JPH03287576A - Production of quinolinic acid - Google Patents

Production of quinolinic acid

Info

Publication number
JPH03287576A
JPH03287576A JP8943990A JP8943990A JPH03287576A JP H03287576 A JPH03287576 A JP H03287576A JP 8943990 A JP8943990 A JP 8943990A JP 8943990 A JP8943990 A JP 8943990A JP H03287576 A JPH03287576 A JP H03287576A
Authority
JP
Japan
Prior art keywords
quinoline
acid
reaction
chlorate
aqueous medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8943990A
Other languages
Japanese (ja)
Inventor
Yoshiro Furukawa
喜朗 古川
Keishirou Nagao
惠四郎 長尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Soda Co Ltd
Original Assignee
Daiso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiso Co Ltd filed Critical Daiso Co Ltd
Priority to JP8943990A priority Critical patent/JPH03287576A/en
Publication of JPH03287576A publication Critical patent/JPH03287576A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain at low cost in an easily available manner in an industrially advantageous way without formation of by-products the title compound useful as an intermediate for pressure-sensitive coloring matters, medicines, pesticides etc., by adding methanol and a cholorate to quinoline in an acidic aqueous medium to effect oxidation. CONSTITUTION:The objective quinolinic acid can be obtained by adding methanol and a chlorate to quinoline in an acidic aqueous medium to effect oxidation. The acid to be used in said medium is pref. a mineral acid such as nitric or hydrochloric acid (esp. sulfuric acid), its amount being 3-10 (pref. 5-7) acid equivalent per mol of the quinoline. The reaction is carried out pref. at 40 deg.C to the reflex temperature of the reaction fluid (esp. 50-80 deg.C).

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、感圧色素、医薬、農薬等に有用な中間体であ
るキノリン#1.(別名2.3−ピリジンジカルボン酸
〉の新規の製造法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention provides quinoline #1. This invention relates to a new method for producing 2,3-pyridinedicarboxylic acid (also known as 2,3-pyridinedicarboxylic acid).

(従来の技術) キノリン酸の一般的合戒法としては、キノリン若しくは
そのベンゼン環部位を活性化した8−ヒドロキシキノリ
ン誘導体を酸化して得る方法がある。しかしながらこれ
までの合成法には種々の問題があった。
(Prior Art) As a general method for producing quinolinic acid, there is a method of obtaining it by oxidizing quinoline or an 8-hydroxyquinoline derivative with its benzene ring moiety activated. However, conventional synthesis methods have had various problems.

例えばキノリンをアルカリ媒体中過マンガン酸カリウム
で酸化する方法(Ber、Dtsch、Chem、Ge
s、 。
For example, oxidation of quinoline with potassium permanganate in an alkaline medium (Ber, Dtsch, Chem, Ge
s.

土!、747 (1879))は、反応条件が厳しく、
選択性が非常に低く、多量の副生成物が生じるという欠
点がある。
soil! , 747 (1879)), the reaction conditions were harsh;
The disadvantage is that the selectivity is very low and a large amount of by-products are produced.

キノリンを銅イオン存在下過酸化水素で酸化する方法(
Che+m、Ber、、 65 、11  (1932
))は、操作が極めて困難な上過剰の酸化剤を用いるに
も拘わらず収率が十分でない。
Method of oxidizing quinoline with hydrogen peroxide in the presence of copper ions (
Che+m, Ber, 65, 11 (1932
)) is extremely difficult to operate, and even though an excess of oxidizing agent is used, the yield is insufficient.

キノリンをルテニウム化合物存在下塩基性水媒体中次亜
塩素酸塩で酸化する方法(特開昭60−84270及び
特開昭6l−212563)では工業的に人手容易な次
亜塩素酸ナトリウムを用いるが、その濃度5〜15%と
希薄なことから、収量当りの反応容積が大きくなるとい
う欠点がある。
In the method of oxidizing quinoline with hypochlorite in a basic aqueous medium in the presence of a ruthenium compound (JP-A-60-84270 and JP-A-6L-212563), sodium hypochlorite, which is industrially easy to handle, is used. , since its concentration is dilute at 5 to 15%, it has the disadvantage that the reaction volume per yield is large.

キノリンをバナジウムイオン等の陽イオンの存在下酸性
水媒体中過酸化水素で予備酸化した後塩素酸塩又は亜塩
素酸塩で酸化する方法(特開昭6O−156673)は
、反応の温度制御が極めて難しい上に、二段階の酸化が
必要で操作が面倒である。
A method in which quinoline is pre-oxidized with hydrogen peroxide in an acidic aqueous medium in the presence of cations such as vanadium ions, and then oxidized with chlorate or chlorite (Japanese Patent Application Laid-open No. 6O-156673), allows temperature control of the reaction. In addition to being extremely difficult, it requires two stages of oxidation and is cumbersome to operate.

キノリンを酸性水媒体中塩素酸塩で酸化する方法(特開
昭62−209063)は銅イオンの非存在下では収率
が低く、工業的に価値ある収率を得るためには、銅イオ
ン存在下で行わなければならない、従って、キノリン酸
は銅塩の形で得られるため、銅塩の分解工程が必要とな
る。
The method of oxidizing quinoline with chlorate in an acidic aqueous medium (Japanese Unexamined Patent Publication No. 62-209063) has a low yield in the absence of copper ions, and in order to obtain an industrially valuable yield, it is necessary to Therefore, since quinolinic acid is obtained in the form of copper salts, a copper salt decomposition step is required.

8−ヒドロキシキノリン誘導体を酸化する方法としては
、8−ヒドロキシキノリンを硝酸で酸化する方法(Ch
es、Ber、、 80.505 (1947))。
As a method of oxidizing 8-hydroxyquinoline derivatives, a method of oxidizing 8-hydroxyquinoline with nitric acid (Ch
es, Ber, 80.505 (1947)).

8−ヒドロキシキノリンをバナジウムイオン存在下酸性
水媒体中塩素酸イオンで酸化する方法(特開昭58−1
05964)、8−ヒドロキシキノリン−5−スルホン
酸をバナジウムイオン存在下、亜塩素酸ナトリウムで酸
化する方法(西独特許945147)、8−ヒドロキシ
キノリンを塩基性水媒体中で過酸化水素を用いて酸化す
る方法(特開昭63−119466)、8−ヒドロキシ
キノリンを塩基性水媒体中で過酸化水素で予備酸化した
後、pH調整後次亜塩素酸塩で酸化する方法(特開平1
−268677)等が挙げられる。しかしながら、これ
らは原料の入手が容易でない上に高価であるため工業的
に価値ある方法とはいえない。
A method of oxidizing 8-hydroxyquinoline with chlorate ions in an acidic aqueous medium in the presence of vanadium ions (JP-A-58-1
05964), a method for oxidizing 8-hydroxyquinoline-5-sulfonic acid with sodium chlorite in the presence of vanadium ions (West German patent 945147), oxidizing 8-hydroxyquinoline with hydrogen peroxide in a basic aqueous medium A method in which 8-hydroxyquinoline is preoxidized with hydrogen peroxide in a basic aqueous medium, and then oxidized with hypochlorite after adjusting the pH (Japanese Patent Application Laid-Open No. 1983-11946)
-268677), etc. However, these methods are not industrially valuable because the raw materials are not easily available and are expensive.

(発明が解決しようとする課!す 本発明者らは、上記の欠点を改善するため、安価で容易
に入手できる出発物質から温和な条件下、高収率にキノ
リン酸を製造する目的で鋭意検討した。その結果、酸性
水媒体中でキラリンにメタノールと塩素酸塩とを添加し
て、反応系中で発生する二酸化塩素を真の酸化剤として
作用させることによってベンゼン環部位を活性化せずと
もキノリン酸が選択性よく得られることを見出し、本発
明ルと塩素酸塩とを添加して該キノリンを酸化すること
を特徴とするキノリン酸の製造法である。
(Issues to be Solved by the Invention!) In order to improve the above-mentioned drawbacks, the present inventors have worked diligently to produce quinolinic acid in high yield under mild conditions from inexpensive and easily available starting materials. As a result, methanol and chlorate were added to chiralin in an acidic aqueous medium, and the chlorine dioxide generated in the reaction system acted as a true oxidizing agent, without activating the benzene ring moiety. It has been discovered that quinolinic acid can be obtained with good selectivity, and this method is characterized in that the quinoline of the present invention and a chlorate are added to oxidize the quinoline.

また本発明は、ルテニウム化合物存在下で該酸化反応を
行う方法である。
Further, the present invention is a method of carrying out the oxidation reaction in the presence of a ruthenium compound.

酸化剤として塩素酸イオンを用いる方法としては、既に
キノリンを酸性水媒体中、塩素酸イオンで酸化する方法
(特開昭62−209063号公報参照、)が開示され
ているが、本発明はメタノールと塩素酸塩とを用いるこ
とにより、反応式(1)%式% に従って反応系内に発生した二酸化塩素が酸化剤として
作用するので、塩素酸イオンを単独で用いた場合より高
い選択性が得られるものと考えられる。
As a method using chlorate ions as an oxidizing agent, a method has already been disclosed in which quinoline is oxidized with chlorate ions in an acidic aqueous medium (see Japanese Patent Application Laid-Open No. 62-209063). By using chlorate and chlorate, the chlorine dioxide generated in the reaction system acts as an oxidizing agent according to reaction formula (1)% formula %, so higher selectivity can be obtained than when chlorate ion is used alone. It is considered that the

本発明に用いる塩素酸イオンの供給源としては、通常の
水溶性塩素酸金属塩類を使用することができる。金属塩
の種類には何等制限されないが、−般にリチウム、カリ
ウム、ナトリウム等のアルカリ金属塩、特に工業的に安
価に入手できる塩素酸ナトリウムが適している。
As a source of chlorate ions used in the present invention, common water-soluble chlorate metal salts can be used. Although the type of metal salt is not limited in any way, alkali metal salts such as lithium, potassium, and sodium are generally suitable, particularly sodium chlorate, which is industrially available at low cost.

塩素酸塩の使用量は、キノリン1モルに対して3〜10
モル、好ましくは4〜7モルである。3モル未満では反
応の転化率が低く大量の未反応キノリンが回収される。
The amount of chlorate used is 3 to 10 per mole of quinoline.
mol, preferably 4 to 7 mol. If it is less than 3 moles, the reaction conversion rate will be low and a large amount of unreacted quinoline will be recovered.

逆に10モルを超えると、二酸化塩素の発生が激しくな
り、塩素酸塩が無為に消費されるだけであり、増量に見
合うだけの収2率向上は見られない。
On the other hand, if the amount exceeds 10 moles, chlorine dioxide will be generated intensely, chlorate will be wasted, and the yield will not improve to the extent that the increase in amount corresponds to the increase.

メタノールの使用量は、好ましくは塩素酸塩の使用量の
0.15〜0.35倍モル、より好ましくは0.2〜0
.3倍モルである。0.15倍モル未満では二酸化塩素
の発生量が少なくてメタノールを添加する効果が小さく
、また0、35倍モルを超える量を添加するとべ応式(
2) %式% に従って塩素の発生量が次第に多くなり、転化率。
The amount of methanol used is preferably 0.15 to 0.35 times the amount of chlorate used, more preferably 0.2 to 0.
.. It is 3 times the mole. If it is less than 0.15 times the mole, the amount of chlorine dioxide generated is small and the effect of adding methanol is small, and if it is added in an amount exceeding 0.35 times the mole, the
2) The amount of chlorine generated gradually increases according to the % formula, the conversion rate.

選択性がいずれも減少し副生酸物が多くなってくるので
好ましくない。
Both are unfavorable because the selectivity decreases and the amount of by-product acids increases.

尚塩素酸塩の水溶液とメタノールを混合しても特に反応
は起らないので、キノリンの酸性水媒体中に予め塩素酸
塩の水溶液とメタノールとを混合した液を添加するか、
キノリンの酸性水媒体中に塩素酸塩の水溶液とメタノー
ルを同時に別々に添加するかのいずれの方法も適用可能
である。
Note that no particular reaction occurs when an aqueous solution of chlorate and methanol are mixed, so either a mixture of an aqueous solution of chlorate and methanol is added in advance to the acidic aqueous medium of quinoline, or
Any method of simultaneously and separately adding an aqueous solution of chlorate and methanol to an acidic aqueous medium of quinoline is applicable.

また、反応系外で発生させた二酸化塩素を系内に導入す
る方法でも反応は進行するものの、二酸化塩素の反応液
中への吸収速度が遅い(特に50℃以上の反応液の場合
、)ので、本発明の方法より転化率が小さくなり好まし
くない。
In addition, although the reaction proceeds by introducing chlorine dioxide generated outside the reaction system into the system, the absorption rate of chlorine dioxide into the reaction solution is slow (especially in the case of a reaction solution at 50°C or higher). , the conversion rate is lower than that of the method of the present invention, which is not preferable.

本発明の酸性水媒体に用いる酸としては、硝酸。The acid used in the acidic aqueous medium of the present invention is nitric acid.

燐酸、特に硫酸のような鉱酸が適している。但し、塩酸
は塩素酸塩と反応して塩素を生じるので好ましくない。
Mineral acids such as phosphoric acid and especially sulfuric acid are suitable. However, hydrochloric acid is not preferred because it reacts with chlorate to produce chlorine.

酸の使用量はキノリン1モルに対して3〜10の酸当量
、好ましくは5〜7の酸当量である。また酸性水媒体の
酸濃度は3〜13規定が好ましい。これらの範囲外では
反応率が低下する。
The amount of acid used is 3 to 10 acid equivalents, preferably 5 to 7 acid equivalents per mole of quinoline. Moreover, the acid concentration of the acidic aqueous medium is preferably 3 to 13 normal. Outside these ranges, the reaction rate decreases.

本発明の反応は、好ましくは40℃から反応液の還流温
度まで、より好ましくは50℃から80℃までの温度範
囲で行われる。40℃未満では反応速度が非常に遅くな
り実用的でなく、また選択性も殆んど向上しない。一方
温度を上げるに従って反応速度は速くなり、二酸化塩素
の発生速度も速くなるものの二酸化塩素の過剰分の溶解
度が低下するので、転化率は徐々に下ってくる。従って
前記の反応温度範囲が好ましい。本発明の反応は、特に
加圧又は減圧で行う必要はない。
The reaction of the present invention is preferably carried out at a temperature ranging from 40°C to the reflux temperature of the reaction solution, more preferably from 50°C to 80°C. If it is lower than 40°C, the reaction rate becomes extremely slow and is not practical, and the selectivity is hardly improved. On the other hand, as the temperature increases, the reaction rate increases and the rate of generation of chlorine dioxide also increases, but the solubility of excess chlorine dioxide decreases, so the conversion rate gradually decreases. Therefore, the above reaction temperature range is preferred. The reaction of the present invention does not particularly need to be carried out under elevated or reduced pressure.

本発明は触媒なしでも十分高い収率で反応することがで
きるが、ルテニウム化合物を存在させるのが望ましい、
ルテニウム化合物の存在により、反応の転化率を向上さ
せることができ、1バフチ当りの収量が更に向上する。
Although the present invention can perform the reaction in sufficiently high yield without a catalyst, it is desirable to have a ruthenium compound present.
The presence of the ruthenium compound can improve the conversion rate of the reaction and further improve the yield per batch.

本発明に触媒として用いるルテニウム化合物の例として
は、四酸化ルテニウム、三塩化ルテニウム、二酸化ルテ
ニウムを挙げることができる。ルテニウム化合物の使用
量はキノリン1モルに対して104〜104モル、好ま
しくは10−4〜1O−3モルである。10−’モル未
満では触媒添加の効果が小さい、10−”モルを超える
使用量は勿論−層早い反応速度が得られるが、コスト面
で問題となる。
Examples of the ruthenium compound used as a catalyst in the present invention include ruthenium tetroxide, ruthenium trichloride, and ruthenium dioxide. The amount of the ruthenium compound used is 104 to 104 mol, preferably 10-4 to 10-3 mol, per 1 mol of quinoline. If the amount is less than 10-' mole, the effect of the addition of the catalyst is small; if it is more than 10-' mole, a faster reaction rate can be obtained, but this poses a problem in terms of cost.

本発明の更に有利な点は、反応副生成物が非常に少ない
ので、反応終了時にキノリン酸の結晶が比較的高い純度
で反応液より晶出し、必要に応じて溶媒による洗浄、再
結晶等の通常の精製手段により高純度にできる点である
。これは塩素酸塩を用いる従来技術(特開昭60−15
6673.特開昭62−209063号公報参照。)と
大きく異なる点である。
A further advantage of the present invention is that since there are very few reaction by-products, quinolinic acid crystals with relatively high purity are crystallized from the reaction solution at the end of the reaction, and if necessary, washing with a solvent, recrystallization, etc. The point is that high purity can be obtained by ordinary purification means. This is a conventional technique using chlorate (Japanese Unexamined Patent Publication No. 60-15
6673. See Japanese Patent Application Laid-Open No. 62-209063. ) is very different.

(発明の効果) 本発明は次の如き特徴を有するものである。(Effect of the invention) The present invention has the following features.

(1)原料には安価で入手容易なキノリンを用いること
ができる。ヘンゼン核に特定の活性基を予め導入する必
要がない。
(1) Quinoline, which is inexpensive and easily available, can be used as a raw material. There is no need to introduce specific active groups into the Hensen nucleus in advance.

(2)本発明では、キノリンにメタノールと塩素酸塩と
を添加することにより反応系内に生成する二酸化塩素が
酸化剤として作用するので、簡単な操作で短時間に添加
することができる。
(2) In the present invention, since chlorine dioxide produced in the reaction system by adding methanol and chlorate to quinoline acts as an oxidizing agent, it can be added in a short time with a simple operation.

(3)塩素酸イオンを単独で用いた場合に比べて本発明
の反応の選択性は非常に高く副生rli物が少ない。
(3) Compared to the case where chlorate ion is used alone, the selectivity of the reaction of the present invention is very high and the amount of by-product rli products is small.

(4)本発明の反応は、急激な発熱反応が起らず、温度
制御が極めて容易である。
(4) In the reaction of the present invention, rapid exothermic reaction does not occur, and temperature control is extremely easy.

(5)  ルテニウム化合物を用いる場合もその使用量
は極微量で有効である。
(5) When using a ruthenium compound, it is effective even if the amount used is extremely small.

このように本発明は工業的製法として極めて有利な方法
ということができる。
As described above, the present invention can be said to be an extremely advantageous industrial manufacturing method.

(実施例) 以下本発明を更に具体的に実施例で詳細に説明する。な
お、例中濃度%はいずれも重量基準である。
(Example) The present invention will now be described in more detail with reference to Examples. In addition, all concentration percentages in the examples are based on weight.

実施例1 キノリン16.3g(126ミリモル)、濃硫酸38、
6 g及び水125mlを含む溶液を50℃に加温し、
゛これにメタノール5.1g(160ミリモル)と44
%塩素酸ナトリウム水溶液155g(640zリモル)
の混合液を滴下し、同温度で3時間撹拌した0次に、徐
々に温度を上げ3時間還流させた。
Example 1 16.3 g (126 mmol) of quinoline, 38 g of concentrated sulfuric acid,
A solution containing 6 g and 125 ml of water was heated to 50°C,
゛To this, 5.1 g (160 mmol) of methanol and 44
% sodium chlorate aqueous solution 155g (640z remol)
The mixture was added dropwise and stirred at the same temperature for 3 hours.Then, the temperature was gradually raised and the mixture was refluxed for 3 hours.

室温まで放冷後20%水酸化ナトリウム水溶液でpH1
1に調整し、遊離した未反応キノリンを四塩化炭素で抽
出単離した。水層中のキノリン酸は液体クロマトグラフ
(カラムはハミルトン社製rPRP−1カラム」を使用
、)により定量し、転化率(%)及び選択率(%)は夫
々次式に拠り求めた。
After cooling to room temperature, adjust the pH to 1 with 20% sodium hydroxide aqueous solution.
1, and the liberated unreacted quinoline was extracted and isolated with carbon tetrachloride. Quinolinic acid in the aqueous layer was quantified by liquid chromatography (using an rPRP-1 column manufactured by Hamilton Co.), and the conversion rate (%) and selectivity (%) were determined according to the following formulas.

その結果回収キノリンは6.3g(転化率61.3%〉
、生成したキノリン酸は11.6g(選択率89.6%
)であった。
As a result, the recovered quinoline was 6.3g (conversion rate 61.3%)
, the produced quinolinic acid was 11.6g (selectivity 89.6%
)Met.

実施例2 キノリン16.2g(125′Sリモル)、Iii酸3
8、6 g及び水125mlを含む溶液に4.6×1O
−3モル/l三塩化ルテニウム水溶液1.3 m J(
0,0601リモル)を添加し、撹拌しながら50℃に
加温した。これにメタノール5.0g〈155ξリモル
〉と44%塩素酸ナトリウム水溶液150g (620
ξリモル)の混合液を滴下し、同温度で3時間撹拌した
0次に、徐々に温度を上げ3時間還流させた。室温まで
放冷後実施例1と同様に処理した結果、1回収キノリン
は2.72g(転化率83.2%〉、生成したキノリン
酸は16.1g(選択率92.2%)であった。
Example 2 16.2 g of quinoline (125'S remol), III acid 3
8.6 x 1O in a solution containing 6 g and 125 ml of water.
-3 mol/l ruthenium trichloride aqueous solution 1.3 m J (
0.0601 lmol) was added thereto, and the mixture was heated to 50° C. with stirring. To this, 5.0 g of methanol (155 ξ mol) and 150 g of 44% sodium chlorate aqueous solution (620
A mixed solution of ξ mol) was added dropwise, and the mixture was stirred at the same temperature for 3 hours.Then, the temperature was gradually raised and the mixture was refluxed for 3 hours. After cooling to room temperature, it was treated in the same manner as in Example 1. As a result, 1 recovered quinoline was 2.72 g (conversion rate 83.2%) and quinolinic acid produced was 16.1 g (selectivity 92.2%). .

比較例1 キノリン16.8g(130ミリモル)、濃硫酸38、
6 g及び水125mjを含む溶液を50℃に加温し4
4%塩素酸ナトリウム水溶液150g(620ξリモル
)を滴下し、同温度で3時間撹拌した0次に徐々に温度
を上げ3時間還流させた。
Comparative Example 1 16.8 g (130 mmol) of quinoline, 38 g of concentrated sulfuric acid,
A solution containing 6 g and 125 mj of water was heated to 50°C and 4
150 g (620 ξ mol) of a 4% aqueous sodium chlorate solution was added dropwise, and the mixture was stirred at the same temperature for 3 hours.Then, the temperature was gradually raised and the mixture was refluxed for 3 hours.

室温まで放冷後実施例1と同様に処理した結果、回収キ
ノリンは4.0g<転化率76%)、生成したキノリン
酸は9g(選択率48%)であった。
After cooling to room temperature, the mixture was treated in the same manner as in Example 1. As a result, the recovered quinoline was 4.0 g (conversion rate 76%) and the produced quinolinic acid was 9 g (selectivity 48%).

Claims (2)

【特許請求の範囲】[Claims] (1)酸性水媒体中でキノリンにメタノールと塩素酸塩
とを添加して該キノリンを酸化することを特徴とするキ
ノリン酸の製造法。
(1) A method for producing quinolinic acid, which comprises adding methanol and a chlorate to quinoline in an acidic aqueous medium to oxidize the quinoline.
(2)ルテニウム化合物存在下で行う請求項1記載のキ
ノリン酸の製造法。
(2) The method for producing quinolinic acid according to claim 1, which is carried out in the presence of a ruthenium compound.
JP8943990A 1990-04-03 1990-04-03 Production of quinolinic acid Pending JPH03287576A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8943990A JPH03287576A (en) 1990-04-03 1990-04-03 Production of quinolinic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8943990A JPH03287576A (en) 1990-04-03 1990-04-03 Production of quinolinic acid

Publications (1)

Publication Number Publication Date
JPH03287576A true JPH03287576A (en) 1991-12-18

Family

ID=13970714

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8943990A Pending JPH03287576A (en) 1990-04-03 1990-04-03 Production of quinolinic acid

Country Status (1)

Country Link
JP (1) JPH03287576A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6900330B1 (en) 2002-12-10 2005-05-31 Hebei Sinochem Fuheng Co., Ltd. Process for producing 2,3-pyridinedicarboxylic acid
US7157583B2 (en) 2002-11-07 2007-01-02 Sumikin Air Water Chemical Inc. Process for producing high-purity 2,3-pyridinedicarboxylic acid
CN111004175A (en) * 2019-12-24 2020-04-14 沈阳化工研究院有限公司 Method for preparing nitrogen-containing six-membered ring dicarboxylic acid

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7157583B2 (en) 2002-11-07 2007-01-02 Sumikin Air Water Chemical Inc. Process for producing high-purity 2,3-pyridinedicarboxylic acid
US6900330B1 (en) 2002-12-10 2005-05-31 Hebei Sinochem Fuheng Co., Ltd. Process for producing 2,3-pyridinedicarboxylic acid
CN111004175A (en) * 2019-12-24 2020-04-14 沈阳化工研究院有限公司 Method for preparing nitrogen-containing six-membered ring dicarboxylic acid

Similar Documents

Publication Publication Date Title
JPS61249956A (en) Manufacture of imino ether and novel imino ether having arylsubstituent
JPH03287576A (en) Production of quinolinic acid
JPS6019766A (en) Oxidation of halopyridines
JPH03271275A (en) Production of quinolinic acid
US4549024A (en) Oxidation of quinoline to quinolinic acid
US5155258A (en) Substituted benzoic acids
JPS624247A (en) Manufacture of 4,4'-dinitrodibenzyls
JPH03157371A (en) Production of quinolinic acid
JPH0513150B2 (en)
JPS62169738A (en) Post-treatment of reaction mixture containing cyclohexylhydroperoxide, cyclohexanol and cyclohexanone
JP3547498B2 (en) Method for producing benzothiazolone compound
JP2018008919A (en) Method for producing azo compounds
US4966993A (en) Process for preparation of 3-hydroxy-3-methyl-glutaric acid
JPH0283370A (en) Production of pyridine-2,3-dicarboxylic acids
JPS6137773A (en) Manufacture of imidazole_4(5)_monocarbonic acid, salt or betaine
JP2775319B2 (en) Method for producing diarylethylene glycol
JPH0144187B2 (en)
CN116178129A (en) Preparation method of 2,4, 5-trifluoro-benzoic acid
JPS5845422B2 (en) Method for producing a water-impregnated product of diperisophthalic acid t-butyl ester
JPH07188118A (en) Production of 4,6-dinitroresorcinol and intermediate therefor
JPH11180953A (en) Production of indole-3-carboxylic acid
JPH06771B2 (en) Process for producing oxetane-3-carboxylic acid
KR100322237B1 (en) Process for preparing α-ketocarboxylic acid derivatives
JPS5989688A (en) Novel method for producing 7-amino-3-heterocyclic thiomethyl-delta3-cephem-4-carboxylic acid
CN111056993A (en) Synthetic method of 3-chloromethylpyridine hydrochloride