JPH03287189A - Temperature control method for discharge tube - Google Patents

Temperature control method for discharge tube

Info

Publication number
JPH03287189A
JPH03287189A JP8791390A JP8791390A JPH03287189A JP H03287189 A JPH03287189 A JP H03287189A JP 8791390 A JP8791390 A JP 8791390A JP 8791390 A JP8791390 A JP 8791390A JP H03287189 A JPH03287189 A JP H03287189A
Authority
JP
Japan
Prior art keywords
temperature
discharge tube
variation
sensor element
temperature value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8791390A
Other languages
Japanese (ja)
Inventor
Asao Takada
高田 朝男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP8791390A priority Critical patent/JPH03287189A/en
Publication of JPH03287189A publication Critical patent/JPH03287189A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To suppress the temperature variation of other elements small by predicting the temperature variation of a sensor element from its element driving state variation and varying the set temperature of the sensor element according to the driving state. CONSTITUTION:A prediction block 301 estimates element heating value variation due to driving variation from a driving signal Lc and a thermal inertia block 302 adds time delay up to when the element driving variation appears as element temperature variation. Then the temperature of the sensor element which is estimated at the moment, i.e. predicted sensor element temperature Ts is obtained as the output, a comparator 303 compares the Ts with measured temperature corresponding to S4 to control the temperature of the sensor element S4 through a fan Fx, and then temperature variation due to the driving state variation of Pc becomes the temperature variation of Pc. Consequently, the temperature variation range of the element varies from + or -alpha to alpha and is reduced to half.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、蛍光灯発光方式の放電管を多数マトリクス状
に配列し、個々の放電管の点灯を個別に制御することに
より大画面の文字や映像を表示する大画面表示装置にお
して、発光管の発光効率を良好に維持する為に画面を構
成する発光管全体の温度を所定の範囲に維持制御する放
電管の温度制御方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention is capable of displaying characters and images on a large screen by arranging a large number of fluorescent lamp-emitting discharge tubes in a matrix and individually controlling the lighting of each discharge tube. The present invention relates to a discharge tube temperature control method for maintaining and controlling the temperature of the entire arc tube constituting the screen within a predetermined range in order to maintain good luminous efficiency of the arc tube in a large screen display device that displays.

従来の技術 一般に蛍光灯方式の発光原理による放電管の発光効率は
、大画面表示装置の発光素子として蛍光灯方式の発光原
理による発光管を用いる場合には、発光管の動作温度に
より発光効率が大きく変動するため画面の輝度を一様に
保持するためには、発光管の動作温度を周囲温度の如何
に関わらず画面全体に渡って一定の範囲に維持する必要
がある。
Conventional Technology Generally speaking, the luminous efficiency of a discharge tube based on the luminous principle of a fluorescent lamp system is determined by the operating temperature of the luminous efficiency when an arc tube based on the luminous principle of a fluorescent lamp system is used as a light emitting element of a large screen display device. In order to maintain the brightness of the screen uniformly, it is necessary to maintain the operating temperature of the arc tube within a constant range over the entire screen, regardless of the ambient temperature.

蛍光灯方式発光素子の発光は、放電に際して放電管内に
封じられた水銀蒸気が発する紫外線が蛍光3・\−7 体を励起し、蛍光体が発光する事を利用したものである
が、発光に寄与する発生紫外線強度が水銀蒸気圧、遡っ
ては動作温度に大きく依存するのでこの様なことが必要
となる。一般に蛍光灯素子は40℃〜80℃で発光効率
が高く、その温度以上でも以下でも急激に効率は低下す
る。従って発光素子をマトリクス配置して構成した大画
面に於て、画面の一部が上記温度範囲をはずれて動作し
ている場合には、その部分が暗くなり画面の輝度むらと
なる。
Fluorescent lamp-type light-emitting elements emit light by utilizing the fact that the ultraviolet rays emitted by mercury vapor sealed in the discharge tube during discharge excites the phosphor, causing the phosphor to emit light. This is necessary because the contributing intensity of the generated ultraviolet rays greatly depends on the mercury vapor pressure and, later, on the operating temperature. In general, fluorescent lamp elements have high luminous efficiency at temperatures between 40° C. and 80° C., and the efficiency rapidly decreases at temperatures above and below that temperature. Therefore, in a large screen constructed by arranging light emitting elements in a matrix, if a part of the screen operates outside the above temperature range, that part becomes dark and the brightness of the screen becomes uneven.

この様な不都合を避ける為に、従来から蛍光灯方式発光
素子を用いた大画面装置では、温度制御ループが設けら
れており、それにより装置動作中の素子の温度を、所定
の温度範囲に維持する。第5図は従来方法の系統と模式
を示すブロック図である。第5図に於てPcは多数の放
電管をマトリクス状に配列して構成した大画面上の特定
の1つの放電管であり、この放電管には動作温度を測定
する為に温度センサSoが取り付けられている(以下こ
の放電管をセンサ素子と称す)。Pxは、センサ素子P
c以外の任意の素子、no、Dxはそれらを駆動する駆
動回路であり、駆動信号LO+LXに従って素子に、駆
動電流を流す。Fxは放電管の動作温度を制御する為の
ファンである。放電管は、通常は点灯の際の自己発熱で
動作に必要な温度1で上昇するので、過剰な温度上昇を
ファンFxによりコントロールすれば、動作温度を所定
の範囲に維持できる。即ち、Soによる実測温度を所用
の設定温度’reに維持するよう帰還ループを動作させ
れば、センサ素子PC以外の多数の素子もpcの温度に
近い温度となり、目的が達成される。そのためにはファ
ンFxは、画面全体の素子に一様に、平均的に作用しな
ければならない。
In order to avoid such inconveniences, conventional large-screen devices using fluorescent light-emitting devices have been equipped with a temperature control loop, which maintains the temperature of the device within a predetermined temperature range during device operation. do. FIG. 5 is a block diagram showing the system and model of the conventional method. In Fig. 5, Pc is a specific discharge tube on a large screen constructed by arranging a large number of discharge tubes in a matrix, and this discharge tube is equipped with a temperature sensor So to measure the operating temperature. (hereinafter, this discharge tube will be referred to as a sensor element). Px is the sensor element P
Arbitrary elements other than c, no, and Dx are drive circuits that drive them, and drive currents flow through the elements in accordance with drive signals LO+LX. Fx is a fan for controlling the operating temperature of the discharge tube. Since the discharge tube normally raises the temperature required for operation by self-heating during lighting, if excessive temperature rise is controlled by the fan Fx, the operating temperature can be maintained within a predetermined range. That is, if the feedback loop is operated to maintain the actual temperature measured by So at the desired set temperature 're, many elements other than the sensor element PC will also have a temperature close to the temperature of PC, and the objective will be achieved. To achieve this, the fan Fx must act uniformly and evenly on the elements of the entire screen.

発明が解決しようとする課題 しかしながら、上記従来の温度制御方法では、センサ素
子の動作状態に関係なくセンサ素子の動作温度が設定温
度Tcに固定される為に、センサ素子以外のオープンル
ープ素子の動作温度範囲が、センサ素子の動作状態によ
り変動し、画面全体としては放電管素子の温度分布範囲
が広くなり、画5ベーノ 面全体の素子を全て望ましい温度範囲に収める事が困難
であった。第6図を用いてその詳細を説明する。
Problems to be Solved by the Invention However, in the conventional temperature control method described above, the operating temperature of the sensor element is fixed at the set temperature Tc regardless of the operating state of the sensor element, so that the operation of open loop elements other than the sensor element is The temperature range fluctuates depending on the operating state of the sensor element, and the temperature distribution range of the discharge tube elements becomes wide on the screen as a whole, making it difficult to keep all the elements on the entire surface of the screen 5 within a desired temperature range. The details will be explained using FIG.

第6図は、第5図の構成の制御動作のもとで、PXの温
度がどの様に変化するかを模式的に示したものである。
FIG. 6 schematically shows how the temperature of PX changes under the control operation of the configuration shown in FIG.

第6図aに於て時刻to以前ではPc、Pxは非点灯の
状態にあり、動作温度は’reで安定状態にあるとする
。今時側toでセンサ素子pcが点灯し、その他の素子
はPxを含めて非点灯の状態に変化したとすると、pc
の温度は温度制御が働かなければ、点灯による発熱によ
り上昇するはずであるが、温度制御が働いてFxが画面
全体を冷却する方向に動作し、pcの温度はTcに維持
されるが、Pxは非点灯の11であるから、過剰に冷却
されその温度は時刻t1に於てTc−α(αはある定数
)となる。Pcが、点灯→非点灯に変化した時の温度変
化は、熱的慣性のために階段状とはならず、図のように
緩やかに変化する。
In FIG. 6a, it is assumed that before time to, Pc and Px are in a non-lighted state, and the operating temperature is stable at 're. Assuming that the sensor element pc lights up on the current side to, and the other elements including Px change to a non-lighting state, the pc
If the temperature control did not work, the temperature would rise due to the heat generated by lighting, but the temperature control works and Fx operates in the direction of cooling the entire screen, and the PC temperature is maintained at Tc, but Px Since it is 11 which is not lit, it is excessively cooled and its temperature becomes Tc-α (α is a certain constant) at time t1. The temperature change when Pc changes from lighting to non-lighting does not change stepwise due to thermal inertia, but changes gradually as shown in the figure.

同様に考えて、時刻t2でpcOFF 、 PxON、
t5でP。ON 、 PxON、t4でpoON、Px
ON と点灯6ペーノ 状態が変化したとして、Pc、Px温度を第6図に示す
。同図によれば、PCは一定温度’reに維持されるが
、Pxは±α変化することがわかる。既に述べたように
放電管素子の動作温度は、40℃〜80℃程度の範囲で
あり、±αはこの範囲内でなければならない。しかしな
がら実際の装置では、±αは大きなf直となり、放電管
にとって十分な温度制御を実現することが困難であった
Considering the same way, at time t2, pcOFF, PxON,
P at t5. ON, PxON, poON at t4, Px
Figure 6 shows the Pc and Px temperatures when the ON and lighting conditions change. According to the figure, it can be seen that although the PC is maintained at a constant temperature 're, Px changes ±α. As already mentioned, the operating temperature of the discharge tube element is in the range of about 40° C. to 80° C., and ±α must be within this range. However, in an actual device, ±α becomes a large f value, making it difficult to realize sufficient temperature control for the discharge tube.

本発明は、上記温度変動範囲±αを±1/2αに半減し
、放電管の動作温度分布を狭めることを目的とする。
The present invention aims to halve the temperature fluctuation range ±α to ±1/2α, thereby narrowing the operating temperature distribution of the discharge tube.

課題を解決するための手段 本発明は、上記目的を達成するためにセンサ素子を駆動
する駆動信号や、熱的慣性特性からセンサ素子の素子駆
動状態変化による温度変動を予測し、センサ素子の設定
温度を上記のようにTcなる一定値とせず、駆動状態に
より変化させてその他の素子Pxの温度変動を小さく抑
えるものである。
Means for Solving the Problems In order to achieve the above object, the present invention predicts temperature fluctuations due to changes in the driving state of the sensor element from the drive signal for driving the sensor element and thermal inertia characteristics, and adjusts the settings of the sensor element. The temperature is not set to a constant value Tc as described above, but is changed depending on the driving state to suppress temperature fluctuations of other elements Px.

作用 本発明は上記のように構成することにより、その他の素
子PXの温度変動範囲を約しに圧縮する効果を得ること
ができる。
Operation By configuring the present invention as described above, it is possible to obtain the effect of compactly compressing the temperature fluctuation range of the other elements PX.

実施例 第1図に本発明を実現するための基本的系統を示す。第
1図に於て、ncはセンサ素子pcを駆動する駆動回路
であり、駆動信号Lcを受けてそれに従いセンサ素子に
駆動電流を流す。pcの消費電力は駆動電流の関数であ
るから、温度上昇も駆動信号から推定できる。従って駆
動信号LCから予測ブロック(手段)301で駆動変化
による素子熱量変化’rrを推定し、更に熱慣性ブロッ
ク(手段)302によシ素子駆動変化(消費電力変化)
が素子温度変化として現われる1での時間遅れ、いわゆ
る熱慣性を加えて、出力としてセンサ素子がその瞬間あ
るであろう温度、即ち予測センサ素子温度(Ts)を得
、このTsとScによる実測温度を比較器303で比較
し、その出力で温度制御手段としてのファンFXを介し
てセンサ素子Scの温度を制御すれば、Pcの駆動状態
変化に起因する温度変動はPCの温度変動となり、第5
図の場合のようにPcの温度は一定でPXの温度が変動
する事とはならない。この結果、PC9Pxの各種、駆
動状態に於ける温度は、第6図から第2図の様に変化し
、センサ素子の駆動変動はセンサ素子の温度変化に、そ
の他素子の駆動変化はそれぞれの素子の温度変化となる
。その結果、第2図のように素子温度変化範囲が±α−
・αとなり半減する。
Embodiment FIG. 1 shows a basic system for realizing the present invention. In FIG. 1, nc is a drive circuit for driving the sensor element pc, which receives a drive signal Lc and flows a drive current to the sensor element in accordance with the drive signal Lc. Since the power consumption of a PC is a function of the drive current, the temperature rise can also be estimated from the drive signal. Therefore, the prediction block (means) 301 estimates the element heat amount change 'rr due to the drive change from the drive signal LC, and further the thermal inertia block (means) 302 estimates the element drive change (power consumption change).
By adding the time delay at 1, so-called thermal inertia, which appears as a change in element temperature, we obtain the temperature that the sensor element will be at at that moment as an output, that is, the predicted sensor element temperature (Ts), and the actual measured temperature by this Ts and Sc. are compared by the comparator 303, and the temperature of the sensor element Sc is controlled by the output of the comparator 303 via the fan FX as a temperature control means, the temperature fluctuation caused by the change in the driving state of the PC becomes the temperature fluctuation of the PC, and the fifth
As in the case shown in the figure, the temperature of Pc is constant and the temperature of PX does not fluctuate. As a result, the temperature of PC9Px in various drive states changes as shown in Figure 6 to Figure 2, and the drive fluctuation of the sensor element is caused by the temperature change of the sensor element, and the drive change of other elements is caused by each element. The temperature change will be . As a result, as shown in Figure 2, the element temperature change range is ±α-
・It becomes α and is halved.

第1図にて熱慣性ブロック302が無い場合にはPCの
駆動が変化する過渡状態では、PCの温度は、設定温度
が、駆動信号の変化に追随して急速に変化する為、温度
制御能力いっばいに急速に変化し、Pxの温度に熱慣性
ブロック302が存在する場合には現われないオーバー
シュートが生じる。この状態を第3図に示す。
In FIG. 1, if there is no thermal inertia block 302, in a transient state where the drive of the PC changes, the temperature of the PC changes rapidly following the change in the drive signal, so the temperature control ability The temperature of Px changes rapidly, resulting in an overshoot that would not be present if the thermal inertia block 302 were present. This state is shown in FIG.

第4図は本発明の第2の実施例の構成を示すものである
。第4図に於てPu、Pd、Pl、Prは、センサ素子
pcの上下左右に配置されている放電管であり、それぞ
れの、駆動回路Du、Dd、Dl、Drで駆動される。
FIG. 4 shows the configuration of a second embodiment of the present invention. In FIG. 4, Pu, Pd, Pl, and Pr are discharge tubes arranged on the upper, lower, left, and right sides of the sensor element pc, and are driven by respective drive circuits Du, Dd, Dl, and Dr.

センサ素子PCの温度は、それ自9ベーン 身の発熱のみならず、周辺素子の発熱状況からの影響を
強く受けるので、周辺素子の駆動状況をも予測の対象と
する方が、より正確に温度を予測できる。
The temperature of the sensor element PC is strongly influenced not only by the heat generated by the nine vanes itself, but also by the heat generation status of peripheral elements, so it is better to predict the driving status of the peripheral elements more accurately. can be predicted.

周辺素子の駆動信号がセンサ素子pcの温度変化に寄与
する係数は、それぞれ異なるから、係数計算ブロック3
00で各駆動信号成分に対する係数計算を行い、予測ブ
ロック301にてセンサ素子Pcの温度変化を計算する
。センサ素子の温度変化は、センサ素子及び周辺素子の
点灯状態と同時に、周囲温度(センサ温度と周囲温度の
温度差)にも影響される。これは、冷却ファンF)[の
効果が、周囲温度が低くなるに従い高くなるため、その
動作状態が周囲温度で変化するためである。このため予
測ブロック301での温度変化は、通常周囲温度を計算
にいれて求められる。熱慣性ブロック302は前述のご
とく熱慣性による応答遅れを付加するものである。熱量
の変化に対する素子温度変化は、指数関数で近似できる
ので、ブロック302の中身は第4図の様なメモリ30
4と乗10、 算器305を組み合わせた帰還係数をKとするリカーシ
ブフィルタで実現できる。Kを大きくすれば時定数を長
くすることが出来る0 発明の詳細 な説明したごとく本発明によれば、大画面を構成する多
数の放電管の温度分布範囲を、従来手法による制御方法
による場合の約恥に圧縮することが可能となり、輝度む
らの少ない均一な画面を実現することが出来る。
Since the coefficients by which the drive signals of the peripheral elements contribute to the temperature change of the sensor element pc are different, the coefficient calculation block 3
00, coefficients are calculated for each drive signal component, and a prediction block 301 calculates the temperature change of the sensor element Pc. The temperature change of the sensor element is influenced by the lighting state of the sensor element and peripheral elements as well as the ambient temperature (the temperature difference between the sensor temperature and the ambient temperature). This is because the effectiveness of the cooling fan F) increases as the ambient temperature decreases, and its operating state changes depending on the ambient temperature. Therefore, the temperature change in the prediction block 301 is usually determined by taking the ambient temperature into account. The thermal inertia block 302 adds a response delay due to thermal inertia, as described above. Since the change in element temperature with respect to the change in heat amount can be approximated by an exponential function, the contents of block 302 are stored in memory 30 as shown in FIG.
This can be realized by a recursive filter whose feedback coefficient is K, which is a combination of 4 and 10 and the calculator 305. By increasing K, the time constant can be lengthened.0 As described in detail, according to the present invention, the temperature distribution range of a large number of discharge tubes constituting a large screen can be controlled in a manner similar to that achieved by conventional control methods. It becomes possible to compress the image to approximately 100%, and it is possible to realize a uniform screen with little unevenness in brightness.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例に釦ける放電管の温度制御方
法の基本構成を示すブロック図、第2図は同構成による
素子の温度特性を説明するための特性図、第3図は同構
成で一部を省略した場合の特性劣化を説明するための波
形図、第4図は本発明での第2の実施例を示すブロック
図、第6図は従来例における構成を示すブロック図、第
6図は同ブロック図の構成による素子の温度変動特性を
示す特性図である。 PX・・・・・・放電管、pc・・・・・・特定放電管
、Fx・・・11 ・・・ファン、301・・・・・・予測フロック、30
2・・・・・・熱慣性ブロック、303・・・・・・比
較器。
FIG. 1 is a block diagram showing the basic configuration of a temperature control method for a discharge tube according to an embodiment of the present invention, FIG. 2 is a characteristic diagram for explaining the temperature characteristics of an element with the same configuration, and FIG. A waveform diagram for explaining characteristic deterioration when a part of the same configuration is omitted, FIG. 4 is a block diagram showing the second embodiment of the present invention, and FIG. 6 is a block diagram showing the configuration of the conventional example. , FIG. 6 is a characteristic diagram showing the temperature fluctuation characteristics of the element according to the configuration of the same block diagram. PX...discharge tube, pc...specific discharge tube, Fx...11...fan, 301...predicted flock, 30
2...Thermal inertia block, 303...Comparator.

Claims (2)

【特許請求の範囲】[Claims] (1)小形放電管をマトリクス状に多数配列し、前記小
形放電管を個別に発光制御することにより、全体として
ある情報を大画面表示に表示するに際して、前記多数配
列した小形放電管中の1個を特定放電管として特定し、
前記特定放電管の温度を実測すると同時に前記温度を実
測する特定放電管及びその周辺の複数の放電管の駆動信
号を検出し、検出駆動信号から前記特定放電管の本来設
定されるべき動作温度値を推定手段により推定し、推定
した温度値と前記実測温度値とを比較手段で比較し、前
記実測温度値を、前記推定温度値に近づけるように温度
制御手段で制御する放電管の温度制御方法。
(1) By arranging a large number of small discharge tubes in a matrix and controlling the light emission of the small discharge tubes individually, when displaying certain information as a whole on a large screen display, one of the small discharge tubes arranged in a large number identify the individual as a specific discharge tube,
At the same time as actually measuring the temperature of the specific discharge tube, drive signals of the specific discharge tube whose temperature is actually measured and a plurality of discharge tubes around it are detected, and an operating temperature value that should originally be set for the specific discharge tube is determined from the detected drive signal. is estimated by an estimating means, the estimated temperature value is compared with the actually measured temperature value by a comparing means, and the temperature control method is used to control the actually measured temperature value by a temperature control means so as to approach the estimated temperature value. .
(2)前記推定温度値を求めるに際し、熱的慣性手段に
よる駆動信号変化に対する温度変化の遅れを加味するよ
うにした請求項1起載の放電管の温度制御方法。
(2) The temperature control method for a discharge tube according to claim 1, wherein when determining the estimated temperature value, a delay in temperature change with respect to a change in the drive signal due to the thermal inertia means is taken into consideration.
JP8791390A 1990-04-02 1990-04-02 Temperature control method for discharge tube Pending JPH03287189A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8791390A JPH03287189A (en) 1990-04-02 1990-04-02 Temperature control method for discharge tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8791390A JPH03287189A (en) 1990-04-02 1990-04-02 Temperature control method for discharge tube

Publications (1)

Publication Number Publication Date
JPH03287189A true JPH03287189A (en) 1991-12-17

Family

ID=13928161

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8791390A Pending JPH03287189A (en) 1990-04-02 1990-04-02 Temperature control method for discharge tube

Country Status (1)

Country Link
JP (1) JPH03287189A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013008030A (en) * 2011-06-22 2013-01-10 Leica Microsystems Cms Gmbh Method and optical microscopic device for displaying sample with image

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013008030A (en) * 2011-06-22 2013-01-10 Leica Microsystems Cms Gmbh Method and optical microscopic device for displaying sample with image

Similar Documents

Publication Publication Date Title
JP5043111B2 (en) Method and apparatus for reducing thermal stress in light emitting devices
JP5346592B2 (en) Light emitting device and light emitting device driving method
KR101614662B1 (en) Projection apparatus and projection method
JP6087505B2 (en) System and apparatus for controlling light intensity output of light emitting diode array
JP5253505B2 (en) System and method for protecting display components from adverse operating conditions
US20110057571A1 (en) Device and method for controlling the color point of an led light source
US4978890A (en) Fluorescent lamp device
JP5208261B2 (en) Backlight device, control method therefor, and image display device
US9022573B2 (en) Image display device and light source cooling method
US6252355B1 (en) Methods and apparatus for controlling the intensity and/or efficiency of a fluorescent lamp
JP2013004263A (en) Backlight device, control method of the same and picture display apparatus
JP2007171327A (en) Projector unit and multi-vision system
JP4562411B2 (en) Projection-type image display device
JPS59180996A (en) Monitor for optimizing light output of fluorescent lamp and control mechanism as well as method
US20240096290A1 (en) Control method for backlight circuit, backlight circuit and lcd display screen
JP6594086B2 (en) LED display device
JP2011247980A (en) Multiple screen display device
JP2010170120A (en) Projector, light source lighting device, and method of controlling projector
JPH09185036A (en) Luminance controller for liquid crystal display device
JPH03287189A (en) Temperature control method for discharge tube
JP5566485B2 (en) Backlight device, control method therefor, and image display device
JP2017032890A (en) LED display device
KR20080060125A (en) Projection-type image display apparatus
JP6288972B2 (en) Image display apparatus and control method thereof
JP5743706B2 (en) Multi-screen display device