JPH03287790A - Treatment of liquid etchant for iron-nickel alloy - Google Patents

Treatment of liquid etchant for iron-nickel alloy

Info

Publication number
JPH03287790A
JPH03287790A JP8916490A JP8916490A JPH03287790A JP H03287790 A JPH03287790 A JP H03287790A JP 8916490 A JP8916490 A JP 8916490A JP 8916490 A JP8916490 A JP 8916490A JP H03287790 A JPH03287790 A JP H03287790A
Authority
JP
Japan
Prior art keywords
exchange membrane
etching solution
cation exchange
iron
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8916490A
Other languages
Japanese (ja)
Inventor
Yukio Matsumura
幸夫 松村
Toshikatsu Hamano
浜野 利勝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP8916490A priority Critical patent/JPH03287790A/en
Publication of JPH03287790A publication Critical patent/JPH03287790A/en
Pending legal-status Critical Current

Links

Landscapes

  • ing And Chemical Polishing (AREA)

Abstract

PURPOSE:To remove Ni ion from a soln. with the Ni ion increased by supplying a liq. etchant to every other section formed by arranging plural anion and cation-exchange membranes between electrodes and a mineral acid, etc., to the adjacent and applying a current. CONSTITUTION:Plural cation-exchange membranes C or cation-exchange membranes and anion-exchange membranes are alternately arranged between the electrodes in an electrodialytic cell. The anode side is divided by the cation- exchange membrane C or anion-exchange membrane, and the cathode side is divided by the cation-exchange membrane C. A liq. etchant 1 for an Fe-Ni alloy with the Ni ion increased is supplied to every other section A, a mineral acid or an aq. soln. 2 of the mineral acid salt of Fe is supplied to the adjacent section B, and a current is applied to remove the Ni ion.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、鉄−ニッケル合金のエツチング液の処理方法
、更に詳しくは、鉄−ニッケル合金を鉱酸の第二鉄塩の
塩酸水溶液でエツチングすることにより、ニッケル濃度
が高(なった劣化エツチング液を再生するための処理方
法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for treating an iron-nickel alloy with an etching solution, and more specifically, to etching an iron-nickel alloy with an aqueous hydrochloric acid solution of a ferric salt of a mineral acid. The present invention relates to a treatment method for regenerating a degraded etching solution that has a high nickel concentration.

[従来技術] 鉄−ニッケル合金製品のエツチング液としては、塩化鉄
系エツチング液が広(使用されている。該エツチング液
は、塩化第二鉄を主成分とし、エツチング能力を高める
ために塩酸を添加した水溶液が一般的である。
[Prior art] Iron chloride-based etching solutions are widely used as etching solutions for iron-nickel alloy products. These etching solutions contain ferric chloride as a main component, and hydrochloric acid is added to increase the etching ability. Added aqueous solutions are common.

かかる塩化鉄系エツチング液を用いた鉄−ニッケル合金
製品のエツチングは下記の反応により行なわれる。
Etching of iron-nickel alloy products using such an iron chloride-based etching solution is carried out by the following reaction.

2 Fe”+ Fe  −*  3 Fe”2Fe”+
Ni  −e  2Fe”+Ni”従って、エツチング
の進行につれて、エツチング液中の第二鉄塩が第一鉄塩
に変化するとともに、ニッケルイオン濃度が増大し、エ
ツチング液の能力が劣化する。
2 Fe”+ Fe −* 3 Fe”2Fe”+
Ni -e 2Fe"+Ni" Therefore, as etching progresses, the ferric salt in the etching solution changes to ferrous salt, the nickel ion concentration increases, and the performance of the etching solution deteriorates.

従来より劣化した塩化鉄系エツチング液を再生する方法
は、幾つか提案されているが、いずれも生じた第一鉄塩
を第二鉄塩に転化する方法であり、劣化したエツチング
液からニッケルイオンを除去する方法は極めて少なく、
未だ工業的に実施されていない。
Several methods have been proposed to regenerate degraded iron chloride etching solutions, but all of them involve converting the ferrous salts produced into ferric salts, and converting nickel ions from degraded etching solutions. There are very few ways to remove
It has not yet been implemented industrially.

従って、現在はエツチング液中のニッケルイオン濃度が
所定値以下になるように塩化第二鉄溶液を大量に供給す
るか、又はニッケルイオンが所定値以上に至った場合に
は、エツチング液を新たなものと入れ替えることが一般
的に実施されている。
Therefore, currently, a large amount of ferric chloride solution is supplied to keep the nickel ion concentration in the etching solution below a predetermined value, or when the nickel ion concentration exceeds a predetermined value, a new etching solution is added. It is common practice to replace it with something else.

[問題点を解決するための手段] 本発明は前述の問題点を解決するべくなされたものであ
り、電極間に複数の陽イオン交換膜又は陽イオン交換膜
と陰イオン交換膜とを交互に配列して構成される電気透
析槽内の陽極側が陽イオン交換膜又は陰イオン交換膜で
、陰極側が陽イオン交換膜で区画される一つおきの画室
に、鉄−ニッケル合金のエツチング液を供給し、残る一
つおきの画室に鉱酸又は鉄の鉱酸塩の水溶液を供給して
通電し、上記エツチング液中のニッケルを分離すること
を特徴とする鉄−ニッケル合金のエツチング液の処理方
法にある。
[Means for Solving the Problems] The present invention has been made to solve the above-mentioned problems, and includes a plurality of cation exchange membranes or a cation exchange membrane and an anion exchange membrane alternately arranged between the electrodes. An iron-nickel alloy etching solution is supplied to every other compartment in an electrodialysis tank that is arranged in an array, with a cation exchange membrane or anion exchange membrane on the anode side and a cation exchange membrane on the cathode side. A method for treating an etching solution for an iron-nickel alloy, characterized in that the nickel in the etching solution is separated by supplying an aqueous solution of a mineral acid or an iron mineral salt to every other remaining compartment and energizing the solution. It is in.

本発明は、その代表的例についての添付第1図により説
明される。第1図に示されるように、−枚以上好ましく
は100〜2000枚の複数枚の陽イオン交換膜が、陰
極と陽極間に配列され、所謂電気透析槽が構成される。
The invention is illustrated by the attached FIG. 1, a representative example thereof. As shown in FIG. 1, a plurality of cation exchange membranes, preferably 100 to 2000, are arranged between a cathode and an anode to constitute a so-called electrodialysis cell.

電気透析槽は、いずれの形式のものも使用できるが、所
謂フィルタープレス型のものが好ましい。
Although any type of electrodialysis tank can be used, a so-called filter press type is preferred.

かかる電気透析槽の好ましくは一つおきの画室A、、A
2.A8.・・・(以下エツチング液室ともいう)に劣
化エツチング液1が供給され、一方、これらの画室と陽
イオン交換膜を介して隣接する残りの一つおきの画室B
、、B2.B、、・・・(以下ニッケル回収室ともいう
)には、鉱酸又は鉱酸の鉄塩の水溶液2が供給される。
Preferably every other compartment A, , A of such an electrodialysis cell
2. A8. ...(hereinafter also referred to as etching liquid chambers) is supplied with degraded etching liquid 1, while every other compartment B is adjacent to these chambers via a cation exchange membrane.
,,B2. An aqueous solution 2 of a mineral acid or an iron salt of a mineral acid is supplied to B, . . . (hereinafter also referred to as a nickel recovery chamber).

劣化エツチング液の代表的なものは、550〜700g
/ffの塩化第二鉄、1〜50g/ρの塩化第一鉄、遊
離塩酸0.O1〜1.ONからなり、好ましくは4〜1
0cm/secでエッチグ室に供給される。
A typical degraded etching solution weighs 550 to 700g.
/ff ferric chloride, 1-50 g/ρ ferrous chloride, free hydrochloric acid 0. O1~1. ON, preferably 4 to 1
It is supplied to the etching chamber at a rate of 0 cm/sec.

方、ニッケル回収室に供給される鉱酸又は鉱酸の鉄塩水
溶液の代表的なものは、6〜12Nの塩酸又は200〜
700g/ρの塩化第二鉄の水溶液であり、これらは、
好ましくは4〜l Ocm/seaで供給される。
On the other hand, typical mineral acids or iron salt aqueous solutions of mineral acids supplied to the nickel recovery chamber are 6-12N hydrochloric acid or 200-12N hydrochloric acid.
700 g/ρ aqueous solution of ferric chloride, these are:
Preferably, it is supplied at 4 to 1 Ocm/sea.

上記のようにして電気透析槽に含液を供給、好ましくは
循環させて、好ましくはlO〜20A/dm2にて通電
した場合、第1図のように劣化エツチング液中のニッケ
ルイオンNi14は陽イオン交換膜Cを通じて隣接する
ニッケル回収室に移行すると同時に鉱酸又は鉱酸の鉄塩
水溶液中の水素イオン又は鉄イオンはエツチング液室に
移行する。か(して、通電により、ニッケルイオンと水
素イオン又は鉄イオンの置換が行なわれ、劣化エツチン
グ液中のニッケルイオンが分離除去されることになる。
When a liquid is supplied to the electrodialysis tank as described above, preferably circulated, and energized preferably at 10 to 20 A/dm2, the nickel ions Ni14 in the degraded etching solution are converted to cations as shown in Figure 1. Hydrogen ions or iron ions in the mineral acid or iron salt aqueous solution of mineral acids are transferred to the etching liquid chamber at the same time as they are transferred to the adjacent nickel recovery chamber through the exchange membrane C. (Thus, by applying current, nickel ions are replaced with hydrogen ions or iron ions, and the nickel ions in the deteriorated etching solution are separated and removed.

かかる本発明による塩化鉄系の劣化エツチング液からの
ニッケルイオンの分離除去は、陽イオン交換膜の有する
物性を巧みに利用することにより初めて可能になったも
のである。即ち、陽イオン交換膜は陽イオンのうちでも
ニッケルイオンに対して、第一鉄や第二鉄イオンに対す
るよりも大きい選択透過性を有するためにエツチング液
中のニッケルイオンが陽イオン交換膜を通過して選択的
に除去されることになる。
The separation and removal of nickel ions from a deteriorated iron chloride etching solution according to the present invention has been made possible for the first time by skillfully utilizing the physical properties of a cation exchange membrane. In other words, the cation exchange membrane has a higher selective permeability for nickel ions among cations than for ferrous and ferric ions, so the nickel ions in the etching solution pass through the cation exchange membrane. It will be selectively removed.

上記本発明で使用する陽イオン交換膜としては、強酸性
乃至弱酸性で均質系又は不均質系のいずれのものも使用
できる。なかでもエツチング液が供給される画室の陰極
側の陽イオン交換膜としては、ニッケルイオンに対して
大きな選択透過性を有する、強酸性陽イオン交換膜の使
用が好ましい。一方、エツチング液が供給される画室の
陽極側の陽イオン交換膜としては、水素イオンに対して
大きな選択透過性の有する高架橋性の強酸性陽イオン交
換膜の使用が好ましい。
The cation exchange membrane used in the present invention may be either strongly acidic to weakly acidic, homogeneous or heterogeneous. Among these, as the cation exchange membrane on the cathode side of the compartment to which the etching solution is supplied, it is preferable to use a strongly acidic cation exchange membrane that has a high selective permeability to nickel ions. On the other hand, as the cation exchange membrane on the anode side of the compartment to which the etching solution is supplied, it is preferable to use a highly crosslinked strongly acidic cation exchange membrane having a high selective permeability to hydrogen ions.

上記第1図では、いずれも陽イオン交換膜を使用する本
発明の例を説明したが、エツチング液が供給される画室
の陽極側のイオン交換膜として、上記陽イオン交換膜に
代えて陰イオン交換膜を使用することができる。陰イオ
ン交換膜を使用して通電した場合、鉱酸中の水素イオン
が陰イオン交換膜を通過してエツチング室に移行するか
又は、エツチング液中の鉱酸又は鉱酸塩を形成する陰イ
オンが陰イオン交換膜を通過する。かくすることにより
エツチング液からは、ニッケルイオンが分離除去される
ことになる。
In FIG. 1 above, an example of the present invention using a cation exchange membrane has been explained.However, as the ion exchange membrane on the anode side of the compartment to which the etching solution is supplied, an anion exchange membrane is used instead of the cation exchange membrane. Exchange membranes can be used. When an anion exchange membrane is used and electricity is applied, hydrogen ions in the mineral acid pass through the anion exchange membrane and transfer to the etching chamber, or anions form the mineral acid or mineral salt in the etching solution. passes through the anion exchange membrane. By doing this, nickel ions are separated and removed from the etching solution.

しかしながら、上記陰イオン交換膜が使用される場合に
は、通電処理によりエツチング液中のニッケルイオンが
陽イオン交換膜を通じて除去されるとともにエツチング
液中の陰イオンも陰イオン交換膜を通じて除去される為
、エツチング液の電解質濃度が小さくなり、液の電導性
が小さくなり、電気透析槽の電圧が上昇することになる
。これを防止するため、電気透析槽の運転に応じて、鉱
酸2は鉄の鉱酸塩を添加することができる。
However, when the above-mentioned anion exchange membrane is used, the nickel ions in the etching solution are removed through the cation exchange membrane and the anions in the etching solution are also removed through the anion exchange membrane by the current treatment. , the electrolyte concentration of the etching solution decreases, the conductivity of the solution decreases, and the voltage of the electrodialysis cell increases. In order to prevent this, an iron mineral acid salt can be added to the mineral acid 2 depending on the operation of the electrodialyzer.

上記本発明で使用される陰イオン交換膜としては、好ま
しくは強塩基性のイオン交換容量0.8〜1.5ミリ当
量/g乾燥樹脂のものが良好に使用されろ。
The anion exchange membrane used in the present invention is preferably a strongly basic ion exchange capacity of 0.8 to 1.5 milliequivalents/g dry resin.

以下に本発明を更に具体的に示すために実施例を示す。Examples are shown below to more specifically illustrate the present invention.

実施例1 第1図に示されるように、陽イオン交換膜として、スル
ホン酸型陽イオン交換膜(交換容量0.9ミリ当量/g
、厚み400μm)11枚と、スルホン酸型陽イオン交
換膜(交換容量1,2ミリ当量/g、厚み250μm)
10枚とを交互に陽極、陰極間に組込んで構成したフィ
ルタープレス型電気透析槽(旭硝子製Du−Ob型)の
エツチング液室に、性能の劣化した塩化鉄系エツチング
液(FeC13580g/j2 、 FeCl234g
/ρ、 NiC1,58g/β、 HCl 36g#2
) 2βを供給し、一方ニッケル回収室には6N塩酸2
氾を供給して循環し、電流密度10A/dm2にて約4
時間通電した。
Example 1 As shown in FIG. 1, a sulfonic acid type cation exchange membrane (exchange capacity 0.9 meq/g) was used as the cation exchange membrane.
, thickness 400 μm) and 11 sulfonic acid type cation exchange membranes (exchange capacity 1.2 meq/g, thickness 250 μm).
An iron chloride-based etching solution with degraded performance (FeC13580g/j2, FeCl234g
/ρ, NiC1,58g/β, HCl 36g#2
) 2β is supplied, while 6N hydrochloric acid 2β is supplied to the nickel recovery chamber.
Supply and circulate flood water, approximately 4 at a current density of 10 A/dm2.
Power was on for an hour.

かくして、エツチング液室から得られたエツチング液中
のNiC15溶液は44g/ρに低下し、方、ニッケル
回収室に移動したNi量は40gであり、その電流効率
は約5%であり、ニッケル回収室に移動した鉄量は70
gであった。
In this way, the NiC15 solution in the etching solution obtained from the etching solution chamber decreased to 44 g/ρ, while the amount of Ni transferred to the nickel recovery chamber was 40 g, and the current efficiency was about 5%. The amount of iron transferred to the room was 70
It was g.

実施例2 イオン交換膜として、スルホン酸型陽イオン交換膜(交
換容量0.9ミリ当量/g、厚み400μm)11枚と
、強塩基性陰イオン交換膜(交換容量1.2ミリ当量/
g、厚み250gm)10枚とを交互に陽極、陰極間と
組込んで構成したフィルタープレス型電気透析槽(旭硝
子製Du−ob型)のエツチング液室(陰極側が陽イオ
ン交換膜、陽極側が陰イオン交換膜で区画される画室を
いう)に、性能の劣化した塩化鉄系エツチング液(Fe
C1g 580g/−9、FeCl234g/ff 、
 NIC1288g/β、 HCl 54g/I2) 
2 nを供給し、一方ニッケル回収室(陰極側が陰イオ
ン交換膜、陽極側が陽イオン交換膜で区画される画室を
いう)には6N塩酸2℃を供給して循環し、電流密度3
 A / d m 2にて約5時間通電した。
Example 2 As ion exchange membranes, 11 sulfonic acid type cation exchange membranes (exchange capacity 0.9 meq/g, thickness 400 μm) and strongly basic anion exchange membranes (exchange capacity 1.2 meq/g) were used.
Etching liquid chamber of a filter press type electrodialysis tank (Du-ob type manufactured by Asahi Glass) consisting of 10 sheets (250 gm, thickness 250 gm) installed alternately between the anode and the cathode (the cathode side is the cation exchange membrane, the anode side is the anode side). An iron chloride-based etching solution (Fe
C1g 580g/-9, FeCl234g/ff,
NIC1288g/β, HCl 54g/I2)
2n was supplied, while 6N hydrochloric acid was supplied at 2°C to the nickel recovery chamber (a compartment partitioned by an anion exchange membrane on the cathode side and a cation exchange membrane on the anode side) and circulated at a current density of 3.
Electricity was applied at A/dm2 for about 5 hours.

かくして、エツチング液室から得られたエツチング液中
のNiC1゜溶液は71g/βに低下し、方、ニッケル
回収室に移動したNl量は15gであり、その電流効率
は約5%であり、ニッケル回収室に移動した鉄量は50
gであった。
Thus, the NiC 1° solution in the etching solution obtained from the etching solution chamber decreased to 71 g/β, while the amount of Nl transferred to the nickel recovery chamber was 15 g, and its current efficiency was about 5%. The amount of iron transferred to the recovery room was 50.
It was g.

[発明の効果] 本発明の方法によれば、ニッケルー鉄合金を塩化鉄系エ
ツチング液にてエツチングすることにより、ニッケルイ
オン濃度の増加した劣化エツチング液から、ニッケルイ
オンを移動、除去し、エツチング液中のニッケルイオン
濃度を管理することが可能である。
[Effects of the Invention] According to the method of the present invention, by etching a nickel-iron alloy with an iron chloride-based etching solution, nickel ions are moved and removed from a deteriorated etching solution with increased nickel ion concentration, and the nickel ions are removed from the etching solution. It is possible to control the nickel ion concentration inside.

特にIC基板のエツチング液のように精密なエツチング
を要求される用途においてその寄与は大きい。
In particular, its contribution is large in applications that require precise etching, such as an etching solution for IC substrates.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の詳細な説明するためのものである。 C・・・陽イオン交換膜 FIG. 1 provides a detailed explanation of the invention. C...Cation exchange membrane

Claims (5)

【特許請求の範囲】[Claims] (1)電極間に複数の陽イオン交換膜又は陽イオン交換
膜と陰イオン交換膜とを交互に配列して構成される電気
透析槽内の陽極側が陽イオン交換膜又は陰イオン交換膜
で、陰極側が陽イオン交換膜で区画される一つおきの画
室に鉄−ニッケル合金のエッチング液を供給し、それに
隣接する残る一つおきの画室に鉱酸又は鉄の鉱酸塩水溶
液を供給して通電し、上記エッチング液からニッケルを
分離することを特徴とする鉄−ニッケル合金のエッチン
グ液の処理方法。
(1) The anode side of the electrodialysis tank, which is constructed by alternately arranging a plurality of cation exchange membranes or cation exchange membranes and anion exchange membranes between the electrodes, is a cation exchange membrane or an anion exchange membrane, An iron-nickel alloy etching solution is supplied to every other compartment whose cathode side is partitioned by a cation exchange membrane, and a mineral acid or iron mineral salt aqueous solution is supplied to every other remaining compartment adjacent to it. A method for treating an etching solution for an iron-nickel alloy, which comprises applying electricity to separate nickel from the etching solution.
(2)エッチング液が供給される画室の陰極側の陽イオ
ン交換膜がニッケルイオン選択性透過膜であり、上記画
室の陽極側の陽イオン交換膜が、水素イオン選択性透過
膜である請求項(1)の方法。
(2) The cation exchange membrane on the cathode side of the compartment to which the etching solution is supplied is a nickel ion selective permeable membrane, and the cation exchange membrane on the anode side of the compartment is a hydrogen ion selective permeable membrane. Method (1).
(3)エッチング液が塩化第二鉄の塩酸水溶液である請
求項(1)又は(2)の方法。
(3) The method of claim (1) or (2), wherein the etching solution is an aqueous solution of ferric chloride in hydrochloric acid.
(4)鉱酸が濃度0.1〜12Nの塩酸である請求項(
1),(2)又は(3)の処理方法。
(4) Claim in which the mineral acid is hydrochloric acid with a concentration of 0.1 to 12N (
1), (2) or (3) processing method.
(5)電流密度が0.1〜30A/dm^2である請求
項(1),(2),(3),又は(4)の処理方法。
(5) The treatment method according to claim (1), (2), (3), or (4), wherein the current density is 0.1 to 30 A/dm^2.
JP8916490A 1990-04-05 1990-04-05 Treatment of liquid etchant for iron-nickel alloy Pending JPH03287790A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8916490A JPH03287790A (en) 1990-04-05 1990-04-05 Treatment of liquid etchant for iron-nickel alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8916490A JPH03287790A (en) 1990-04-05 1990-04-05 Treatment of liquid etchant for iron-nickel alloy

Publications (1)

Publication Number Publication Date
JPH03287790A true JPH03287790A (en) 1991-12-18

Family

ID=13963176

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8916490A Pending JPH03287790A (en) 1990-04-05 1990-04-05 Treatment of liquid etchant for iron-nickel alloy

Country Status (1)

Country Link
JP (1) JPH03287790A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995024518A1 (en) * 1994-03-07 1995-09-14 Mib Metallurgie Und Oberflächentechnik Und Innovation In Berlin Gmbh & Co. Electrolysis process for regenerating a ferric chloride or sulphate solution, in particular for spray etching steel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995024518A1 (en) * 1994-03-07 1995-09-14 Mib Metallurgie Und Oberflächentechnik Und Innovation In Berlin Gmbh & Co. Electrolysis process for regenerating a ferric chloride or sulphate solution, in particular for spray etching steel

Similar Documents

Publication Publication Date Title
JP3385553B2 (en) Electric deionized water production apparatus and deionized water production method
US2794777A (en) Electrolytic deionization
JPH10128338A (en) Method and device for preventing scale from being deposited in electric regeneration type continuous desalting apparatus
JP4855068B2 (en) Electric deionized water production apparatus and deionized water production method
WO2005075359A1 (en) Apparatus for forming ion-exchanged water and method for regenerating ion exchange resin therein
JP3956836B2 (en) Electrodeionization equipment
JP5868421B2 (en) Electrodeionization equipment
CN109987682A (en) A kind of wide water temperature module of continuous electric desalination
JP4403621B2 (en) Electrodeionization equipment
JP3512425B2 (en) Electrochemical treatment of ion exchange materials
JP3644759B2 (en) Electric regenerative pure water manufacturing method and pure water manufacturing apparatus
JP2001079553A (en) Method for packing ion exchanger in electric deionizer, and electric deionizer
JP6042234B2 (en) Desalination method and desalting apparatus
JP4146649B2 (en) Process for producing dealkalized water glass and apparatus for producing the same
JP6163078B2 (en) Desalination method and desalting apparatus
JP4597388B2 (en) Electric deionized water production apparatus and deionized water production method
JPH03287790A (en) Treatment of liquid etchant for iron-nickel alloy
JPH07299333A (en) Regeneration of organic acid
JP5492612B2 (en) Electric deionized water production equipment
GB2383275A (en) Ion exchange column regeneration by electrodialysis
JP2003326270A (en) Electric regenerative demineralizer
JP6994351B2 (en) Electric deionized water production equipment
JP4431710B2 (en) ION CONDUCTIVE SPACER, METHOD FOR PRODUCING THE SAME, ELECTRIC DESALTING DEVICE
JP4660890B2 (en) Operation method of electrodeionization equipment
Strathmann et al. Effluent Free Electrolytic Regeneration of Ion-Exchange Resins