JPH03157371A - Production of quinolinic acid - Google Patents

Production of quinolinic acid

Info

Publication number
JPH03157371A
JPH03157371A JP29438589A JP29438589A JPH03157371A JP H03157371 A JPH03157371 A JP H03157371A JP 29438589 A JP29438589 A JP 29438589A JP 29438589 A JP29438589 A JP 29438589A JP H03157371 A JPH03157371 A JP H03157371A
Authority
JP
Japan
Prior art keywords
quinoline
acid
chlorite
amount
ruthenium compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29438589A
Other languages
Japanese (ja)
Inventor
Yoshiro Furukawa
喜朗 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Soda Co Ltd
Original Assignee
Daiso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiso Co Ltd filed Critical Daiso Co Ltd
Priority to JP29438589A priority Critical patent/JPH03157371A/en
Publication of JPH03157371A publication Critical patent/JPH03157371A/en
Pending legal-status Critical Current

Links

Landscapes

  • Pyridine Compounds (AREA)

Abstract

PURPOSE:To obtain a compound useful as an intermediate for pressuresensitive dyestuff, drugs, agricultural chemicals, etc., from inexpensive, readily obtainable raw materials by oxidizing quinoline with chlorite ion in the presence of a ruthenium compound. CONSTITUTION:Quinoline is oxidized with chlorite ion in an acidic water medium (e.g. sulfuric acid) in the presence of a ruthenium compound (e.g. ruthenium trichloride) at 40-80 deg.C to give the objective quinolinic acid, namely 2,3- pyridinedicarboxylic acid. 3-8mol chlorite ion is used based on 1mol quinoline, the amount of the acid used as a solvent is 0.4-10 acid equivalent and 10<-5> to 10<-2>mol ruthenium compound is used. 10-50% aqueous solution of sodium chlorite is preferable as the chlorite ion. Since the oxidizing agent is the chlorite having three or more times as much effective chlorine amount as a hypochlorite, reaction volume per yield is reduced.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、感圧色素、医薬、農薬等に有用な中間体であ
る2、3−ピリジンジカルボン酸、すなわちキノリン酸
の新規の製造法に関するものである。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a novel method for producing 2,3-pyridinedicarboxylic acid, i.e., quinolinic acid, which is an intermediate useful in pressure-sensitive dyes, medicines, agricultural chemicals, etc. It is something.

(従来の技術) キノリン酸の一般的な合成法は、キノリン若しくはその
誘導体を酸化して得る方法である。しかしながらこれま
での合成法には種々の問題があった。
(Prior Art) A general method for synthesizing quinolinic acid is to oxidize quinoline or a derivative thereof. However, conventional synthesis methods have had various problems.

例えばキノリンをアルカリ媒体中過マンガン酸カリウム
で酸化する方法(Ber、Dtsch、Chem、Ge
s、。
For example, oxidation of quinoline with potassium permanganate in an alkaline medium (Ber, Dtsch, Chem, Ge
s.

12.747  (1879))は、反応条件が厳しく
、収率が非常に低い上に、多量の副生成物が生じるとい
う欠点がある。
No. 12.747 (1879)) has the drawbacks of severe reaction conditions, very low yield, and production of large amounts of by-products.

キノリンを銅イオン存在下過酸化水素で酸化する方法(
Chem、Ber、、 65. 11  (1932)
 )は、操作が極めて困難な上過剰の酸化剤を用いるに
も拘わらず収率が十分でない。
Method of oxidizing quinoline with hydrogen peroxide in the presence of copper ions (
Chem, Ber,, 65. 11 (1932)
) is extremely difficult to operate, and even though an excess of oxidizing agent is used, the yield is insufficient.

8−ヒドロキシキノリンを硝酸で酸化する方法(Che
m、Ber、、 80. 505  (1947) )
は、文献記載の内容と異なり多量の副生成物が生じ、収
率が低い上に多量の窒素酸化物ガスが生じる。
Method for oxidizing 8-hydroxyquinoline with nitric acid (Che
m, Ber,, 80. 505 (1947))
However, unlike what is described in the literature, a large amount of by-products are produced, the yield is low, and a large amount of nitrogen oxide gas is produced.

8−ヒドロキシキノリンをバナジウムイオン存在下酸性
水媒体中塩素酸イオンで酸化する方法(特開昭58−1
05964)は、温度制御が難しい上にベンゼン環を活
性化するためにヒドロキシル基が必要で原料が高価なも
のであるため工業的に問題となる。また同様に、8−ヒ
ドロキシキノリン−5−スルホン酸をバナジウムイオン
存在下、亜塩素酸ナトリウムで酸化する方法(西独特許
945147)も原料入手が難しく、工業的に価値ある
方法とはいえない。
A method of oxidizing 8-hydroxyquinoline with chlorate ions in an acidic aqueous medium in the presence of vanadium ions (JP-A-58-1
05964) poses an industrial problem because it is difficult to control the temperature and requires a hydroxyl group to activate the benzene ring, making the raw material expensive. Similarly, the method of oxidizing 8-hydroxyquinoline-5-sulfonic acid with sodium chlorite in the presence of vanadium ions (West German Patent No. 945147) is also difficult to obtain raw materials and cannot be said to be an industrially valuable method.

キノリンをバナジウ11イオン等の陽イオンの存在下酸
性水媒体中過酸化水素で予備酸化した後塩素酸塩又は亜
塩素酸塩で酸化する方法(特開昭6O−156673)
は、反応の温度制御が極めて難しい上に、二段階の酸化
が必要で操作が面倒である。
A method in which quinoline is preoxidized with hydrogen peroxide in an acidic aqueous medium in the presence of cations such as vanadium-11 ions, and then oxidized with chlorate or chlorite (JP-A-6O-156673)
In addition to being extremely difficult to control the temperature of the reaction, it requires two-step oxidation, making the operation cumbersome.

キノリンをルテニウム化合物存在下塩基性水媒体中次亜
塩素酸塩で酸化する方法(特開昭60−84270及び
特開昭6l−212563)では工業的に入手容易な次
亜塩素酸ナトリウムを用いるが、その濃度5〜15%と
希薄なことから、収量当りの反応容積が大きくなるとい
う欠点がある。
In the method of oxidizing quinoline with hypochlorite in a basic aqueous medium in the presence of a ruthenium compound (JP-A-60-84270 and JP-A-6L-212563), sodium hypochlorite, which is easily available industrially, is used. , since its concentration is dilute at 5 to 15%, it has the disadvantage that the reaction volume per yield is large.

キノリンを酸性水媒体中塩素酸塩で酸化する方法(特開
昭62−209063)は工業的に価値ある収率を得る
ためには、銅イオン存在下で行わなければならず、キノ
リン酸は銅塩の形で得られる。従って、キノリン酸を得
るためにアルカリ分解する工程が必要になる上に、得ら
れたキノリン酸には多量の銅イオンが含まれるので、後
段の反応に影響を及ぼす。
The method of oxidizing quinoline with chlorate in an acidic aqueous medium (JP 62-209063) must be carried out in the presence of copper ions in order to obtain an industrially valuable yield; Obtained in salt form. Therefore, in order to obtain quinolinic acid, an alkali decomposition step is required, and the obtained quinolinic acid contains a large amount of copper ions, which affects the subsequent reaction.

8−ヒドロキシキノリンを塩基性水媒体中で過酸化水素
を用いて酸化する方法(特開昭63−119466)で
は、過酸化水素添加の際の温度制御が難しい上に、ベン
ゼン環をヒドロキシル基で活性化する必要があり、原料
が高価である欠点を有する。
In the method of oxidizing 8-hydroxyquinoline using hydrogen peroxide in a basic aqueous medium (Japanese Unexamined Patent Publication No. 63-119466), it is difficult to control the temperature when adding hydrogen peroxide, and the benzene ring is not replaced by a hydroxyl group. It has the disadvantage that it requires activation and the raw materials are expensive.

(発明が解決しようとする課題) 本発明者は上記の欠点を改善するため、安価で容易に入
手できる出発物質から温和な条件下、好収率にキノリン
酸を製造する方法を得る目的で鋭意検討した。その結果
、キノリンがルテニウム化合物存在下亜塩素酸イオンに
より、ベンゼン環の活性化をせずともキノリン酸を生成
することを見出し、本発明を完成するに至ったものであ
る。
(Problems to be Solved by the Invention) In order to improve the above-mentioned drawbacks, the present inventor has made efforts to obtain a method for producing quinolinic acid in good yield under mild conditions from inexpensive and easily available starting materials. investigated. As a result, they discovered that quinolinic acid can be produced from quinoline by chlorite ion in the presence of a ruthenium compound without activating the benzene ring, leading to the completion of the present invention.

(課題を解決するための手段) 本発明は、キノリンを酸性水媒体中でルテニウム化合物
存在下、亜塩素酸イオンで酸化することを特徴とするキ
ノリン酸の製造法である。
(Means for Solving the Problems) The present invention is a method for producing quinolinic acid, which is characterized by oxidizing quinoline with chlorite ions in an acidic aqueous medium in the presence of a ruthenium compound.

本発明に用いる亜塩素酸イオンの供給源とじては、通常
の水溶性亜塩素酸金属塩類を使用することができる。金
属塩の種類には何ら制限されないが、一般にアルカリ金
属塩、特に工業的に安価に入手できる亜塩素酸ナトリウ
ム水溶液が適している。亜塩素酸塩水溶液の濃度は、人
手容易さの点で通常10〜50%の範囲であるが、好ま
しくは20〜30%の範囲である。
As the source of chlorite ions used in the present invention, common water-soluble chlorite metal salts can be used. Although there are no restrictions on the type of metal salt, alkali metal salts are generally suitable, particularly aqueous sodium chlorite solutions, which are industrially available at low cost. The concentration of the chlorite aqueous solution is usually in the range of 10 to 50% from the viewpoint of ease of handling, but preferably in the range of 20 to 30%.

亜塩素酸イオンの使用量はキノリン1モルに対し3〜8
モル好ましくは4〜6モルである。3モル未満ではキノ
リン酸の収率が悪く、大量の未反応キノリンが回収され
る。また8モルを超えて用いても収率に大きな変化はな
いが、過剰の亜塩素酸イオンは分解するのみで経済的で
ない。
The amount of chlorite ion used is 3 to 8 per mole of quinoline.
The mole amount is preferably 4 to 6 moles. If it is less than 3 moles, the yield of quinolinic acid is poor and a large amount of unreacted quinoline is recovered. Further, even if more than 8 mol is used, there is no significant change in the yield, but the excess chlorite ion is only decomposed, which is not economical.

反応は酸性水媒体中で行うものである。本発明に用いる
酸としては、塩酸、硝酸、リン酸特に硫酸のような鉱酸
が適している。酸の使用量はキノリン1モルに対し0.
4〜10の酸当量、好ましくは1.0〜8.0当量であ
る。0.4当量未満では反応速度が著しく低く、また1
0当量を超えると副生成物が多くなり収率は低下する。
The reaction is carried out in an acidic aqueous medium. Suitable acids for use in the present invention are mineral acids such as hydrochloric acid, nitric acid, phosphoric acid, especially sulfuric acid. The amount of acid used is 0.00% per mole of quinoline.
Acid equivalents of 4 to 10, preferably 1.0 to 8.0. If the amount is less than 0.4 equivalent, the reaction rate will be extremely low;
If the amount exceeds 0 equivalent, the amount of by-products increases and the yield decreases.

本発明に用いるルテニウム化合物としては、四酸化ルテ
ニウム、三塩化ルテニウム、二酸化ルテニウムを挙げる
ことができる。ルテニウム化合物の存在は本発明の実施
に不可欠で、ルテニウム化合物が存在しないと、反応は
全く進行せず、原料のキノリンを回収するのみである。
Examples of the ruthenium compound used in the present invention include ruthenium tetroxide, ruthenium trichloride, and ruthenium dioxide. The presence of a ruthenium compound is essential for carrying out the present invention; without the ruthenium compound, the reaction will not proceed at all and only the raw material quinoline will be recovered.

また、8−ヒドロキシキノリン−5−スルホン酸を亜塩
素酸ナトリウムで酸化する際(西独特許945147)
に有効な触媒であったバナジン酸アンモニウムは本発明
の反応には全く触媒効果がない。
Also, when oxidizing 8-hydroxyquinoline-5-sulfonic acid with sodium chlorite (West German patent 945147)
Ammonium vanadate, which was an effective catalyst in the present invention, has no catalytic effect at all in the reaction of the present invention.

ルテニウム化合物の使用量はキノリン1モルに対して1
0−5〜10−”モル、好ましくは10−4〜101モ
ルである。10−5モル未満では効果が十分でない、1
0−”モルを超える使用量では、勿論−層速い反応速度
が得られるが、コスト面で問題となる。
The amount of ruthenium compound used is 1 mole of quinoline.
The amount is from 0-5 to 10-'' mol, preferably from 10-4 to 101 mol.If it is less than 10-5 mol, the effect is not sufficient;
If the amount used exceeds 0-'' mol, an even faster reaction rate can of course be obtained, but this poses a problem in terms of cost.

本発明の有用な実施態様の一つは、キノリン及びルテニ
ウム化合物を含む酸性水媒体を適当な添加温度まで加熱
し、これに亜塩素酸塩水溶液を滴下する。滴下終了後反
応温度まで加温し、反応を完了させるものである。
One useful embodiment of the present invention is to heat an acidic aqueous medium containing the quinoline and ruthenium compound to a suitable addition temperature, and add the aqueous chlorite solution dropwise thereto. After the dropwise addition is completed, the mixture is heated to the reaction temperature to complete the reaction.

亜塩素酸塩水溶液を滴下すべき添加温度は、本発明を実
施するにあたって重要であり、−Sには40〜80℃、
好ましくは50〜70℃である。
The addition temperature at which the chlorite aqueous solution is added dropwise is important in carrying out the present invention;
Preferably it is 50 to 70°C.

40℃未満で滴下を行うと反応温度まで加温した際反応
が急激に進行し、温度制御が困難になる。
If the dropwise addition is carried out at a temperature below 40°C, the reaction will proceed rapidly upon heating to the reaction temperature, making temperature control difficult.

また、80℃を超えて滴下すると亜塩素酸塩の分解が著
しくなり、収率が低下する。
Furthermore, if the temperature exceeds 80° C., the decomposition of chlorite becomes significant and the yield decreases.

反応温度は80℃から酸性水媒体の還流温度までの範囲
が好ましい。80℃未満では反応速度が遅く、亜塩素酸
塩の分解が優先して生ずるので好ましくない。
The reaction temperature is preferably in the range from 80°C to the reflux temperature of the acidic aqueous medium. If the temperature is lower than 80°C, the reaction rate is slow and the decomposition of chlorite occurs preferentially, which is not preferable.

反応終了後反応溶液を室温まで冷却するとキノリン酸が
析出する。結晶を分離洗浄した後、炉液中に残存してい
る少量のキノリン酸は銅イオン添加により銅塩として単
離することができる。この場合の銅イオン必要量は生成
したキノリン酸全量を銅塩として単離する場合の20%
以下であり、また銅イオンの存在下キノリンを塩素酸塩
で酸化する方法(特開昭62−209063)の場合の
10%以下である。このように本発明によれば銅イオン
の使用量及び製品キノリン酸中の銅イオン混入量を微量
に抑えることができる。
After the reaction is completed, the reaction solution is cooled to room temperature, and quinolinic acid is precipitated. After separating and washing the crystals, a small amount of quinolinic acid remaining in the furnace solution can be isolated as a copper salt by adding copper ions. In this case, the required amount of copper ions is 20% of the amount required when the total amount of quinolinic acid produced is isolated as a copper salt.
It is also 10% or less of the method of oxidizing quinoline with chlorate in the presence of copper ions (Japanese Patent Application Laid-Open No. 62-209063). As described above, according to the present invention, the amount of copper ions used and the amount of copper ions mixed in the product quinolinic acid can be suppressed to a very small amount.

(発明の効果) 本発明は次の如き特徴を有するものである。(Effect of the invention) The present invention has the following features.

(1)原料には、安価で入手容易なキノリンを用いるこ
とができ、活性基を有する必要がない。
(1) Quinoline, which is inexpensive and easily available, can be used as a raw material, and does not need to have an active group.

(2)本発明に用いるルテニウム化合物の使用量は極微
量で有効である。
(2) The amount of the ruthenium compound used in the present invention is extremely small and is effective.

(3)本発明に用いる酸化剤は次亜塩素酸塩の約3倍以
上の有効塩素量を有する亜塩素酸塩であるため収量当り
の反応容積が小さくてすむ。
(3) Since the oxidizing agent used in the present invention is a chlorite having an effective chlorine amount about three times or more than that of hypochlorite, the reaction volume per yield can be small.

(4)反応により生成したキノリン酸の大部分は常温で
結晶として得られ、銅塩として回収されるものは一部に
過ぎない。従って銅含有量も極めて少ない。
(4) Most of the quinolinic acid produced by the reaction is obtained as crystals at room temperature, and only a portion is recovered as a copper salt. Therefore, the copper content is also extremely low.

このように本発明は工業的製法として極めてを利な方法
ということができる。
As described above, the present invention can be said to be an extremely advantageous industrial manufacturing method.

(実施例) 以下本発明を更に具体的に実施例で詳細に説明する。な
お、例中濃度はいずれも重量基準である。
(Example) The present invention will now be described in more detail with reference to Examples. Note that all concentrations in the examples are based on weight.

実施例 キノリン17.0g(0,132モル)を溶解させた2
5%硫酸水溶液150mlに4.6X10−”モル/1
三塩化ルテニウム水溶液1゜25mj!(5,8XIO
−2モル)を添加し、撹拌しながら50℃まで加温した
Example 2 in which 17.0 g (0,132 mol) of quinoline was dissolved.
4.6×10-”mol/1 in 150ml of 5% sulfuric acid aqueous solution
Ruthenium trichloride aqueous solution 1°25mj! (5,8XIO
-2 mol) was added and heated to 50° C. with stirring.

この中に25%亜塩素酸ナトリウム水溶液238g(0
,658モル)を滴下し、滴下終了後徐々に加温し還流
させた。3時間還流後放冷するとキノリン酸が析出して
きた。結晶をろ過水洗乾燥してキノリン酸13.4 g
を得た。
In this, 238 g of 25% sodium chlorite aqueous solution (0
, 658 mol) was added dropwise, and after the addition was completed, the mixture was gradually heated to reflux. After refluxing for 3 hours and allowing to cool, quinolinic acid precipitated. The crystals were filtered, washed with water and dried to yield 13.4 g of quinolinic acid.
I got it.

またろ液に硫酸銅三木和物2.5g(0,01モル)を
添加し、60℃で3時間撹拌した。放冷後生酸したキノ
リン酸銅塩をろ過水洗し、乾燥して銅塩3.1gを得た
(合計収率は仕込のキノリンに対し72.3%)更にろ
液をアルカリ性にして未反応のキノリン3.2gを回収
した。
Further, 2.5 g (0.01 mol) of copper sulfate Mikiwade was added to the filtrate, and the mixture was stirred at 60° C. for 3 hours. After cooling, the quinolinic acid copper salt was filtered, washed with water, and dried to obtain 3.1 g of copper salt (total yield: 72.3% based on the starting quinoline).The filtrate was further made alkaline to remove unreacted quinoline. 3.2 g of quinoline was recovered.

以上の実施例により簡便な方法で純度の高いキノリン酸
を収率よく得られることが分る。
The above examples show that highly pure quinolinic acid can be obtained in good yield by a simple method.

Claims (1)

【特許請求の範囲】[Claims] キノリンを酸性水媒体中でルテニウム化合物存在下、亜
塩素酸イオンで酸化することを特徴とするキノリン酸の
製造法。
A method for producing quinolinic acid, which comprises oxidizing quinoline with chlorite ions in the presence of a ruthenium compound in an acidic aqueous medium.
JP29438589A 1989-11-13 1989-11-13 Production of quinolinic acid Pending JPH03157371A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29438589A JPH03157371A (en) 1989-11-13 1989-11-13 Production of quinolinic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29438589A JPH03157371A (en) 1989-11-13 1989-11-13 Production of quinolinic acid

Publications (1)

Publication Number Publication Date
JPH03157371A true JPH03157371A (en) 1991-07-05

Family

ID=17807043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29438589A Pending JPH03157371A (en) 1989-11-13 1989-11-13 Production of quinolinic acid

Country Status (1)

Country Link
JP (1) JPH03157371A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6900330B1 (en) 2002-12-10 2005-05-31 Hebei Sinochem Fuheng Co., Ltd. Process for producing 2,3-pyridinedicarboxylic acid
US7157583B2 (en) 2002-11-07 2007-01-02 Sumikin Air Water Chemical Inc. Process for producing high-purity 2,3-pyridinedicarboxylic acid

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7157583B2 (en) 2002-11-07 2007-01-02 Sumikin Air Water Chemical Inc. Process for producing high-purity 2,3-pyridinedicarboxylic acid
US6900330B1 (en) 2002-12-10 2005-05-31 Hebei Sinochem Fuheng Co., Ltd. Process for producing 2,3-pyridinedicarboxylic acid

Similar Documents

Publication Publication Date Title
JPS62292775A (en) Manufacture of n-methylmorpholine-n-oxide aqueous solution
US6090940A (en) Method for producing potassium oxonate
JPH03157371A (en) Production of quinolinic acid
JPS6019766A (en) Oxidation of halopyridines
JPS60156673A (en) Manufacture of quinolic acid from quinoline
JPH03271275A (en) Production of quinolinic acid
US4754039A (en) Process for the preparation of pyridine-2,3-dicarboxylic acid
US4310671A (en) Process for producing 2,6-dichloro-3-nitropyridine
JPH03287576A (en) Production of quinolinic acid
JP2912445B2 (en) Method for producing alkali metal periodate
JPS61212563A (en) Production of quinolinic acid
JPS58174366A (en) Oxidation of halopyridines
JP2516435B2 (en) Method for producing heterocyclic carboxylic acid
JP2581759B2 (en) Method for producing adipic acid
HUT56336A (en) Continuous industrial process for producing aqueous solution of glyoxylic acid
JPH0283370A (en) Production of pyridine-2,3-dicarboxylic acids
JP3391837B2 (en) Method for producing 5-formylimidazoles
JP2730991B2 (en) Method for producing 1-amino-2-chloro-4-hydroxy-anthraquinone
JPH0144187B2 (en)
JPH07188118A (en) Production of 4,6-dinitroresorcinol and intermediate therefor
CA1045154A (en) Preparation of diglycolic acid
US3505345A (en) Method of preparing isocinchomeronic acid
US20020062025A1 (en) Process for the preparation of 2,3-pyridineicarboxylic acids
CN116102531A (en) Preparation method of salicyl fluorone
CN111004175A (en) Method for preparing nitrogen-containing six-membered ring dicarboxylic acid