JPH03287780A - Electroless copper plating bath - Google Patents

Electroless copper plating bath

Info

Publication number
JPH03287780A
JPH03287780A JP8957590A JP8957590A JPH03287780A JP H03287780 A JPH03287780 A JP H03287780A JP 8957590 A JP8957590 A JP 8957590A JP 8957590 A JP8957590 A JP 8957590A JP H03287780 A JPH03287780 A JP H03287780A
Authority
JP
Japan
Prior art keywords
plating
copper
bath
plating bath
electroless copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8957590A
Other languages
Japanese (ja)
Inventor
Fusayoshi Miura
房美 三浦
Kenichi Suzuki
憲一 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP8957590A priority Critical patent/JPH03287780A/en
Publication of JPH03287780A publication Critical patent/JPH03287780A/en
Pending legal-status Critical Current

Links

Landscapes

  • Chemically Coating (AREA)

Abstract

PURPOSE:To obtain the electroless copper plating bath capable of forming a flexible film excellent in adhesion even on a material low in alkali resistance by forming the bath from a copper compd. supplying a copper coplex ion, a reducing agent consisting of hydrazine and a copper ion complexing agent consisting of a chelating amine. CONSTITUTION:This electroless copper plating bath is formed from a copper compd. supplying a copper complex ion such as CuSO4.5H2O, a reducing agent consisting of hydrazine and a copper ion complexing agent consisting of a chelating amine. Since the bath has the above-mentioned characteristics and an expensive substance such as dimethylamine borane need not be used, electroless plating is carried out at a low cost in the pH region close to the neutral. Besides, ethylenediamine, etc., are exemplified as the chelating amine, and the requisite concn. is controlled to 2-25 times the number of mols of Cu<2+> complex ion.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、無電解銅めっき浴に関し、さらに詳しくは、
弱酸〜弱アルカリ性の中性点近傍のpH域でめっき可能
な無電解銅めっき浴に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an electroless copper plating bath, and more specifically,
The present invention relates to an electroless copper plating bath that is capable of plating in a pH range near the neutral point of weak acid to weak alkalinity.

〔従来技術およびその問題点〕[Prior art and its problems]

従来より、無電解銅めっき浴として、錯化剤にEDTA
 (エチレンジアミン4酢酸)を、還元剤としてHCH
○(ホルムアルデヒド)を用いるアルカリ浴(pH12
,5前後)か一般に用いられている。しかしなから、こ
の従来浴は高アルカリ浴であるため、Aβ、Zn系等の
耐アルカリ性の低い金属材料や、ポリイミド、ポジ形フ
ォトレジスト等の耐アルカリ性の低い樹脂材料上への直
接めっきか困難とされていた。
Traditionally, EDTA has been used as a complexing agent in electroless copper plating baths.
(ethylenediaminetetraacetic acid) as a reducing agent, HCH
Alkaline bath (pH 12) using ○ (formaldehyde)
, around 5) is commonly used. However, because this conventional bath is a highly alkaline bath, it is difficult to directly plate metal materials with low alkali resistance such as Aβ and Zn, and resin materials with low alkali resistance such as polyimide and positive photoresists. It was said that

これら高アルカリ浴の欠点を解決する方法として、還元
剤にジメチルアミンポラン(DMAB)等のアミンホラ
ン系の化合物を用いることによりアルカリに敏感な基板
の無電解めっきを可能にした「無電解銅めっき浴」 (
特開平1−242781号公報)か提案されている。し
かしなから、この浴は、還元力の大きなアミンポラン系
化合物を用いるため非常に不安定な浴であり、錯化剤と
してEDTAとアルカノールアミンとを微妙な混合割合
で使用しないとめっき浴か分解し易いため実用に供する
ことか難しく°、また該浴で用いられているアミンボラ
ン系の還元剤は著しく高価であるという問題かあった。
As a method to solve these drawbacks of highly alkaline baths, we developed an ``electroless copper plating bath'' that enables electroless plating of alkali-sensitive substrates by using aminephorane-based compounds such as dimethylamineporane (DMAB) as a reducing agent. ” (
Japanese Unexamined Patent Publication No. 1-242781) has been proposed. However, this bath is extremely unstable because it uses an amineporan compound with a large reducing power, and unless EDTA and alkanolamine are used as complexing agents in a delicate mixing ratio, the plating bath will decompose. The problem is that it is difficult to put it into practical use because it is easy to use, and the amine borane reducing agent used in the bath is extremely expensive.

さらに、該浴でのめっき処理により得られる皮膜は、硼
素(B)を含むため、硬い、脆い、電気抵抗か大きいな
どの問題かあった。
Furthermore, since the film obtained by plating in this bath contains boron (B), it has problems such as being hard, brittle, and having high electrical resistance.

また、前記アルカリ浴の欠点を解決する他の方法として
、還元剤に次亜リン酸塩を、錯化剤としてビロリン酸を
用いることにより、臭いや毒性の強いホルムアルデヒド
を用いることなく低コストにて無電解銅メツキを行う「
無電解銅メツキ方法」 (特開平1−180986号公
報)が提案されている。しかしながら、このめっき浴を
用いてめっき処理して得られる皮膜は、リン(P)を共
析しており、B系還元剤を使用した前記方法と同様の問
題点を有し、しかもめっき速度が極めて小さいという問
題点かあった。
In addition, as another method to solve the drawbacks of the alkaline bath, by using hypophosphite as a reducing agent and birophosphoric acid as a complexing agent, it can be done at low cost without using formaldehyde, which has strong odor and toxicity. Performing electroless copper plating
``Electroless copper plating method'' (Japanese Unexamined Patent Publication No. 1-180986) has been proposed. However, the film obtained by plating using this plating bath has phosphorus (P) eutectoid, which has the same problems as the above method using a B-based reducing agent, and the plating speed is low. The problem was that it was extremely small.

そこで、本発明者らは、上述の如き従来技術の問題点を
解決すべ(鋭意研究し、各種の系統的実験を重ねた結果
、本発明を成すに至ったものである。
Therefore, the inventors of the present invention sought to solve the problems of the prior art as described above (through intensive research and repeated various systematic experiments, they came up with the present invention).

〔発明の目的〕[Purpose of the invention]

本発明の目的は、耐アルカリ性の低い材料でも密着性に
優れた柔軟な皮膜を形成することができる無電解銅めっ
き浴を提供することにある。
An object of the present invention is to provide an electroless copper plating bath that can form a flexible film with excellent adhesion even on materials with low alkali resistance.

本発明者らは、上述の従来技術の問題に関し、以下のこ
とに着眼した。すなわち、先ず前記従来技術を耐アルカ
リ性の低い材料の無電解銅めっきに適用した場合の問題
点について検討した。
The present inventors have focused on the following regarding the problems of the prior art described above. That is, first, problems encountered when the conventional technique was applied to electroless copper plating of a material with low alkali resistance were investigated.

この場合、先ず第1に、還元剤の種類が不適切である。In this case, first of all, the type of reducing agent is inappropriate.

すなわち、前記従来技術では還元剤としてホルムアルデ
ヒド等のアルデヒド類が開示されているが、該アルデヒ
ド類は高アルカリ性でのみ十分な還元力を発揮できる還
元剤であり、耐アルカリ性の低い材料に適用した場合に
は該材料を腐食あるいは変質劣化させるために不適切で
ある。
That is, although aldehydes such as formaldehyde are disclosed as reducing agents in the prior art, these aldehydes are reducing agents that can exhibit sufficient reducing power only in highly alkaline conditions, and when applied to materials with low alkali resistance. It is unsuitable for use because it corrodes or deteriorates the material.

また、他の還元剤としてCu以外の物質、例えばBを共
析するジメチルアミンボラン等のボラン類およびPを共
析する次亜リン酸塩を用いためっき浴が開示されている
が、この場合には該還元剤により生成するCu皮膜は硬
く、かつ脆いので不適切である。
Further, a plating bath using a substance other than Cu as another reducing agent, for example, borane such as dimethylamine borane which eutectoids B, and hypophosphite which eutectoids P, is disclosed. The Cu film produced by this reducing agent is hard and brittle, so it is not suitable.

第2に、錯化剤の種類か不適切である。すなわち、前記
従来技術の高アルカリ浴で開示されたEDTA (エチ
レンジアミン4酢酸)は、錯化力が中性域で大きすぎる
ため、中性点近傍の1)H域てCu−錯イオンを還元す
ることが困難である。
Second, the type of complexing agent is inappropriate. That is, EDTA (ethylenediaminetetraacetic acid) disclosed in the prior art highly alkaline bath has too large a complexing power in the neutral region, so it reduces Cu-complex ions in the 1) H region near the neutral point. It is difficult to do so.

第3に、めっき浴のpHが不適切である。すなわち、耐
アルカリ性の低い材料を従来の高アルカリ性浴てめっき
した場合は、被処理材料処理の腐食や変質、劣化によっ
て密着力のあるCu皮膜を得ることかできない。
Third, the pH of the plating bath is inappropriate. That is, when a material with low alkali resistance is plated using a conventional highly alkaline bath, a Cu film with good adhesion cannot be obtained due to corrosion, alteration, and deterioration of the treated material.

そこで、これら従来技術の問題を克服する無電解銅めっ
き浴として、(a)中性点近傍のpH域で還元力を発揮
し、しかもCu以外の物質を共析しない還元剤を用いる
こと、(b)中性点近傍のpH域でCuをCu−錯イオ
ンとして安定的に溶存でき、しかも上記(a)の条件を
満足する還元剤の存在下で安定的にCuを析出できる錯
化剤を用いること、((J耐アルカリ性の低い材料上へ
のCu皮膜か高い密着力を確保できるpHであること、
の三条性を満足する無電解銅めっき浴の構成とすること
に着目した。
Therefore, as an electroless copper plating bath that overcomes these problems of the conventional technology, (a) the use of a reducing agent that exhibits reducing power in the pH range near the neutral point and that does not eutectoid substances other than Cu; b) A complexing agent that can stably dissolve Cu as a Cu-complex ion in the pH range near the neutral point, and that can stably precipitate Cu in the presence of a reducing agent that satisfies the condition (a) above. ((JThe pH is such that it can ensure high adhesion to the Cu film on materials with low alkali resistance,
We focused our attention on creating an electroless copper plating bath that satisfies the three-stripe property.

そして本発明者らは、この還元剤としてヒドラジン類を
、錯化剤としてキレート化性アミンを用いてpH6〜1
0の無電解銅めっき浴を構成することにより、安定性に
優れるとともに、耐アルカリ性の低い材料でも密着性に
優れた柔軟な銅皮膜を形成することかできる無電解銅め
っき浴を実現するに至った。
The present inventors used hydrazines as the reducing agent and chelating amines as the complexing agent to achieve a pH of 6 to 1.
By constructing an electroless copper plating bath of 0.0, we have achieved an electroless copper plating bath that is not only stable but also capable of forming a flexible copper film with excellent adhesion even on materials with low alkali resistance. Ta.

〔第1発明の説明〕 第1発明の構成 本第1発明の無電解銅めっき浴は、銅−錯イオンを供給
する銅化合物と還元剤と銅イオンの錯形成剤とからなる
無電解銅めっき浴において、還元剤としてのヒドラジン
類と、銅イオンの錯形成剤としてのキレート化性アミン
とから成り、浴のpHか6以上10以下である。
[Description of the first invention] Structure of the first invention The electroless copper plating bath of the first invention is an electroless copper plating bath comprising a copper compound supplying copper-complex ions, a reducing agent, and a copper ion complex forming agent. The bath consists of hydrazines as a reducing agent and a chelating amine as a copper ion complex forming agent, and the pH of the bath is 6 or more and 10 or less.

第1発明の作用および効果 本第1発明の無電解銅めっき浴は、耐アルカリ性の低い
材料でも密着性に優れた柔軟な皮膜を形成することがで
きる。
Functions and Effects of the First Invention The electroless copper plating bath of the first invention can form a flexible film with excellent adhesion even on materials with low alkali resistance.

本第1発明の無電解銅めっき浴が上述の如き効果を発揮
するメカニズムについては未だ必ずしも明らかではない
が、次のように考えられる。
Although the mechanism by which the electroless copper plating bath of the first invention exhibits the above-mentioned effects is not yet clear, it is thought to be as follows.

すなわち、本第1発明の無電解銅めっき浴は、還元剤と
して、ヒドラジン類を採用した。このヒドラジン類の還
元作用は、pHが大きい(アルカリ)程大きくなる。し
かしながら、めっき浴の分解反応もこれに伴って増大す
る。本発明者らは、このヒドラジン類について鋭意研究
し、系統的実験を行った結果、ヒドラジン類を還元剤と
して用いた場合のめっき浴の適正なpHの範囲がpH6
〜pH10の範囲であることを見出した。一方、該めっ
き浴は、反応に従って酸性化するが、錯化剤として含ま
れているキレート化性アミンを銅イオンの錯形成剤とし
てのみならず、該酸性化に対しては適正なpH域に抑制
する緩衝剤として働かせることにより、ヒドラジン類が
還元剤として働(設定したpH6〜pH10のpHに維
持することができ、ヒドラジン類の還元力を十分に発揮
できたものと考えられる。すなわち、キレート化性アミ
ンはCu2+と中性点近傍のpH域で安定なCU−錯イ
オンを形成するとともにpH6〜pH10の安定なp)
(域に保ち、しかもヒドラジン類の十分な還元作用によ
り中性点近傍のpH域で安定的にCuイオンを析出させ
ているためと考えられる。従って、耐アルカリ性の低い
材料へめっきを行う場合、材料の腐食および化学的変質
を受ける前にCu皮膜を被覆でき、密着性を確保できる
ものと考えられる。
That is, the electroless copper plating bath of the first invention employs hydrazines as the reducing agent. The reducing action of hydrazines becomes greater as the pH becomes higher (alkaline). However, the decomposition reaction of the plating bath also increases accordingly. The present inventors have conducted intensive research on these hydrazines and conducted systematic experiments. As a result, the appropriate pH range of the plating bath when hydrazines are used as a reducing agent is pH 6.
It was found that the pH was in the range of ~10. On the other hand, the plating bath becomes acidic as the reaction progresses, and the chelating amine contained as a complexing agent is used not only as a complexing agent for copper ions, but also in an appropriate pH range for acidification. It is thought that by acting as a buffer to inhibit hydrazines, the hydrazines act as reducing agents (the pH can be maintained at the set pH of 6 to 10, and that the reducing power of hydrazines was fully demonstrated. In other words, The oxidizing amine forms a stable CU- complex ion with Cu2+ in the pH range near the neutral point, and also has a stable p) between pH 6 and pH 10.
(This is thought to be because Cu ions are stably precipitated in the pH range near the neutral point due to the sufficient reducing action of hydrazines. Therefore, when plating materials with low alkali resistance, It is thought that the Cu film can be applied before the material undergoes corrosion and chemical alteration, and that adhesion can be ensured.

また、ヒドラジン類は、分子内にP、Bのような銅皮膜
性能阻害元素を含まないので、析出Cu皮膜中にこれら
性能阻害元素を共析する虞が無く、さらに該析出Cu皮
膜は柔軟な性質を発揮することかできる。
In addition, since hydrazines do not contain elements that inhibit the performance of copper coatings such as P and B in their molecules, there is no possibility that these performance-inhibiting elements will co-deposit into the precipitated Cu coating, and furthermore, the precipitated Cu coating is flexible. It is possible to demonstrate one's nature.

従って、耐アルカリ性の低い材料でも密着性に優れた柔
軟な皮膜を形成することが可能になるものと思われる。
Therefore, it seems possible to form a flexible film with excellent adhesion even with materials having low alkali resistance.

〔第2発明の説明〕 以下に、第2発明として、本第1発明をより具体化した
発明を説明する。
[Description of the second invention] Below, as the second invention, an invention that further embodies the first invention will be described.

本第2発明において、銅化合物は、めっき皮膜を形成す
るための主材としての銅イオン供給物質てあり、Cu”
−錯イオンを供給する物質である。
In the second invention, the copper compound is a copper ion supplying substance as a main material for forming a plating film, and Cu"
-It is a substance that supplies complex ions.

具体的には、硫酸銅(Cu S O4、Cu S 04
5H20)’P、塩化第2銅(CuCA2、CuCf2
−2H20) 、硝酸銅(Cu N O2、(: u 
N O2・3H20)、水酸化銅(Cu (OH) 2
)等の2価のCu (II)化合物を使用することがで
きる。この中ても、該物質として硫酸銅(CuSO4)
である場合は、腐食性の大きいハロゲンイオンである塩
素イオンを含まないので好ましい。
Specifically, copper sulfate (Cu SO4, Cu SO4
5H20)'P, cupric chloride (CuCA2, CuCf2
-2H20), copper nitrate (CuNO2, (: u
N O2・3H20), copper hydroxide (Cu(OH)2
) can be used. Among these, copper sulfate (CuSO4) is the substance.
This is preferable because it does not contain chlorine ions, which are highly corrosive halogen ions.

銅化合物の銅イオン濃度は、0.02〜0.4モル程度
が好ましい。0.02モル未満ては、めっき速度か遅く
、また0、4モルを超えるとめっき浴が不安定になり好
ましくない。なお、該銅イオン濃度か0.04〜0.1
モルである場合には、めっき速度を速く、かつ、めっき
浴をより安定に保ことができるので、より好ましい。
The copper ion concentration of the copper compound is preferably about 0.02 to 0.4 mol. If it is less than 0.02 mol, the plating rate will be slow, and if it exceeds 0.4 mol, the plating bath will become unstable, which is not preferable. In addition, the copper ion concentration is 0.04 to 0.1
When the amount is molar, it is more preferable because the plating rate can be increased and the plating bath can be kept more stable.

次に、ヒドラジン類は、ヒドラジン(N、H,)単体の
ほか、抱水ヒドラジン((N2 H,・N20)、塩酸
ヒドラジン(N2H−・28 Cl ) 、硫酸ヒドラ
ジン(N2H,・H2S O4)を用いることかできる
。また、メチルヒドラジン、フェニルヒドラジン等のヒ
ドラジンモノ置換体およびこれらの塩を使用することか
できる。これらのうち、メチルヒドラジン等のヒドラジ
ンモノ置換体を還元剤とした場合にはめっき速度を大き
くてき有利であり、また抱水ヒドラジンや硫酸ヒドラジ
ンを用いた場合は経済的であり好ましい。
Next, hydrazines include hydrazine (N, H,) alone, hydrazine hydrate ((N2H, .N20), hydrazine hydrochloride (N2H-.28 Cl), and hydrazine sulfate (N2H, .H2S O4). Also, hydrazine monosubstituted products such as methylhydrazine and phenylhydrazine, and salts thereof can be used. Among these, when hydrazine monosubstituted products such as methylhydrazine are used as a reducing agent, plating It is advantageous because the speed can be increased, and it is preferable to use hydrazine hydrate or hydrazine sulfate because it is economical.

以下の説明において、このヒドラジン類は、代表として
ヒドラジンにより説明する。
In the following explanation, hydrazine will be explained as a representative of the hydrazines.

ヒドラジンの酸化反応は、 N2H,+40H−=  N2 +4820+4 eE
o =   0.31 0.06pHて示されるように
、1モルにつき4電子を放出てきる。従って、ヒドラジ
ンのめっき浴中の必要濃度は、還元の化学当量であるC
u’+錯イオンの1/2近くが好ましい。なお、該ヒド
ラジン濃度は、Cu2+錯イオン濃度の1/1o未満で
はめっき速度が低下して好ましくなく、またCu2“錯
イオン濃度の2倍を超えるとめっき浴が不安定になり好
ましくない。
The oxidation reaction of hydrazine is N2H, +40H-= N2 +4820+4 eE
As shown by o = 0.31 0.06pH, 4 electrons are released per mol. Therefore, the required concentration of hydrazine in the plating bath is the chemical equivalent of reducing C
It is preferable that it be close to 1/2 of the u'+ complex ion. It should be noted that if the hydrazine concentration is less than 1/1 of the Cu2+ complex ion concentration, the plating rate will decrease, which is not preferable, and if it exceeds twice the Cu2'' complex ion concentration, the plating bath will become unstable, which is not preferable.

次に、キレート化性アミンは、エチレンジアミン、ジエ
チレントリアミン、トリエチレンテトラミン、トリアミ
ノトリエチルアミン、テトラエチレンペンタミン、ペン
タエチレンへ午サミン、等の少なくとも2個以上の窒素
(N)を持つポリアミンの少なくとも一種以上である。
Next, the chelating amine is at least one of polyamines having at least two nitrogens (N), such as ethylenediamine, diethylenetriamine, triethylenetetramine, triaminotriethylamine, tetraethylenepentamine, and pentaethylenepentamine. It is.

さらに、これらに置換基を持つN−メチルジアミン、N
−エチルエチレンジアミン等のこれらの誘導体の少なく
とも一種以上である場合は、めっき速度が向上するので
好ましい。なお、このうち、エチレンジアミンは安価で
あり、経済的に最も好ましいものである。
Furthermore, N-methyldiamine having a substituent on these, N
- It is preferable to use at least one kind of these derivatives such as ethylethylenediamine because the plating rate is improved. Note that among these, ethylenediamine is inexpensive and is economically the most preferable.

これらキレート化性アミンの必要濃度は、アミンの種類
にもよるが、Cu2+−錯イオンのモル数の2〜25倍
が良い。キレート化性アミンの濃度かCu2“−錯イオ
ンのモル数の2倍未満である場合は、めっき浴は著しく
不安定となり、好ましくなく25倍を超えるとめっき浴
は過度に安定になりすぎめっき速度が低下して好ましく
ない。なお、該濃度がCu”−錯イオンのモル数の8〜
16倍である場合には、より好ましい。
The required concentration of these chelating amines is preferably 2 to 25 times the number of moles of Cu2+-complex ion, although it depends on the type of amine. If the concentration of the chelating amine is less than twice the number of moles of the Cu complex ion, the plating bath will become extremely unstable; if it exceeds 25 times, the plating bath will become too stable and the plating rate will be too high. is undesirable because the concentration decreases from 8 to 8 moles of Cu''-complex ion.
It is more preferable if it is 16 times.

また、浴のpHは、6〜10である。これは、pHが6
未満の場合はヒドラジンの還元力が小さくなるため好ま
しくなく、また該pHか10を超えた場合は浴が不安定
になり好ましくない。なお、このpHが6〜10という
条件は、kl、Zn系合金の腐食性をできるだけ少なく
し、耐アルカリ性の低い有機材料の変質劣化を防ぐ観点
からも好都合である。また、特に該浴のpHを8〜9と
した場合には、ヒドラジンの還元力を十分にできるとと
もに浴の安定性を良好なものとすることがてきるので、
特に好ましい。
Moreover, the pH of the bath is 6-10. This has a pH of 6
If the pH is less than 10, the reducing power of hydrazine decreases, which is not preferable, and if the pH exceeds 10, the bath becomes unstable, which is not preferable. Note that this pH condition of 6 to 10 is advantageous from the viewpoint of minimizing the corrosiveness of Kl and Zn-based alloys and preventing alteration and deterioration of organic materials with low alkali resistance. In addition, especially when the pH of the bath is set to 8 to 9, the reducing power of hydrazine can be sufficiently achieved and the stability of the bath can be made good.
Particularly preferred.

該pHの調整は、キレート化性アミンがpH6〜10の
範囲で緩衝作用を示すため、該キレート化性アミンの濃
度や添加量を変えることによりできるが、さらに、HC
j’ 、 H2S O4、CH,C0OH等の酸とNa
0HSKOH等のアルカリを用いてpHの調整を行うこ
とかできる。なお、アンモニア(NH,)や有機酸を用
いてこのpHの調整をする場合には、該NH,や有機酸
か錯化剤として働き、錯交定性を変化させ、めっき速度
が変化することがある。さらに、有機酸、有機酸塩をp
H緩衝剤として適量加えてもよい。
The pH can be adjusted by changing the concentration and amount of the chelating amine, since the chelating amine exhibits a buffering effect in the pH range of 6 to 10.
j', H2S O4, CH, COOH and other acids and Na
The pH can be adjusted using an alkali such as 0HSKOH. Note that when adjusting the pH using ammonia (NH) or an organic acid, the NH or organic acid may act as a complexing agent, changing the complexation properties and changing the plating rate. be. Furthermore, organic acids and organic acid salts are
An appropriate amount may be added as an H buffer.

本第2発明の無電解銅めっき浴は、前記Cu”−錯イオ
ン供給のためのCu化合物と、キレート化性アミン、お
よびヒドラジン類の3種類の物質を必須要素として構成
してなる。さらに、めっき・速度を増加させるために、
トリエタノールアミン、クアドール等のアルカノールア
ミン、イミダゾール等の含窒素化合物およびアンモニア
や(NH4)2S04等のアンモニウム塩を適量加えて
もよい。
The electroless copper plating bath of the second invention comprises three types of substances as essential elements: a Cu compound for supplying the Cu''-complex ions, a chelating amine, and hydrazines.Furthermore, To increase plating speed,
Appropriate amounts of alkanolamines such as triethanolamine and Quadol, nitrogen-containing compounds such as imidazole, and ammonium salts such as ammonia and (NH4)2S04 may be added.

さらに、従来の無電解Cuめっき浴て用いられているよ
うな界面活性剤(ポリエチレングリコール、アルキルア
ミン系非イオン界面活性剤、ラウリル硫酸ナトリウム等
)や含窒素環状化合物(α。
Furthermore, surfactants (polyethylene glycol, alkylamine nonionic surfactants, sodium lauryl sulfate, etc.) and nitrogen-containing cyclic compounds (α.

α ビビルジル、1,10フエナントロリン、キノリン
)等の微量添加が、めっき不良の低減およびめっき膜の
機械的性質向上のために好ましい。
It is preferable to add a small amount of α-bivirdyl, 1,10-phenanthroline, quinoline, etc. to reduce plating defects and improve the mechanical properties of the plated film.

めっき浴の温度は、てきるたけ高く、70°C以上で行
うのかめっき速度向上の点から好ましい。
The temperature of the plating bath is preferably as high as possible, at 70° C. or higher, from the viewpoint of improving the plating speed.

本第2発明により、無電解銅めっき浴をpH6〜10の
弱酸性〜弱アルカリ性とすることかできるので、ACZ
n系材料や耐アルカリ性の低い樹脂材料へ密着性に優れ
ためっき皮膜を形成することかできる。しかも、該めっ
き皮膜は、該めっきを施した材料を曲げてもクラック等
がはいることか極めて少なく、大変柔軟性を有している
According to the second invention, the electroless copper plating bath can be made weakly acidic to weakly alkaline with a pH of 6 to 10.
It is possible to form a plating film with excellent adhesion to n-based materials and resin materials with low alkali resistance. Furthermore, the plated film is extremely flexible, with very few cracks occurring even when the plated material is bent.

また、該めっき浴を用いて処理した場合、皮膜中にBや
Pの共析かないのて、柔軟性に富み、低抵抗率と電気導
電性に優れたCu皮膜を得ることができる。
In addition, when the plating bath is used for treatment, a Cu film can be obtained which is highly flexible, has low resistivity, and is excellent in electrical conductivity since no B or P is eutectoid in the film.

また、本めっき浴は、従来のホルマリンを含むアルカリ
浴の有していた問題である臭気がほとんど無く、中性点
近傍のpH域のpHであるため、誤って人体に触れた場
合でも毒性が低く安全である。
In addition, this plating bath has almost no odor, which is a problem with conventional alkaline baths containing formalin, and has a pH in the neutral pH range, so it is not toxic even if it accidentally comes into contact with the human body. Low and safe.

また、本めっき浴は、還元剤としてジメチルアミンボラ
ンのような高価な物質を用いる必要がないので、低コス
トで中性点近傍のpH域での無電解銅めっきを行うこと
かできる。
Furthermore, since this plating bath does not require the use of an expensive substance such as dimethylamine borane as a reducing agent, electroless copper plating can be performed at low cost in a pH range near the neutral point.

また、使い捨ての2液スプレータイプのめつき方法とは
異なり、−液タイプの浸漬タイプの連続浴とすることか
できるので経済的であり、工程を簡略化することができ
る。さらに、本発明の浴は、一つの浴で大気開放状態で
行う浸漬法によって安定的に連続的にめっき処理を行う
ことができるという利点を有する。
Furthermore, unlike the disposable two-component spray type plating method, a continuous dipping bath can be used, which is economical and the process can be simplified. Furthermore, the bath of the present invention has the advantage that plating can be stably and continuously carried out by the immersion method, which is carried out in one bath and open to the atmosphere.

また、Cu”イオンの不均化反応を利用した2液タイプ
の浴に比べて溶液濃度を低くすることができるので、経
済的である。すなわち、本発明では、Cu ”!オンか
らの直接還元反応を利用しているため、極端にCu”イ
オン濃度を濃くしてめっきを行う必要がなく経済的であ
る。
Furthermore, it is economical because the solution concentration can be lowered compared to a two-component type bath that utilizes the disproportionation reaction of Cu'' ions.In other words, in the present invention, Cu''! Since the direct reduction reaction from ion is used, there is no need to perform plating with extremely high Cu'' ion concentration, making it economical.

〔実施例〕〔Example〕

以下、本発明の詳細な説明する。 The present invention will be explained in detail below.

実施例l Cu5Oa・5H20とN2H4−H2SO,および錯
化剤を、第1表に示す条件にて浴温か95°Cの本実施
例にかかる無電解銅めっき浴を用意した(試料番号1〜
11)。
Example 1 An electroless copper plating bath according to this example was prepared using Cu5Oa・5H20, N2H4-H2SO, and a complexing agent under the conditions shown in Table 1 and the bath temperature was 95°C (sample numbers 1 to 1).
11).

次に、このめっき浴の性能評価試験を行った。Next, a performance evaluation test of this plating bath was conducted.

先ず、大きさ30mmX 20mm、厚さ2mmのガラ
スエポキシ基板を常法にて化学エツチングをした後、市
販のPd−3nコロイド触媒(シラプレー、ファーイー
スト社製)を吸着させ、さらに上記ガラス、エポキシ基
板を常法で活性化処理することにより、被試験材料を用
意した。
First, a glass epoxy substrate with a size of 30 mm x 20 mm and a thickness of 2 mm was chemically etched using a conventional method, and then a commercially available Pd-3n colloidal catalyst (Silapray, manufactured by Far East Co., Ltd.) was adsorbed, and then the glass and epoxy substrate were etched. The material to be tested was prepared by activating it in a conventional manner.

次いて、この被試験材料を前記めっき浴中に浸漬し、第
1表に示す処理条件にてめっき処理を施したところ、試
料番号1〜11のめっき浴は、ともに安定的にめっきを
施すことかできた。所定時間経過後、めっき浴より被試
験材料を取り出したところ、本被試験材料は何れも基板
上に均一で平滑なCuめっき皮膜が形成されていた。ま
た、このめっき皮膜をX線回折試験により物質の同定を
したところ、Cu2O等のCu以外の回折線は観測され
ず、純粋なCu皮膜であることか確認された。
Next, this material to be tested was immersed in the plating bath and subjected to plating treatment under the treatment conditions shown in Table 1. The plating baths of sample numbers 1 to 11 all showed stable plating. I was able to do it. When the test materials were taken out from the plating bath after a predetermined period of time had elapsed, uniform and smooth Cu plating films were formed on the substrates of all of the test materials. Further, when this plating film was subjected to an X-ray diffraction test to identify the substance, no diffraction lines other than Cu such as Cu2O were observed, confirming that it was a pure Cu film.

なお、比較のために、錯化剤として第2表に示すものを
用いたほかは、本実施例1と同様にして比較用めっき液
を作成しく試料番号Cl−C6)、同様に被試験材料に
めっき処理を施し、該被試験材料の性能評価試験を行っ
た。その結果、試料番号01〜C3ては、めっき浴は著
しく不安定て建浴直後に室温で急激に分解し、Cu2O
を主成分とする沈澱か大量に生成し、めっきを行うこと
かできなかった。また、従来技術の高アルカリ−ホルム
アルデヒド浴で用いられているEDTAを錯化剤とした
試料番号C4では、めっき速度が著しく遅く、はとんど
めっきは生成しなかった。さらに、pHか本発明の範囲
外である比較用めっき浴ては、試料番号C5ではめっき
速度か非常に小さく、試料番号C6ではめっき浴が不安
定となり液内のあちこちでCuの析出が起こり分解して
しまった。
For comparison, a comparative plating solution was prepared in the same manner as in Example 1, except that the complexing agent shown in Table 2 was used. The material to be tested was subjected to a plating treatment, and a performance evaluation test was conducted on the material. As a result, in sample numbers 01 to C3, the plating baths were extremely unstable and rapidly decomposed at room temperature immediately after bath preparation, resulting in Cu2O
A large amount of precipitate was formed, and plating could not be carried out. Furthermore, in sample No. C4 in which EDTA, which is used in the conventional highly alkaline formaldehyde bath, was used as a complexing agent, the plating rate was extremely slow, and no plating was formed at all. Furthermore, in comparison plating baths whose pH was outside the range of the present invention, the plating rate was very low in sample number C5, and the plating rate in sample number C6 became unstable, causing Cu to precipitate here and there in the solution and decompose. have done.

以上より明らかの如く、本実施例のめつき浴は、還元剤
として高価なアミンボラン類を用いることなく安価なヒ
ドラジンを用いることにより、密着性に優れた良質の柔
軟性に優れたCuめつき皮膜が得られていることか分る
As is clear from the above, the plating bath of this example uses inexpensive hydrazine as a reducing agent without using expensive amine borane, thereby producing a high-quality, flexible Cu plating film with excellent adhesion. You can see that you are getting it.

実施例2 CuSOa・5H20とN2H4および第2表に示す錯
化剤を第2表に示す組成比で混合し、pHが9、浴温が
95°Cの本実施例にかかる無電解銅めっき浴を用意し
た(試料番号12〜25)。
Example 2 An electroless copper plating bath according to this example was prepared by mixing CuSOa・5H20, N2H4, and the complexing agent shown in Table 2 in the composition ratio shown in Table 2, and having a pH of 9 and a bath temperature of 95°C. were prepared (sample numbers 12 to 25).

次に、このめっき浴の性能評価試験を行った。Next, a performance evaluation test of this plating bath was conducted.

先ず、大きさ30X20mm、厚さ0.3+nn+の銅
板を被試験材料として用意した。
First, a copper plate having a size of 30×20 mm and a thickness of 0.3+nn+ was prepared as a material to be tested.

次いで、この被試験材料を前記めっき浴中に浸漬し、第
2表に示す処理条件にてめっき処理を施した。所定時間
経過後、めっき浴より被試験材料を取り出したところ、
本被試験材料は何れも基板上に均一で平滑なCuめっき
皮膜か形成されていた。また、このめっき皮膜をX線回
折試験により物質の同定をしたところ、Cu2O等のC
u以外の回折線は観測されず、純粋なCu皮膜であるこ
とか確認された。さらに、得られた銅皮膜の柔軟性を9
0°曲げ試験により、目視て調べたところ大きなりラッ
クは観測されなかった。
Next, this test material was immersed in the plating bath and subjected to plating treatment under the treatment conditions shown in Table 2. When the test material was removed from the plating bath after the predetermined time had elapsed,
In all of the materials to be tested, a uniform and smooth Cu plating film was formed on the substrate. In addition, when we conducted an X-ray diffraction test to identify the substances in this plating film, we found that carbon dioxide such as Cu2O
No diffraction lines other than u were observed, confirming that it was a pure Cu film. Furthermore, the flexibility of the obtained copper film was increased by 9
When visually inspected in the 0° bending test, no large rack was observed.

なお、試料番号20では、めっき浴は分解し、めっきを
行うことができなかった。これは、錯化剤の濃度かCu
2+錯イオンのモル数の2倍未満であるためと考えられ
る。また、試料番号21ではめっき速度は著しく低下し
た。これは、錯化剤の濃度かCu ”錯イオンのモル数
の25倍を超え、浴が安定化しすぎたためと考えられる
。さらに、試料番号22では、めっき速度か著しく低下
したこれは、ヒドラジンの濃度か銅錯イオンの1/10
未満であるためと考えられる。また、試料番号23では
、めっき浴かやや不安定となった。これは、ヒドラジン
の濃度か銅錯イオンの2倍を越えたためと考えられる。
In addition, in sample number 20, the plating bath was decomposed and plating could not be performed. This depends on the concentration of the complexing agent or Cu
This is thought to be because the number of moles is less than twice the number of moles of the 2+ complex ion. Furthermore, in sample number 21, the plating speed was significantly reduced. This is thought to be because the concentration of the complexing agent exceeded 25 times the number of moles of Cu'' complex ions, making the bath too stable. Furthermore, in sample No. 22, the plating rate decreased significantly. Concentration or 1/10 of copper complex ion
This is thought to be because it is less than In addition, in sample number 23, the plating bath became somewhat unstable. This is considered to be because the concentration of hydrazine exceeded twice that of copper complex ions.

また、試料番号24ではめっき速度かやや小さく、試料
番号25ではめっき浴はやや不安定となった。
Further, in sample number 24, the plating speed was slightly low, and in sample number 25, the plating bath became slightly unstable.

以上より、本実施例では、銅錯イオンの濃度が0.02
〜0.4モル、キレート化性アミンの濃度が該銅錯イオ
ンの2〜25倍であり、かつヒドラジン類の濃度が銅錯
イオンのl/10〜2倍であることが好ましいことが分
る。
From the above, in this example, the concentration of copper complex ions is 0.02
~0.4 mol, it is found that it is preferable that the concentration of the chelating amine is 2 to 25 times that of the copper complex ion, and that the concentration of hydrazines is 1/10 to 2 times that of the copper complex ion. .

実施例3 第3表に示す銅化合物0.04モル、ヒドラジン類0.
04モルおよびキレート化性アミンを、同表に示す組成
比で混合し、浴温が95°Cの本実施例にかかる無電解
銅めっき浴を用意した(試料番号26〜33)。
Example 3 0.04 mol of copper compounds shown in Table 3, 0.04 mol of hydrazines.
Electroless copper plating baths according to this example having a bath temperature of 95° C. were prepared by mixing 0.4 mole and chelating amine in the composition ratio shown in the same table (sample numbers 26 to 33).

次に、このめっき浴の性能評価試験を行った。Next, a performance evaluation test of this plating bath was conducted.

先ず、実施例2と同様に被試験材料を用意し、次いで、
該被試験材料を前記めっき洛中に浸漬し、同様の処理条
件にてめっき処理を施した。
First, the material to be tested was prepared in the same manner as in Example 2, and then
The material to be tested was immersed in the above-mentioned plating solution and subjected to plating treatment under the same treatment conditions.

所定時間経過後、めっき浴より被試験材料を取り出した
ところ、本被試験材料は何れも基板上に均一で平滑なC
uめっき皮膜が形成されていた。
After the predetermined period of time had elapsed, the test materials were removed from the plating bath.
A u plating film was formed.

また、このめっき皮膜をX線回折試験により物質の同定
をしたところ、Cu2O等のCu以外の回折線は観測さ
れず、純粋なCu皮膜であることか確認された。さらに
、得られた銅皮膜の柔軟性を90°曲げ試験により、目
視で調へたところ、クラックは観測されなかった。
Further, when this plating film was subjected to an X-ray diffraction test to identify the substance, no diffraction lines other than Cu such as Cu2O were observed, confirming that it was a pure Cu film. Furthermore, when the flexibility of the obtained copper film was visually examined by a 90° bending test, no cracks were observed.

第4表より明らかのごとく、本実施例では、還元剤とし
て抱水ヒドラジン(N2H4・N20)、塩酸ヒドラジ
ン(N2H4・28CIり硫酸ヒドラジン(N2H4・
H2S04)、メチルヒドラジン硫酸塩等の何れのヒド
ラジンを用いても同様に密着性に優れた良質の柔軟性に
優れたCuめつき皮膜か得られていることが分る。
As is clear from Table 4, in this example, the reducing agents used were hydrazine hydrate (N2H4・N20), hydrazine hydrochloride (N2H4・28CI, hydrazine sulfate (N2H4・N20),
It can be seen that a Cu-plated film of good quality and excellent flexibility with excellent adhesion was similarly obtained no matter which hydrazine was used, such as H2S04) or methylhydrazine sulfate.

また、主錯化剤のキレート化性アミン(エチレンジアミ
ン)に、さらに(NH,)2SO,、イミダゾール、ク
アドール、トリエタノールアミンを適量添加することに
より、めっき速度を向上できることが分る。
It is also found that the plating rate can be improved by adding appropriate amounts of (NH,)2SO, imidazole, quadol, or triethanolamine to the chelating amine (ethylenediamine) as the main complexing agent.

また、銅化合物として、Cu CI! !、(: u 
S O4、Cu N O3等のものを用いても同様に密
着性に優れた良質の柔軟性に優れたCuめつき皮膜が得
られていることか分る。
In addition, as a copper compound, Cu CI! ! , (: u
It can be seen that even when S O4, Cu N O3, etc. are used, a Cu plating film with excellent adhesion, high quality, and excellent flexibility can be obtained.

実施例4 CuSO4・5H20を0.12モルとN2H,・H2
SO4を0.04モル、およびグアドール0.06モル
とエチレンジアミン0.96モルとを混合し、pHか9
、浴温か90°Cの本実施例にかかる無電解銅めっき浴
を用意した。
Example 4 0.12 mol of CuSO4.5H20 and N2H, .H2
Mix 0.04 mol of SO4, 0.06 mol of guadol, and 0.96 mol of ethylenediamine, and adjust the pH to 9.
An electroless copper plating bath according to this example having a bath temperature of 90°C was prepared.

次に、このめっき浴の性能評価試験を行った。Next, a performance evaluation test of this plating bath was conducted.

先ず、大きさ50X50mm、厚さ1mmの純AA製の
板(AIloo)を用意し、2X2mm口のめっき面を
形成し、それ以外はマスキング樹脂で被覆して被試験材
料とした。
First, a pure AA plate (AIloo) having a size of 50 x 50 mm and a thickness of 1 mm was prepared, a plated surface with a 2 x 2 mm opening was formed, and the rest was covered with masking resin to be used as a test material.

次いて、この被試験材料をN1−P無電解めっきを0.
5μm形成した後、前記めっき浴中に浸漬してめっきを
1時間施した。次いて、得られためっき面にはんだ食わ
れ防止のためにN1−Pめっきを薄く施した後、Snめ
っきCu線を介してはんだ付けを行い、ピーリングテス
ターによって密着強度を測定した。その結果、8 kg
/2mm口以上の値が得られ、破壊箇所ははんだ部であ
った。
Next, this material to be tested was subjected to N1-P electroless plating at 0.
After forming a 5 μm thick film, it was immersed in the plating bath and plated for 1 hour. Next, a thin layer of N1-P plating was applied to the obtained plated surface to prevent solder corrosion, and then soldering was performed via a Sn-plated Cu wire, and the adhesion strength was measured using a peeling tester. As a result, 8 kg
A value of /2 mm or more was obtained, and the broken point was the solder part.

比較−のために、還元剤としてホルムアルデヒドを0.
08モル、錯化剤としてEDTAを0.08モル、Cu
”−イオン供給化合物としてCu S Oa・5H70
を0.04モルを用いて比較用のアルカリ性無電解銅め
っき浴(pH12,6、浴温60”C)を用意した。次
いで、前記と同様に性能評価試験を試みたが、薄いNi
膜のピンホールを通じてAI!が激しく腐食され、めっ
き皮膜のふくれや欠陥が生じ、密着力はほとんどなく、
密着強度試験に供することができなかった。
For comparison, 0.0% formaldehyde was used as the reducing agent.
08 mol, 0.08 mol of EDTA as a complexing agent, Cu
”-CuSOa・5H70 as ion-supplying compound
A comparative alkaline electroless copper plating bath (pH 12.6, bath temperature 60"C) was prepared using 0.04 mol of Ni.Next, a performance evaluation test was attempted in the same manner as above.
AI through the pinhole in the membrane! is severely corroded, causing blisters and defects in the plating film, and almost no adhesion.
It was not possible to subject it to an adhesion strength test.

Claims (1)

【特許請求の範囲】[Claims] (1)銅−錯イオンを供給する銅化合物と還元剤と銅イ
オンの錯形成剤とからなる無電解銅めっき浴において、
還元剤としてのヒドラジン類と、銅イオンの錯形成剤と
してのキレート化性アミンとから成り、浴のpHが6以
上10以下である無電解銅めっき浴。
(1) In an electroless copper plating bath consisting of a copper compound that supplies copper-complex ions, a reducing agent, and a copper ion complex forming agent,
An electroless copper plating bath comprising hydrazines as a reducing agent and a chelating amine as a copper ion complex forming agent, and having a pH of 6 or more and 10 or less.
JP8957590A 1990-04-04 1990-04-04 Electroless copper plating bath Pending JPH03287780A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8957590A JPH03287780A (en) 1990-04-04 1990-04-04 Electroless copper plating bath

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8957590A JPH03287780A (en) 1990-04-04 1990-04-04 Electroless copper plating bath

Publications (1)

Publication Number Publication Date
JPH03287780A true JPH03287780A (en) 1991-12-18

Family

ID=13974602

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8957590A Pending JPH03287780A (en) 1990-04-04 1990-04-04 Electroless copper plating bath

Country Status (1)

Country Link
JP (1) JPH03287780A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0474870A (en) * 1990-07-13 1992-03-10 Ebara Yuujiraito Kk Electroless copper plating solution
JP2002111144A (en) * 2000-10-03 2002-04-12 Hitachi Ltd Wiring board and its manufacturing method and electroless copper plating liquid used for the manufacturing method
JP2006219724A (en) * 2005-02-10 2006-08-24 Alps Electric Co Ltd Electroless plating process
WO2021009951A1 (en) * 2019-07-17 2021-01-21 上村工業株式会社 Electroless copper plating bath

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0474870A (en) * 1990-07-13 1992-03-10 Ebara Yuujiraito Kk Electroless copper plating solution
JP2002111144A (en) * 2000-10-03 2002-04-12 Hitachi Ltd Wiring board and its manufacturing method and electroless copper plating liquid used for the manufacturing method
JP2006219724A (en) * 2005-02-10 2006-08-24 Alps Electric Co Ltd Electroless plating process
WO2021009951A1 (en) * 2019-07-17 2021-01-21 上村工業株式会社 Electroless copper plating bath
CN112534082A (en) * 2019-07-17 2021-03-19 上村工业株式会社 Electroless copper plating bath

Similar Documents

Publication Publication Date Title
EP1322798B1 (en) Bath and method of electroless plating of silver on metal surfaces
US6860925B2 (en) Printed circuit board manufacture
TWI273146B (en) Method for manufacturing copper-resin composite material
JPS6344822B2 (en)
EP0795043A1 (en) Silver plating
JPS5818430B2 (en) Electroless plating bath and plating method
US9551073B2 (en) Method for depositing a first metallic layer onto non-conductive polymers
GB2036755A (en) Accelerating solution and its use in a process for treating polymeric substrates prior to plating
WO2013061773A1 (en) Reducing electroless silver plating solution and reducing electroless silver plating method
TW201741497A (en) Copper plating solution and copper plating method
JPH0247551B2 (en)
WO2002016668A1 (en) Electroless displacement gold plating solution and additive for preparing said plating solution
EP3060696A1 (en) Method of selectively treating copper in the presence of further metal
JP2007009305A (en) Electroless palladium plating liquid, and three layer-plated film terminal formed using the same
JPH0341549B2 (en)
US20160108254A1 (en) Zinc immersion coating solutions, double-zincate method, method of forming a metal plating film, and semiconductor device
JPH03287780A (en) Electroless copper plating bath
JPH03287779A (en) Electroless copper plating bath
JP4230813B2 (en) Gold plating solution
WO1998049367A1 (en) Bismuth coating protection for copper
TWI804539B (en) Electroless gold plating bath
JPS6324072A (en) Electroless palladium-nickel alloy plating liquid
JPH0734258A (en) Substitution type gold electroless plating liquid
CN115491682B (en) Environment-friendly normal-temperature tin stripping liquid and preparation method thereof
JPH05295558A (en) High-speed substitutional electroless gold plating solution