works Research Institute Ministry of Construction filed Critical Minister for Public Works for State of New South Wales
Priority to JP8742290A priority Critical patent/JPH0630776B2/en
Publication of JPH03288593A publication Critical patent/JPH03288593A/en
Publication of JPH0630776B2 publication Critical patent/JPH0630776B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

PURPOSE:To stabilize treatment capacity by controlling the circulation ratio of treated water on the basis of the concn. of dissolved oxygen in treated water or a liquid mixture and the concn. of gaseous phase oxygen in an oxygen dissolving tank in an aerobic ascending current type sludge bed method. CONSTITUTION:In an aerobic ascending current type sludge bed method wherein a liquid mixture of org. waste water to be treated in which oxygen is preliminarily dissolved in an oxygen dissolving tank and circulated treated water is passed upwardly through a biological treatment tank having a mixed bacteria bed becoming granular by self-flocculation force present therein and org. waste water is treated without destroying granular matter, the circulation ratio of treated water is controlled on the basis of the concn. of dissolved oxygen in treated water or the liquid mixture and that of gaseous phase of the oxygen dissolving tank or the concns. of dissolved oxygen in treated water and the liquid mixture or the concn. of dissolved oxygen in treated water and that of gaseous phase oxygen in the oxygen dissolving tank. By this method, the stabilization of the treatment capacity of the aerobic ascending current type sludge bed method and the reduction of operation cost due to the rationalization of an oxygen use amount become possible.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、有機性排水の処理方法に係り、特に、下水、
産業廃水、し尿などの有機性排水を処理する好気性上向
流式汚泥床法の酸素供給量を適切に制御し、処理性能の
向上および効率化を可能とする方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for treating organic wastewater, and in particular, to a method for treating organic wastewater,
This invention relates to a method for appropriately controlling the amount of oxygen supplied in an aerobic upflow sludge bed method for treating organic wastewater such as industrial wastewater and human waste, thereby improving treatment performance and efficiency.

〔従来の技術〕[Conventional technology]

活性汚泥法は代表的な生物処理技術であるが、時として
汚泥の沈降性が低下して固液分離障害に陥る、といった
欠点も有していた。そこで、汚泥の固液分離性を向上し
、かつ処理施設設置面積の縮小化を可能とする方法とし
て、発明者らにより好気性上向流式汚泥床法(参考文献
:特開平1−123696号公報)が提案され、はぼ実
用化の段階を迎えている。しかし今までの研究開発が、
好気性上向流式汚泥床法の中核技術である汚泥の粒状化
に集中していたため、プラントオペレーションの最適化
の為の研究開発はあまり行われていなかった。特に酸素
供給の最適化は、オペレーションコストの低減化や処理
水質の安定化のために重要であるにも拘らず、あまり行
われていなかった。
The activated sludge method is a typical biological treatment technology, but it also has the disadvantage that the sedimentation of sludge sometimes decreases, resulting in failure of solid-liquid separation. Therefore, the inventors developed an aerobic upflow sludge bed method (reference document: Japanese Patent Application Laid-open No. 1-123696 The system has been proposed and is now at the stage of practical application. However, the research and development to date has been
Because the focus was on sludge granulation, which is the core technology of the aerobic upflow sludge bed method, not much research and development was conducted to optimize plant operations. In particular, optimization of oxygen supply has not been carried out much, although it is important for reducing operation costs and stabilizing the quality of treated water.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明は、好気性上向流式汚泥床法の酸素供給量を最適
化し、酸素の無駄使いを防止することで運転コストを低
減し、また処理水質の向上および安定化を達成させるこ
とのできる有機性排水の処理方法を提供とすることを目
的とする。
The present invention optimizes the oxygen supply amount of the aerobic upflow sludge bed method, prevents wasted oxygen, reduces operating costs, and improves and stabilizes the quality of treated water. The purpose is to provide a method for treating organic wastewater.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するために、本発明では以下のような手
段を採用したものである。
In order to achieve the above object, the present invention employs the following means.

すなわち本発明は、予め酸素溶解槽で酸素を溶解させた
被処理有機性排水と、循環された処理水との混合液を、
自己凝集力により粒状となった混合微生物床が存在する
生物処理槽に、上向きに通水し、該粒状物を壊すことな
く該有機性排水を処理する好気性上向流式汚泥床法にお
いて、処理水の溶存酸素濃度に基づいて、処理水の循環
比を制御することを特徴とする有機性排水の生物処理方
法である。
That is, the present invention uses a mixed liquid of organic wastewater to be treated, in which oxygen has been dissolved in an oxygen dissolution tank in advance, and recycled treated water,
In the aerobic upflow sludge bed method, in which water is passed upward through a biological treatment tank in which a mixed microbial bed that has become granular due to self-cohesive force exists, and the organic wastewater is treated without breaking the granular materials, This is a biological treatment method for organic wastewater characterized by controlling the circulation ratio of treated water based on the dissolved oxygen concentration of the treated water.

なお、本発明では、処理水の溶存酸素濃度は飽和溶存酸
素濃度(Cs)以下に保たれるのが好ましい。何故なら
、Cs以上になれば処理水に流出する酸素、すなわち無
駄な酸素が増加し、また、過飽和の溶存酸素濃度が微細
気泡となって粒状汚泥を浮上させ、処理水を濁らせる場
合があるからである。
In addition, in the present invention, it is preferable that the dissolved oxygen concentration of the treated water is kept below the saturated dissolved oxygen concentration (Cs). This is because if the concentration exceeds Cs, the amount of oxygen flowing into the treated water, that is, wasted oxygen, will increase, and the supersaturated dissolved oxygen concentration may become microbubbles and cause granular sludge to float to the surface, making the treated water cloudy. It is from.

本発明の基本的な制御動作を説明すると、処理水溶存酸
素濃度がCsに近づいた時(例えばCsの90%値)に
、処理水循環比を下げて生物処理槽への酸素供給量を減
少させる。その後、処理水溶存酸素濃度がCs以下で安
定した時(例えばCsの70%値)には、再び循環比を
増加させて生物処理槽への酸素供給量を増加させる。
To explain the basic control operation of the present invention, when the dissolved oxygen concentration of the treated water approaches Cs (for example, 90% of Cs), the treated water circulation ratio is lowered to reduce the amount of oxygen supplied to the biological treatment tank. . Thereafter, when the dissolved oxygen concentration of the treated water stabilizes below Cs (for example, 70% of Cs), the circulation ratio is increased again to increase the amount of oxygen supplied to the biological treatment tank.

また、処理水の循環比は通常以下の手順で決定される。Further, the circulation ratio of treated water is usually determined by the following procedure.

発明者らの実験結果に基づけば、好気性上向流式汚泥床
法では、B OD 1 kgを処理するのに1.5kg
前後の酸素を必要とする。従って、被処理有機性排水の
BODが100■/I2で、水量が0[113/日の場
合は (100xQ)xi、5=150Q g/日の酸素を必
要とする。この時、混合液(酸素溶解槽の出口液)に溶
解可能な溶存酸素濃度が60■/lであれば、処理水循
環比は (150Q÷60÷Q)−1=1.50となる。
Based on the inventors' experimental results, in the aerobic upflow sludge bed method, it takes 1.5 kg to treat 1 kg of BOD.
Requires oxygen before and after. Therefore, if the BOD of the organic wastewater to be treated is 100 .mu./I2 and the amount of water is 0 [113/day], (100 x Q) xi, 5=150 Q g/day of oxygen is required. At this time, if the concentration of dissolved oxygen that can be dissolved in the mixed liquid (outlet liquid of the oxygen dissolving tank) is 60 .mu./l, the treated water circulation ratio will be (150Q÷60÷Q)-1=1.50.

従って、この場合通常の循環比は1.50で運転し、処
理水溶存酸素濃度が飽和濃度を超えそうな時に、循還比
を1.50以下に設定して酸素の供給量を下げれば良い
。下げた時の循環比は、経験的に決定されるが、通常は
0.7〜1.3が適当である。
Therefore, in this case, the normal circulation ratio should be operated at 1.50, and when the dissolved oxygen concentration in the treated water is about to exceed the saturation concentration, the circulation ratio should be set to 1.50 or less to reduce the oxygen supply amount. . The circulation ratio when lowered is determined empirically, but is usually 0.7 to 1.3.

また、本発明は、予め酸素溶解槽で酸素を溶解させた被
処理有機性排水と、循還された処理水との混合液を、自
己凝集力により粒状となった混合微生物床が存在する生
物処理槽に上向きに通水し、該粒状物を壊すことなく該
有機性排水を処理する好気性上向流式汚泥床法において
、該混合水の溶存酸素濃度に基づいて、処理水の循環比
を制御することを特徴とする有機性排水の処理方法であ
る。
In addition, the present invention provides a method for dissolving a mixed solution of organic wastewater to be treated, in which oxygen has been dissolved in advance in an oxygen dissolution tank, and recycled treated water, into a microorganism in which a mixed microbial bed that has become granular due to self-cohesive force is present. In the aerobic upflow sludge bed method, in which water is passed upward through the treatment tank to treat the organic wastewater without destroying the granules, the circulation ratio of the treated water is determined based on the dissolved oxygen concentration of the mixed water. This is a method for treating organic wastewater, which is characterized by controlling.

すなわち、本発明では、生物処理槽の流入水の溶存酸素
濃度が低下した場合は、処理水循環比をあげて生物処理
槽への酸素供給量の低下を防ぐ。逆に、該流入水の溶存
酸素濃度が上昇した場合は、処理水循環比を下げて酸素
の過剰供給を防ぐ。この制御方法を見い出したきっかけ
は、流入水の汚濁濃度が高い時の溶存酸素濃度が低く、
流入水の汚濁濃度が低い時の溶存酸素濃度が高くなる、
という現象を発見したことである。すなわち、本発明に
おいて、溶存酸素濃度は一種の流入水汚濁濃度のセンサ
ー的な役割を果たしており、流入水の水質変動に応じた
適切な制御が可能となる。
That is, in the present invention, when the dissolved oxygen concentration in the inflow water of the biological treatment tank decreases, the treated water circulation ratio is increased to prevent a decrease in the amount of oxygen supplied to the biological treatment tank. Conversely, when the dissolved oxygen concentration of the inflow water increases, the treated water circulation ratio is lowered to prevent excessive supply of oxygen. The reason for discovering this control method was that when the concentration of pollution in the inflow water is high, the concentration of dissolved oxygen is low.
Dissolved oxygen concentration increases when the pollution concentration of inflow water is low.
This phenomenon was discovered. That is, in the present invention, the dissolved oxygen concentration serves as a kind of sensor for the inflow water pollution concentration, and it becomes possible to perform appropriate control according to changes in the water quality of the inflow water.

循環比の変更を指示する流入水溶存酸素濃度の境界値は
、経験的に決定されるが、通常は日平均値(例えば60
■/i)の±5%(従って57〜63■/1)の値に到
達した時に循環比を変更する。また、循環比は日平均値
(例えば2.75)の±50%の範囲内で選択可能なよ
うにしておけば、きめ細かな制御が可能となる。
The threshold for influent dissolved oxygen concentration that dictates a change in circulation ratio is determined empirically, but is usually a daily average value (e.g. 60
The circulation ratio is changed when a value of ±5% of (1)/i) (therefore 57 to 63 (1)) is reached. Further, if the circulation ratio can be selected within the range of ±50% of the daily average value (for example, 2.75), fine control becomes possible.

また、本発明は、予め酸素溶解槽で酸素を溶解させた被
処理有機性排水と、循環された処理水との混合液を、自
己凝集力により粒状となった混合微生物床が存在する生
物処理槽に上向きに通水し、該粒状物を壊すことなく該
有機性排水を処理する好気性上向流式汚泥床法において
、該酸素溶解槽の気相の酸素濃度に基づいて、処理水の
循環比を制御することを特徴とする有機性排水の処理方
法である。
In addition, the present invention provides biological treatment in which a mixed microbial bed that has become granular due to self-cohesion is present in a mixed solution of organic wastewater to be treated, in which oxygen has been dissolved in advance in an oxygen dissolution tank, and recycled treated water. In the aerobic upflow sludge bed method, in which water flows upward through the tank and treats the organic wastewater without destroying the granules, the concentration of the treated water is determined based on the oxygen concentration in the gas phase of the oxygen dissolution tank. This is a method for treating organic wastewater characterized by controlling the circulation ratio.

本発明の基本動作を説明すると、酸素溶解槽の気相酸素
濃度が上昇した場合は処理水循環比を低下させ、生物処
理槽への酸素供給量を減少させる。逆に、酸素溶解槽の
気相酸素濃度が減少した場合は、処理水循環比を増加さ
せて、生物処理槽への酸素供給量を増加させる。あるい
は、酸素溶解槽の気相酸素濃度が減少した場合は、気相
ガスを一旦系外へ排aして純酸素で置換す・ることも考
えられる。この制御方法は、センサーとして酸素ガス濃
度計を使用することが大きな特長である。なぜなら、酸
素ガス濃度計と溶存酸素計と比較した場合、酸素ガス濃
度計は微生物によるセンサー表面の汚染(スライムの付
着等)を受けないため、センサーの維持管理が極とて容
易であり、測定誤差を低く抑えられるという利点がある
To explain the basic operation of the present invention, when the gas phase oxygen concentration in the oxygen dissolution tank increases, the treated water circulation ratio is lowered and the amount of oxygen supplied to the biological treatment tank is reduced. Conversely, when the gas phase oxygen concentration in the oxygen dissolution tank decreases, the treated water circulation ratio is increased to increase the amount of oxygen supplied to the biological treatment tank. Alternatively, if the gas phase oxygen concentration in the oxygen dissolution tank decreases, it is also possible to temporarily exhaust the gas phase gas out of the system and replace it with pure oxygen. A major feature of this control method is that it uses an oxygen gas concentration meter as a sensor. This is because, when compared with oxygen gas concentration meters and dissolved oxygen meters, oxygen gas concentration meters are not susceptible to contamination of the sensor surface by microorganisms (slime adhesion, etc.), making maintenance and management of the sensors extremely easy. This has the advantage of keeping errors low.

循環比を変更する気相酸素濃度の境界値は、経験的に決
定されるが、通常は日平均値(例えば65%)の±5%
(従って62〜68%)に達したときに循環比を±50
%の範囲で変化させれば適当な制御が可能となる。
The boundary values for gas phase oxygen concentration that change the circulation ratio are determined empirically, but are usually ±5% of the daily average value (e.g. 65%).
(therefore, 62-68%), adjust the circulation ratio by ±50%.
Appropriate control can be achieved by changing it within a range of %.

また、本発明は、予め酸素溶解槽で酸素を溶解させた被
処理有機性排水と、循環された処理水との混合液を、自
己凝集力により粒状となった混合微生物床が存在する生
物処理槽に上向きに通水し、該粒状物を壊すことなく有
機性排水を処理する好気性上向流式汚泥床法において、
処理水の溶存酸素濃度及び該混合液の溶存酸素濃度、あ
るいは処理水の溶存酸素濃度及び該酸素溶解槽の気相酸
素濃度に基づいて、処理水の循環比を制御することを特
徴とする有機性排水の処理方法である。
In addition, the present invention provides biological treatment in which a mixed microbial bed that has become granular due to self-cohesion is present in a mixed solution of organic wastewater to be treated, in which oxygen has been dissolved in advance in an oxygen dissolution tank, and recycled treated water. In the aerobic upflow sludge bed method, which processes organic wastewater without destroying the granules by passing water upward into the tank,
An organic method characterized in that the circulation ratio of treated water is controlled based on the dissolved oxygen concentration of the treated water and the dissolved oxygen concentration of the mixed liquid, or the dissolved oxygen concentration of the treated water and the gas phase oxygen concentration of the oxygen dissolving tank. This is a method for treating wastewater.

すなわち、処理水と生物処理槽流入水(混合液)の双方
の溶存酸素濃度を検出端とするか、あるいは処理水溶存
酸素濃度と酸素溶解槽気相酸素濃度の双方を検出端とす
ることで、より確実にかつ信頼のおける酸素供給量の制
御が可能となる。
In other words, by using the dissolved oxygen concentration of both the treated water and the biological treatment tank inflow water (mixed liquid) as the detection end, or by using both the dissolved oxygen concentration of the treated water and the gas phase oxygen concentration of the oxygen dissolving tank as the detection end. , it becomes possible to control the oxygen supply amount more reliably and reliably.

なお、この発明でも、処理水の溶存酸素濃度は飽和溶存
酸素濃度(Cs)以下に保たれるのが好ましい。何故な
ら、Cs以上になれば処理水に流出する酸素、すなわち
無駄な酸素が増加し、また過飽和の溶存酸素濃度が微細
気泡となって粒状汚泥を浮上させ、処理水を濁らせる場
合があるからである。
In addition, also in this invention, it is preferable that the dissolved oxygen concentration of the treated water is kept below the saturated dissolved oxygen concentration (Cs). This is because if the concentration exceeds Cs, the amount of oxygen that flows into the treated water, that is, wasted oxygen, will increase, and the supersaturated dissolved oxygen concentration may become fine bubbles that cause granular sludge to float to the surface, making the treated water cloudy. It is.

〔実施例〕〔Example〕

以下、本発明を実施例により具体的に説明するが、本発
明はこれらに限定されない。
EXAMPLES Hereinafter, the present invention will be specifically explained with reference to Examples, but the present invention is not limited thereto.

実施例1 処理水溶存酸素濃度によって、処理水循環比を調整する
方法 第1図に、好気性上向流式汚泥床法のフローシートと溶
存酸素計の設置位置を示す。
Example 1 Method for adjusting the treated water circulation ratio according to the dissolved oxygen concentration in the treated water Figure 1 shows the flow sheet of the aerobic upflow sludge bed method and the installation position of the dissolved oxygen meter.

処理水循環比の変更は、循環ポンプの回転数制御により
行った。通常の循環比は1.7であるが、処理水溶存酸
素濃度が過飽和濃度であるH値(8,8■/i)の10
%低い値(8■/1)を超えた時は循環比を1.2に下
げ、そしてH値070%の値(6,2■/1)に下がっ
た時に循環比を1.7に戻した。
The treated water circulation ratio was changed by controlling the rotation speed of the circulation pump. The normal circulation ratio is 1.7, but the concentration of dissolved oxygen in the treated water is 10
When the % low value (8■/1) is exceeded, the circulation ratio is lowered to 1.2, and when the H value drops to the value of 070% (6,2■/1), the circulation ratio is returned to 1.7. Ta.

第2図は、この制御動作を行った場合と、行わなかった
場合の処理水溶存酸素濃度の値を比較したものである。
FIG. 2 compares the dissolved oxygen concentration in treated water when this control operation was performed and when it was not performed.

制御を行わなかった場合は、処理水溶存酸素がゼロとな
ったり、過飽和になった。その結果、処理水が白濁した
り、ピンフロックが流出するようになった。一方、制御
を実施した時は安定した処理水質を得た。
If no control was performed, the dissolved oxygen in the treated water would be zero or become supersaturated. As a result, the treated water became cloudy and pin flocs began to flow out. On the other hand, when control was implemented, stable treated water quality was obtained.

また、除去B OD 1 kg当たりに要した酸素量は
、無制御時:1.8kgに対して、制御時=1.6−で
あり、酸素使用量の節減効果も認められた。
In addition, the amount of oxygen required per 1 kg of removed BOD was 1.8 kg in the uncontrolled case, and 1.6 kg in the controlled case, and the effect of reducing the amount of oxygen used was also recognized.

実施例2 生物処理槽流入水溶存酸素濃度により、処理水循環比を
制御する方法 第3図に溶存酸素計の設置位置を示す。
Example 2 Method for controlling the circulation ratio of treated water based on the dissolved oxygen concentration of inflow water to a biological treatment tank Figure 3 shows the installation position of the dissolved oxygen meter.

通常の循環比は1.7としたが、流入溶存酸素がH値(
63■/l)を超えた場合は1.2とし、またH値(5
7■/1>より低下した場合は2.2とした。
The normal circulation ratio was 1.7, but the inflow dissolved oxygen had an H value (
If it exceeds 63■/l), it is set as 1.2, and the H value (5
If it was lower than 7■/1, it was set as 2.2.

第4図は、制御を行った場合と行わなかった場合の、処
理水溶存酸素濃度と流入水溶存酸素の経日変化を示す。
FIG. 4 shows the daily changes in dissolved oxygen concentration in treated water and dissolved oxygen in inflow water when control is performed and when control is not performed.

この制御を作動させた場合は、処理水の溶存酸素を極め
て安定に維持することができ、処理水質も良好であった
When this control was activated, dissolved oxygen in the treated water could be maintained extremely stably, and the quality of the treated water was also good.

また、除去B OD 1 kgに要した酸素量は、無制
御時: 1.8 kgに対して、制御時:1.55kg
であり、酸素使用量の節減効果も認められた。
In addition, the amount of oxygen required to remove 1 kg of BOD was 1.8 kg when uncontrolled, and 1.55 kg when controlled.
The effect of reducing oxygen consumption was also observed.

実施例3 酸素溶解槽の酸素ガス濃度により、処理水循環比を制御
する方法 第5図に酸素ガス濃度計の設置場所を示す。
Example 3 Method of controlling the treated water circulation ratio by the oxygen gas concentration in the oxygen dissolving tank Figure 5 shows the installation location of the oxygen gas concentration meter.

通常の循環比は1.7としたが、酸素ガス濃度がH値(
68%)を超えた場合は1.2に下げた。
The normal circulation ratio was set to 1.7, but the oxygen gas concentration was
68%), it was lowered to 1.2.

またH値(62%)以下になった場合は、循環比を2.
2に下げた。
Also, if the H value (62%) or less, the circulation ratio is set to 2.
Lowered it to 2.

第6図は、制御動作の有無を比較した結果である。制御
を行った場合は処理水の溶存酸素が一定に保たれ、水質
も良好であった。
FIG. 6 shows the results of comparing the presence and absence of control operations. When control was carried out, the dissolved oxygen in the treated water was kept constant and the water quality was good.

除去B OD 1 kg当たりの酸素消費量は、無制御
時: 1.8 kgに対して、制御時:1.55kgで
あり、酸素使用量の節減効果も認められた。
The amount of oxygen consumed per 1 kg of removed BOD was 1.8 kg when uncontrolled, and 1.55 kg when controlled, and the effect of reducing the amount of oxygen used was also recognized.

実施例4 処理水溶存酸素濃度と酸素溶解槽気相酸素濃度により、
処理水循環比を制御する方法第1図と第5図を複合した
システムで制御運転を行ったところ、無制御に比べて処
理水質は極めて良好であった。
Example 4 Depending on the dissolved oxygen concentration in the treated water and the gas phase oxygen concentration in the oxygen dissolution tank,
Method for controlling the treated water circulation ratio When a controlled operation was carried out using a system that combined the systems shown in Figures 1 and 5, the quality of the treated water was extremely good compared to a system without control.

また除去B OD 1 kg当たりの酸素消費量は、無
制御時: 1.8 kgに対して、制御時:1.45k
gであり、酸素使用量の節減効果も認められた。
In addition, the oxygen consumption per 1 kg of removed BOD is 1.8 kg when uncontrolled, and 1.45 kg when controlled.
g, and the effect of reducing the amount of oxygen used was also recognized.

〔発明の効果〕〔Effect of the invention〕

以上示したように、本発明によれば、好気性上向流式汚
泥床法の処理性能の安定化および酸素使用量の適性化に
よるオペレーションコストの低減化効果が図られた。
As described above, according to the present invention, it is possible to stabilize the treatment performance of the aerobic upflow sludge bed method and to reduce operation costs by optimizing the amount of oxygen used.

本発明は今後、積極的にプラントの運転に取り入れられ
ていき、その効力を発揮すると考えられる。
It is believed that the present invention will be actively incorporated into plant operations in the future and will demonstrate its effectiveness.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第3図及び第5図は、本発明の処理方法を示す
工程図であり、第2図、第4図及び第6図は、溶存酸素
量の変化を示すグラフである。 1・・・着水井、2・・・最初沈殿池、3・・・酸素溶
解槽、4・・・生物処理槽、5・・・塩素消毒、6溶存
酸素計、7・・・酸素ガス濃度計
FIGS. 1, 3, and 5 are process diagrams showing the treatment method of the present invention, and FIGS. 2, 4, and 6 are graphs showing changes in the amount of dissolved oxygen. 1... Water landing well, 2... First settling tank, 3... Oxygen dissolution tank, 4... Biological treatment tank, 5... Chlorine disinfection, 6 Dissolved oxygen meter, 7... Oxygen gas concentration Total

Claims (1)

【特許請求の範囲】 1、予め酸素溶解槽で酸素を溶解させた被処理有機性排
水と、循環された処理水との混合液を、自己凝集力によ
り粒状となった混合微生物床が存在する生物処理槽に、
上向きに通水し、該粒状物を壊すことなく該有機性排水
を処理する好気性上向流式汚泥床法において、処理水の
溶存酸素濃度に基づいて、処理水の循環比を制御するこ
とを特徴とする有機性排水の生物処理方法。 2、処理水の循環比を、処理水の溶存酸素濃度が飽和濃
度以下に保つように制御することを特徴とする請求項1
記載の有機性排水の処理方法。 3、予め酸素溶解槽で酸素を溶解させた被処理有機性排
水と、循環された処理水との混合液を、自己凝集力によ
り粒状となった混合微生物床が存在する生物処理槽に、
上向きに通水し、該粒状物を壊すことなく該有機性排水
を処理する好気性上向流式汚泥床法において、該混合液
の溶存酸素濃度に基づいて、処理水の循環比を制御する
ことを特徴とする有機性排水の処理方法。 4、予め酸素溶解槽で酸素を溶解させた被処理有機性排
水と、循環された処理水との混合液を、自己凝集力によ
り粒状となった混合微生物床が存在する生物処理槽に、
上向きに通水し、該粒状物を壊すことなく有機性排水を
処理する好気性上向流式汚泥床法において、該酸素溶解
槽の気相酸素濃度に基づいて、処理水の循環比を制御す
ることを特徴とする有機性排水の処理方法。 5、予め酸素溶解槽で酸素を溶解させた被処理有機性排
水と、循環された処理水との混合液を、自己凝集力によ
り粒状となった混合微生物床が存在する生物処理槽に、
上向きに通水し、該粒状物を壊すことなく有機性排水を
処理する好気性上向流式汚泥床法において、処理水の溶
存酸素濃度及び該混合液の溶存酸素濃度、あるいは処理
水の溶存酸素濃度及び該酸素溶解槽の気相酸素濃度に基
づいて、処理水の循環比を制御することを特徴とする有
機性排水の処理方法。 6、処理水の循環比を、処理水の溶存酸素濃度が飽和濃
度以下に保つように制御することを特徴とする請求項5
記載の有機性排水の処理方法。
[Claims] 1. A mixed microbial bed exists in which a mixture of organic wastewater to be treated, in which oxygen has been dissolved in advance in an oxygen dissolution tank, and recycled treated water is granulated by self-cohesive force. In the biological treatment tank,
Controlling the circulation ratio of treated water based on the dissolved oxygen concentration of treated water in an aerobic upflow sludge bed method in which water flows upward to treat the organic wastewater without destroying the granules. A biological treatment method for organic wastewater characterized by: 2. Claim 1, characterized in that the circulation ratio of the treated water is controlled so that the dissolved oxygen concentration of the treated water is kept below the saturation concentration.
Treatment method for organic wastewater described. 3. A mixed solution of the organic wastewater to be treated in which oxygen has been dissolved in advance in an oxygen dissolution tank and the recycled treated water is transferred to a biological treatment tank where a mixed microbial bed that has become granular due to self-cohesive force exists.
In an aerobic upflow sludge bed method in which water flows upward to treat the organic wastewater without destroying the granules, the circulation ratio of the treated water is controlled based on the dissolved oxygen concentration of the mixed liquid. A method for treating organic wastewater characterized by the following. 4. A mixed solution of the organic wastewater to be treated, in which oxygen has been dissolved in advance in an oxygen dissolution tank, and the recycled treated water is transferred to a biological treatment tank in which a mixed microbial bed that has become granular due to self-cohesive force exists.
In the aerobic upflow sludge bed method, which processes organic wastewater without destroying the granular materials by passing water upward, the circulation ratio of treated water is controlled based on the gas phase oxygen concentration in the oxygen dissolution tank. A method for treating organic wastewater characterized by: 5. A mixed solution of the organic wastewater to be treated in which oxygen has been dissolved in advance in an oxygen dissolution tank and the recycled treated water is transferred to a biological treatment tank where a mixed microbial bed that has become granular due to self-cohesive force exists.
In the aerobic upflow sludge bed method, in which organic wastewater is treated by flowing water upward without destroying the granules, the dissolved oxygen concentration of the treated water, the dissolved oxygen concentration of the mixed liquid, or the dissolved oxygen concentration of the treated water A method for treating organic wastewater, comprising controlling a circulation ratio of treated water based on the oxygen concentration and the gas phase oxygen concentration in the oxygen dissolving tank. 6. Claim 5, characterized in that the circulation ratio of the treated water is controlled so that the dissolved oxygen concentration of the treated water is kept below the saturation concentration.
Treatment method for organic wastewater described.
JP8742290A 1990-04-03 1990-04-03 Organic wastewater treatment method Expired - Lifetime JPH0630776B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8742290A JPH0630776B2 (en) 1990-04-03 1990-04-03 Organic wastewater treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8742290A JPH0630776B2 (en) 1990-04-03 1990-04-03 Organic wastewater treatment method

Publications (2)

Publication Number Publication Date
JPH03288593A true JPH03288593A (en) 1991-12-18
JPH0630776B2 JPH0630776B2 (en) 1994-04-27

Family

ID=13914439

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8742290A Expired - Lifetime JPH0630776B2 (en) 1990-04-03 1990-04-03 Organic wastewater treatment method

Country Status (1)

Country Link
JP (1) JPH0630776B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003070649A1 (en) * 2002-02-22 2003-08-28 Sut Seraya Pte Ltd Aerobic biomass granules for waste water treatment
US6656198B2 (en) 2001-06-01 2003-12-02 Ethicon-Endo Surgery, Inc. Trocar with reinforced obturator shaft

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6656198B2 (en) 2001-06-01 2003-12-02 Ethicon-Endo Surgery, Inc. Trocar with reinforced obturator shaft
WO2003070649A1 (en) * 2002-02-22 2003-08-28 Sut Seraya Pte Ltd Aerobic biomass granules for waste water treatment

Also Published As

Publication number Publication date
JPH0630776B2 (en) 1994-04-27

Similar Documents

Publication Publication Date Title
JP2009513328A (en) Water treatment methods and mechanisms that integrate fixed bacterial biological treatment and aggregation gradients
Zhao et al. Advanced primary treatment of waste water using a bio‐flocculation‐adsorption sedimentation process
KR100945458B1 (en) Apparatus for high rate removal of nitrogen and phosphorus from SWTP/WWTP.
JP2000000596A (en) Waste water treatment method and apparatus
CN103613190B (en) Salt-containing sewage treatment method
JPH03288593A (en) Treatment of organic waste water
CN103508610A (en) Integral sewage treatment process in hospital
JP5947067B2 (en) Wastewater treatment system and method
KR101679603B1 (en) Water treatment apparatus using cleaning powder and submersed membranes module
CN107986443A (en) A kind of whole process autotrophic denitrification method that big sewage is fluctuated suitable for COD/N
KR100327545B1 (en) Municipal wastewater treatment system
KR101416756B1 (en) Method of effluent treatment through processing sludge aeration in water treatment plant
JPH05154496A (en) Controlling method for operation in anaerobic and aerobic activated sludge treating equipment
CN206476856U (en) A kind of high concentration medical wastewater processing unit
CN112678985A (en) Method and device for pretreating negative hardness water containing scale inhibitor
JP2663227B2 (en) Biological treatment of wastewater containing reducing sulfur compounds
JP3179725B2 (en) Treatment method for water containing organic matter
JPH10314712A (en) Garbage disposer
CN106865751B (en) Method for controlling sludge bulking of biological tank and sewage treatment method
CN114368878B (en) Energy-saving emission-reducing town sewage treatment system and method
US9988290B1 (en) Method and apparatus for operation of aerobic biological solids digester
KR950000978B1 (en) Biological waste water treatment appratus
KR100373136B1 (en) Chemical composition for removing nitrogen and phospate in waste water and method for treating waste water using the same
KR20000019741A (en) Device for managing organic sewage
JP2644103B2 (en) Septic tank

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term