JPH03285687A - Recovery of vegetable metabolic substance - Google Patents

Recovery of vegetable metabolic substance

Info

Publication number
JPH03285687A
JPH03285687A JP8547090A JP8547090A JPH03285687A JP H03285687 A JPH03285687 A JP H03285687A JP 8547090 A JP8547090 A JP 8547090A JP 8547090 A JP8547090 A JP 8547090A JP H03285687 A JPH03285687 A JP H03285687A
Authority
JP
Japan
Prior art keywords
tissues
metabolites
medium
cells
culture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8547090A
Other languages
Japanese (ja)
Other versions
JPH07102141B2 (en
Inventor
Shinsaku Takayama
高山 真策
Noriyuki Miwa
三輪 敬之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
P C C TECHNOL KK
Original Assignee
P C C TECHNOL KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by P C C TECHNOL KK filed Critical P C C TECHNOL KK
Priority to JP8547090A priority Critical patent/JPH07102141B2/en
Publication of JPH03285687A publication Critical patent/JPH03285687A/en
Publication of JPH07102141B2 publication Critical patent/JPH07102141B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

PURPOSE:To enable the recovery of metabolic substances independent of the kind of the substance by subjecting the cell or tissue of a plant containing metabolic substance to electric field treatment in the state of an aqueous liquid and secreting the metabolic substances from the cell, etc., into the aqueous liquid. CONSTITUTION:Cell or tissue of a plant (e.g. root or a stalk) is cultured in a medium such as Murashige-Skoog medium to produce a metabolic substance such as rose oil in the cell or tissue and the obtained cultured product or aqueous liquid containing the cultured product is subjected to electric field treatment to force the secretion of the metabolic substance into the medium or the aqueous liquid (electrolytic treatment process). The treated culture product or the aqueous liquid is cultured to allow the cell or tissue to produce the metabolic product (culture process). The above electrolytic treatment process and the culture process are repeated and the metabolic substance is collected from the liquid containing the secreted metabolic product directly or by resin adsorption, etc. The metabolic substance can easily be recovered in high efficiency by this process.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、植物の細胞あるいは組織を培養することによ
り細胞あるいは組織内に生産蓄積される代謝物質を水溶
液中もしくは培地中に分泌させ、採取する方法に関する
Detailed Description of the Invention [Field of Industrial Application] The present invention involves culturing plant cells or tissues to secrete metabolites produced and accumulated in the cells or tissues into an aqueous solution or a medium, and collect them. Regarding how to.

〔従来の技術〕[Conventional technology]

従来、植物が生産する有用代謝物質を生産する手段とし
て、植物の脱分化した細胞、根、茎葉などが生育した植
物分化組織が利用できることが知られているが、代謝物
質の多くは細胞内に蓄積されることか多く、このような
場合、代謝物質を採取するためには通常は培養槽内に生
育した細胞あるいは組織をすべて回収しなげればならな
い。したがって、従来は一回の培養で代謝物質を一回採
取できるにすぎなかった。また、代謝物質か細胞内に蓄
積する場合には、代謝物質の最大生産量は細胞の生育量
によって律速されてしまう欠点があった。代謝物質が培
地内に分泌する例(嵯峨ら、生薬学会第34回年余講演
要旨、p、62(1987)、小林ら、植物組織培養技
術の現状と今後の展望、102〜103ページ(198
8))も知られているが大部分の代謝物質は組織内に蓄
積されるので、培地から直接採取することはできない。
Conventionally, it has been known that differentiated plant tissues such as dedifferentiated cells, roots, stems, and leaves of plants can be used as a means of producing useful metabolites produced by plants, but many of the metabolites are not contained within cells. In such cases, it is usually necessary to collect all the cells or tissues grown in the culture tank in order to collect the metabolites. Therefore, conventionally, metabolites could only be collected once in one culture. Furthermore, when metabolites accumulate within cells, there is a drawback that the maximum production amount of the metabolites is rate-limited by the amount of cell growth. Examples of secretion of metabolites into the culture medium (Saga et al., Abstracts of the 34th Annual Meeting of the Japanese Society of Herbal Pharmaceutical Sciences, p. 62 (1987); Kobayashi et al., Current Status and Future Prospects of Plant Tissue Culture Technology, pp. 102-103 (1987)
8)) is also known, but since most metabolites are accumulated within tissues, they cannot be collected directly from the culture medium.

代謝物質を培地中に分泌させて繰返し採取する方法も検
討されている。
A method is also being considered in which metabolites are secreted into the medium and repeatedly collected.

例えばイオン強度を高める方法(特開昭60−1805
94号)が知られているが、培地中に遊離してくる物質
は蛋白性の酵素である。その他膜透過性物質として有機
溶媒や界面活性剤などを培養液に添加する方法(特平昭
1−243991号)も検討されてきたが、大部分の有
機溶媒や界面活性剤は利用することができず、わずかに
ブチルアルコール、ジメチルポルJ、アミド、ジメチル
スルホキシド、流動パラフィンなど毒性の少ないほんの
一部の溶媒が利用されていたにずぎす、回収される代謝
物質も塩基性区分の成分は効率良く回収されるものの、
酸性区分、中性区分の成分は分泌するものもあるが、処
理によって細胞中に吸収されてしまう成分もあり、分泌
して回収できる成分は限定されていた(小泉ら、植物組
織培養技術の現状と今後の展望、108〜109ページ
(1988)) 。
For example, a method of increasing ionic strength (Japanese Patent Laid-Open No. 60-1805
No. 94) is known, but the substance liberated into the medium is a proteinaceous enzyme. Other methods of adding membrane-permeable substances such as organic solvents and surfactants to the culture solution have been studied (Special Patent No. 1-243991), but most organic solvents and surfactants cannot be used. However, only a few less toxic solvents such as butyl alcohol, dimethyl pol J, amide, dimethyl sulfoxide, and liquid paraffin were used, and the recovered metabolites were efficiently collected from the basic category. Although it is collected,
Some components in the acidic and neutral categories are secreted, but some are absorbed into cells through processing, and the components that can be secreted and recovered are limited (Koizumi et al., Current Status of Plant Tissue Culture Technology). and Future Prospects, pp. 108-109 (1988)).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

植物の細胞あるいは組織を培養して生産された代謝物質
を、代謝物質の種類に拘わらず培地内に分泌放出させて
回収する実用的な方法を提供することにある。
The object of the present invention is to provide a practical method for recovering metabolites produced by culturing plant cells or tissues by secreting and releasing them into a culture medium, regardless of the type of metabolites.

〔課題を解決するための手段〕[Means to solve the problem]

本発明によれば、代謝物質を含有する植物の細胞もしく
は組織を水性液中で電界処理し、該細胞もしくは組織か
ら代謝物質を水性液中に分泌させ、水性液からこれを採
取することによって植物の代謝物質を容易に回収できる
According to the present invention, plant cells or tissues containing metabolites are treated with an electric field in an aqueous solution, the cells or tissues secrete the metabolites into the aqueous solution, and the metabolites are collected from the aqueous solution. Metabolites can be easily recovered.

代謝物質を含有する植物の細胞もしくは組織を含有する
水性液として植物の細胞もしくは組織を培地に培養して
得られる培養物についても上記方法が適用できる。
The above method can also be applied to a culture obtained by culturing plant cells or tissues in a medium as an aqueous solution containing plant cells or tissues containing metabolites.

さらに、該電界処理を細胞もしくは組織の代謝活性及び
呼吸活性を失わないような条件で行うことによって培養
と電界処理を繰り返し代謝物質を多量に効率よく採取で
きる。
Furthermore, by performing the electric field treatment under conditions that do not cause loss of metabolic activity and respiratory activity of cells or tissues, a large amount of metabolites can be efficiently collected by repeating the culture and electric field treatment.

即ち、植物の細胞もしくは組織を培地に培養して細胞も
しくは組織内に代謝物質を生成させ、(イ)得られた培
養物もしくは培養物から細胞もしくは組織を分離してこ
れを含有させた水性液を細胞もしくは組織が代謝活性及
び呼吸活性を・完全には失わない条件で電界処理して代
謝物質を培地中もしくは水性液中に分泌させ(電界処理
工程)、(ロ)処理後の培養物もしくは水性液もしくは
これらから細胞あるいは組織を分離し、これを含有させ
た新たな水性液に要すれば代謝活性及び呼吸活性を維持
するのに必要な栄養分を加えて培養し、細胞もしくは組
織に代謝物質を生成させ(培養工程)以後電界処理工程
及び培養工程を繰り返し、分泌させた代謝物質含有液か
ら代謝物質を採取することによって植物の代謝物質を多
量に効率よく回収できる。
That is, plant cells or tissues are cultured in a medium to produce metabolic substances in the cells or tissues, and (a) cells or tissues are separated from the resulting culture or culture and an aqueous solution containing the same. is treated with an electric field under conditions that the cells or tissues do not completely lose their metabolic and respiratory activities to secrete metabolites into the medium or aqueous solution (electric field treatment step), and (b) the treated culture or Cells or tissues are separated from an aqueous solution or these, and a new aqueous solution containing the same is cultured with nutrients necessary to maintain metabolic and respiratory activity, and metabolic substances are added to the cells or tissues. (culturing process), repeating the electric field treatment process and culturing process, and collecting the metabolites from the secreted metabolite-containing liquid, thereby making it possible to efficiently recover a large amount of plant metabolites.

本発明に用いる細胞または組織は植物に分類されるもの
であれば、いずれでも用いられるが、通常は培養によっ
て増殖した細胞または組織(未分化の細胞塊、分化構造
を有する根、茎、葉、花器またはそれらが混在した組織
を含む)が用いられる。
The cells or tissues used in the present invention can be any type of plant, but they are usually cells or tissues grown by culture (undifferentiated cell masses, roots with differentiated structures, stems, leaves, etc.). flower vases or their mixed tissues) are used.

これらの細胞または組織は自体公知の手法でエタノール
、次亜塩素酸ナトリウム等を用いて殺菌し、適当な大き
さ (通常1〜20mm)の切片に切断して培養増殖し
て用いられる。
These cells or tissues are sterilized using ethanol, sodium hypochlorite, etc. by a method known per se, cut into sections of appropriate size (usually 1 to 20 mm), and cultured and propagated for use.

本発明はすべての植物に適用できる。たとえば、バラ、
ソケイ、ラベンダー、イリス・バリダ、サフラン、シソ
、ヨウシュヤマゴボウ、ベラドンナ、インドジャボク、
ニチニチソウ、ヤマノイモ、ジギタリス、センナ、バッ
ジヨウマメ、ポドフイルム、ムラサキ、シナ、チョウセ
ンニンジン、ジョチュウギク、ハエlξクソウ、ステビ
ア、カンデラなどの植物に適用できる。
The invention is applicable to all plants. For example, roses,
Sokei, lavender, iris barida, saffron, perilla, pokeweed, belladonna, Indian jaboku,
It can be applied to plants such as periwinkle, yam, foxglove, senna, badge yam, podophyllum, purple, Chinese, ginseng, hemlock, japonica, stevia, and candela.

また、植物から代謝されるすべての代謝物質を対象とす
ることができる。たとえば1、ローズオイル、ジャスミ
ンオイル、ラベンダーオイル、イリスバター、クロセチ
ン、アントシアニン、ベタシアニン、スコポラミン、ヒ
ヨスチアミン、レセルピン、ビンクリスチン、ビンカミ
ン、ジオスゲニン、ジギトキシン、ジゴキシン、センノ
サイドA、ドーパ、ボドフィロトギシン、シコニン、サ
ン1ニン、ジンセッサイド、ピl/ )リン、ハエドキ
リ゛ン、ステビオシト、レバウディオシド、グリチルリ
チンなどがあげられる。
Furthermore, all metabolites metabolized by plants can be targeted. For example, 1. Rose oil, jasmine oil, lavender oil, iris butter, crocetin, anthocyanin, betacyanin, scopolamine, hyoscyamine, reserpine, vincristine, vincamine, diosgenin, digitoxin, digoxin, sennoside A, dopa, bodophyllotgycin, shikonin, Examples include Sannin, Ginsside, Pyl/)rin, Haedokirin, Stevioside, Rebaudioside, and Glycyrrhizin.

植物の細胞または組織を培養増殖する培地は細胞または
組織が培養増殖できる培地であればいがなる培地でも利
用することができる。すなわち、培地としては、10〜
100g/ Aの糖、0.1〜10■/lの植物ホルモ
ン類および窒素源、無機物、ビタミン類などをほどよく
含有するものであれば天然または合成培地のいずれでも
用いられる。
As the medium for culturing and propagating plant cells or tissues, any burrowing medium can be used as long as the cells or tissues can be cultured and propagated. That is, as a medium, 10 to
Any natural or synthetic medium can be used as long as it contains 100 g/A of sugar, 0.1 to 10 μ/L of plant hormones, nitrogen sources, inorganic substances, vitamins, etc. in an appropriate amount.

糖としては、シュークロース、グルコース、ラクトース
、フル1−−スなどが用いられる。
As the sugar, sucrose, glucose, lactose, flu-1-ose, etc. are used.

植物ホルモン類としては、α−ナフタレン酢酸、2.4
−ジクロロフェノキシ酢酸、インドール酢酸、インドー
ル酪酸などのオーキシン類、カイネチン、N−(2−ク
ロロ−4−ピリジル)−N−フェニル尿素ミベンジルア
デニン、ゼアチンなどのサイトカイニン類、ジベレリン
A3、ジベレリンA4、ジベレリンA7などのジベレリ
ン類、アブサイシン類、エチl/ンなどが用いられる。
As plant hormones, α-naphthalene acetic acid, 2.4
- Auxins such as dichlorophenoxyacetic acid, indoleacetic acid, and indolebutyric acid, cytokinins such as kinetin, N-(2-chloro-4-pyridyl)-N-phenylurea mibenzyladenine, and zeatin, gibberellin A3, gibberellin A4, gibberellin Gibberellins such as A7, absisins, ethyl/one, etc. are used.

窒素源としては、硝酸カリウム、硝酸ナトリウム、硝酸
アンモニウム、硝酸カルシウム、硫酸アンモニウム、グ
リシン、グルタミン酸、リジン、アスパラギン酸などの
アミノ酸類、イーストエキス、肉エキス、ペプトンなど
が用いられる。
As the nitrogen source, potassium nitrate, sodium nitrate, ammonium nitrate, calcium nitrate, ammonium sulfate, amino acids such as glycine, glutamic acid, lysine, and aspartic acid, yeast extract, meat extract, peptone, and the like are used.

無機物としては、塩化カリウム、塩化カルシウム、塩化
マンガン、塩化ニッケル、塩化コバルト、塩化アルミニ
ウム、塩化鉄、硫酸マグネシウム、硫酸す1−リウム、
硫酸ニッケル、硫酸鉄、硫酸マンガン、硫酸チタン、硫
酸亜鉛、硫酸銅、リン酸二水素ナトリウム、リン酸二水
素カリウム、ヨウ化カリウム、ホウ酸、モリブデン酸す
トリウムなどが用いられる。
Inorganic substances include potassium chloride, calcium chloride, manganese chloride, nickel chloride, cobalt chloride, aluminum chloride, iron chloride, magnesium sulfate, monolithium sulfate,
Nickel sulfate, iron sulfate, manganese sulfate, titanium sulfate, zinc sulfate, copper sulfate, sodium dihydrogen phosphate, potassium dihydrogen phosphate, potassium iodide, boric acid, thorium molybdate, and the like are used.

その他必要に応じて培地にビタミンB1、イノシトール
、塩酸ピリドキシン、ニコチン酸、塩酸チアミン、ビオ
チンなどを加えてもよい。
In addition, vitamin B1, inositol, pyridoxine hydrochloride, nicotinic acid, thiamine hydrochloride, biotin, etc. may be added to the medium as necessary.

具体的な培地としてはムラシゲ・スクーグ氏培地、リン
スマイヤー・スクーグ氏培地、ホワイト氏培地、クツツ
ブ氏培地などが用いられる。
Specific media include Murashige-Skoog's medium, Linsmeyer-Skoog's medium, White's medium, and Kutsubu's medium.

培養は温度10〜35°C1照度O〜20,000ルク
ス、pH3,5〜8.5でおこなわれ通常10〜100
日間で完了するが、さらに培養を続けてもよい。
Cultivation is carried out at a temperature of 10 to 35°C, an illuminance of O to 20,000 lux, and a pH of 3.5 to 8.5, usually 10 to 100.
The culture is completed within a few days, but the culture may be continued further.

培養に際してはまず植物の葉、茎、根゛などの組織を小
片(5×5〜50X50mm)に切断し、表面をたとえ
ば次亜塩素酸すトリウム、エチルアルコールなどで殺菌
処理した後、無菌水で良く洗う。このように表面殺菌し
た小片を滅菌固体培地に培地2〜10m1当り小片1個
の割合で置床後、10〜35°Cで20〜50日間静置
培養すると茎葉、根などの分化組織の塊が得られる。こ
のようにして得られる分化組織の塊を滅菌した培地を含
むフラスコまたは培養槽に移植し培養する。培地での培
養は、たとえば300mR容エルレンマイヤーフラスコ
を用いる場合では30〜200雌程度の液体培地に、培
地100戚当り上記の分化組織塊を1〜5個を移植し、
10〜35°C1毎分60〜250回転の振とう培養を
おこなう。また31容の培養槽を用いる場合では1〜2
1の液体培地に、培地100m2当り上記分化組織塊を
1から5個入れ、10〜35°Cで毎分0.5〜3ρの
無菌空気を通気しつつ培養する。分化組織が移植した量
の2から20倍に生育したら培地から取り出し、2〜2
0個に分割して上記の方法と同様に液体培地100mR
当り分割した組織を1〜5個液体培地に移植して同一条
件で培養する操作を繰り返す。
For culturing, first cut tissues such as leaves, stems, and roots of plants into small pieces (5 x 5 to 50 x 50 mm), sterilize the surface with sodium hypochlorite, ethyl alcohol, etc., and then rinse with sterile water. Wash well. After placing the surface-sterilized small pieces on a sterilized solid medium at a ratio of 1 small piece per 2 to 10 ml of medium, and culturing them for 20 to 50 days at 10 to 35°C, clusters of differentiated tissues such as stems, leaves, roots, etc. can get. The thus obtained differentiated tissue mass is transplanted into a flask or culture tank containing a sterilized medium and cultured. For culture in a medium, for example, when using a 300 mR Erlenmeyer flask, transplant 1 to 5 of the above differentiated tissue masses per 100 females into a liquid medium containing approximately 30 to 200 females, and
Perform shaking culture at 10-35°C and 60-250 revolutions per minute. In addition, when using a 31-volume culture tank, 1 to 2
1 to 5 of the above-mentioned differentiated tissue masses per 100 m2 of the medium are placed in a liquid medium of 1, and cultured at 10 to 35°C while aerating sterile air at a rate of 0.5 to 3 ρ per minute. When the differentiated tissue grows to 2 to 20 times the transplanted amount, remove it from the culture medium and
Divide into 0 pieces and add 100mR of liquid medium in the same manner as above.
The operation of transplanting 1 to 5 divided tissues into a liquid medium and culturing them under the same conditions is repeated.

このように培養を繰り返し、移植した量の2〜20倍に
生育した分化組織を代謝物質を分泌させて生産する材料
として得る。このほか、代謝物質を生産させる植物分化
組織材料を得る方法としては、既知の方法、たとえば特
開昭54〜40138号、特開昭0 55−1.5734号、特開昭5541.8319号、
特開昭61−56022号などの記載の方法がそのまま
利用でき、分化した無菌の植物組織を大量に培養するこ
とができる。即ち、シダ類、裸子植物、被子植物に分類
される植物の分化した組織、たとえば根、茎、葉あるい
はそれらが混在した組織を前記の植物組織培養培地を使
用し、既知の方法で培養することにより植物分化組織を
増殖し、代謝物質を生産させ回収する材料とすることが
できる。代謝物質の生産ならびに電界処理による回収効
率を高めるためには、分化組織が培養容器内に十分に生
育してから処理をおこなうとよい。たとえば、培地中に
添加した炭素源(通常はシュークロース)や無機塩類の
70%〜100%が消費されて植物分化組織が培養容器
内の総容積の10〜50%に生育したら、処理に移ると
よい。
By repeating the culturing in this way, differentiated tissue that has grown 2 to 20 times the amount transplanted is obtained as a material for secreting and producing metabolic substances. In addition, there are known methods for obtaining plant differentiated tissue materials that produce metabolites, such as JP-A-54-40138, JP-A-055-1.5734, JP-A-5541.8319,
The method described in JP-A No. 61-56022 and the like can be used as is, and differentiated sterile plant tissue can be cultured in large quantities. That is, the differentiated tissues of plants classified as ferns, gymnosperms, and angiosperms, such as roots, stems, leaves, or a mixture thereof, are cultured by a known method using the above-mentioned plant tissue culture medium. The differentiated plant tissues can be propagated by this method, and metabolites can be produced and used as materials for recovery. In order to improve the production of metabolites and the recovery efficiency by electric field treatment, it is preferable to carry out the treatment after the differentiated tissue has grown sufficiently in the culture container. For example, once 70% to 100% of the carbon source (usually sucrose) and inorganic salts added to the culture medium have been consumed and the differentiated plant tissue has grown to 10% to 50% of the total volume in the culture vessel, processing can begin. Good.

かくして得られた目的とする代謝物質を含有する植物の
細胞あるいは組織に水性液中で電界を与えることにより
細胞あるいは組織が穿孔され、代謝物質が容易に分泌さ
れる。
By applying an electric field in an aqueous solution to the thus obtained plant cells or tissues containing the target metabolite, the cells or tissues are perforated and the metabolites are easily secreted.

植物の細胞あるいは組織の培養物を電界処理してもよい
が場合によっては培養物から細胞あるいは組織を分離し
、適当な水性液に含有させて電界処理することにより簡
単に代謝物質を分泌させることができる。
A culture of plant cells or tissues may be treated with an electric field, but in some cases, cells or tissues may be separated from the culture, placed in an appropriate aqueous solution, and treated with an electric field to easily secrete metabolites. I can do it.

用いられる水性液として蒸留水、脱イオン水、一般水、
各種緩衝液、各種無機塩類溶液、各種糖類溶液またはこ
れらの混合液もしくは希釈液があげられる。
Distilled water, deionized water, general water,
Examples include various buffer solutions, various inorganic salt solutions, various sugar solutions, and mixed or diluted solutions thereof.

例えば電界処理は水性液中に電極間を細胞あるいは組織
が通過できる構造の電極を設けこれに直流、整流、交流
またはカバシタ放電のいずれかの電流を与えることによ
り行われる。電流は細胞を穿孔できるような電圧と処理
時間を選択する。処理は単一又は複数回のパルスあるい
は連続的通電により行われる。
For example, electric field treatment is carried out by providing electrodes in an aqueous solution with a structure that allows cells or tissues to pass between the electrodes, and applying any one of direct current, rectification, alternating current, or capacitor discharge to the electrodes. The voltage and treatment time are selected so that the current can perforate the cells. The treatment is performed by single or multiple pulses or continuous energization.

パルスとして処理する場合の処理回数は特に重要ではな
く、パルスの処理回数の如何にかかわらずパルスの総処
理時間が重要である。
The number of times the pulse is processed is not particularly important, but the total processing time of the pulse is important regardless of the number of times the pulse is processed.

処理時間が100ミリ秒以下である場合には、交1 2 流および整流による電界処理は不安定なので避け、直流
パルスまたはカバシタ放電による減衰パルスで処理する
のが好ましい。電界の処理強度と処理時間のおおよその
目安は細胞または組織あたり、3000V / cm以
上20000V/cmでは10ナノ秒〜500マイクロ
秒、1500V/cmではマイクロ秒〜5ミリ秒、75
0V/cmでは50マイクロ秒〜50ミリ秒、350V
/cmでは500マイクロ秒〜500ミリ秒、200V
/cmでは5ミリ秒〜5秒、100V/ cmでは50
0ミリ秒〜50秒、50V/cmでは5秒〜500秒、
25V/cm以下I V / crn1以上では50秒
〜5000秒であるが、実際の処理条件は、実験によっ
て分泌と呼吸活性を実測し、最適条件を決定することが
必要である。
When the processing time is 100 milliseconds or less, it is preferable to avoid electric field processing using AC 12 current and rectification because it is unstable, and to perform processing using DC pulses or attenuated pulses using covert discharge. Approximate electric field treatment strength and treatment time per cell or tissue: 3000V/cm or higher, 10 nanoseconds to 500 microseconds at 20000V/cm, microseconds to 5 milliseconds at 1500V/cm, 75
50 microseconds to 50 milliseconds at 0V/cm, 350V
/cm: 500 microseconds to 500 milliseconds, 200V
5 milliseconds to 5 seconds at /cm, 50 at 100V/cm
0 milliseconds to 50 seconds, 5 seconds to 500 seconds at 50V/cm,
For IV/crn1 or higher of 25 V/cm or less, the treatment time is 50 seconds to 5,000 seconds, but the actual treatment conditions must be determined by actually measuring secretion and respiratory activity through experiments to determine the optimum conditions.

電界処理することによって細胞および組織から代謝物質
の分泌放出を促進するが呼吸活性を失わない条件を設定
するためには、培養中に電界を種々の強度で処理し、1
〜5日間以上経過してから酸素電極を用いて細胞および
組織の呼吸活性を測定し、呼吸活性を有する処理条件を
定めることができる。
In order to set conditions that promote the secretion and release of metabolites from cells and tissues by electric field treatment without losing respiratory activity, electric fields are treated at various intensities during culture.
After ~5 days or more have elapsed, the respiratory activity of cells and tissues can be measured using an oxygen electrode, and treatment conditions with respiratory activity can be determined.

本発明の好ましい態様として、培養と電界処理を交互に
繰り返すことにより目的物を多量に収穫できる。この方
法を実施するには、代謝物質を生産しうる植物の細胞も
しくは組織の培養物もしくは該培養物から細胞もしくは
組織を分離し、これを含有させた水性液を細胞もしくは
組織が代謝活性及び呼吸活性を完全には失わない条件で
電界処理して代謝物質を分泌させ、処理後の培養物もし
くは水性液又はこれらから細胞あるいは組織を分離し、
これを含有させた新たな水性液に要すれば代謝活性及び
呼吸活性を維持するのに必要な栄養分を加えて培養し細
胞もしくは組織に代謝物質を生成蓄積させ、次いで上記
条件で電界処理し、以後代謝活性が失われる迄細胞もし
くは組織の培養と電界処理を繰り返せばよい。
In a preferred embodiment of the present invention, the target product can be harvested in large quantities by alternately repeating culture and electric field treatment. To carry out this method, a culture of plant cells or tissues capable of producing a metabolite is isolated, or cells or tissues are separated from the culture, and an aqueous solution containing the same is added to the cell or tissue so that the cells or tissues exhibit metabolic activity and respiration. The metabolites are secreted by electric field treatment under conditions that do not completely lose the activity, and the treated culture or aqueous solution or cells or tissues are separated from these,
If necessary, nutrients necessary to maintain metabolic activity and respiratory activity are added to the new aqueous solution containing this, cultured to produce and accumulate metabolic substances in cells or tissues, and then subjected to electric field treatment under the above conditions, Thereafter, the cell or tissue culture and electric field treatment may be repeated until metabolic activity is lost.

上記方法において水性液として新たに植物液体培養培地
を用いれば電界処理後そのまま培養を行うことができる
In the above method, if a liquid plant culture medium is newly used as the aqueous liquid, culture can be performed as is after electric field treatment.

電界処理後の培養においては細胞や組織の顕著な増加は
みられないので実験的に代謝物質の生成3 4 変化を調べて培養期間を定め次いで電界処理を行えばよ
い。
Since no significant increase in cells or tissues is observed in culture after electric field treatment, the culture period may be determined by experimentally determining changes in the production of metabolites, and then electric field treatment may be performed.

電界の処理で代謝物質が水性液中に分泌されたら、代謝
物質を採取する。採取の方法としては、たとえば水性液
から直接回収する方法、代謝物質を吸着する樹脂で吸着
させて回収する方法などがいずれも利用できる。
Once the metabolites are secreted into the aqueous fluid upon treatment with the electric field, they are collected. As a collection method, for example, a method of directly recovering from an aqueous liquid, a method of recovering metabolites by adsorption with a resin that adsorbs metabolites, etc. can be used.

〔実施例〕〔Example〕

以下、実施例により本発明をさらに詳細に説明するが、
これらの実施例は本発明の範囲を何ら制限するものでは
ない。
Hereinafter, the present invention will be explained in more detail with reference to Examples.
These examples do not limit the scope of the invention in any way.

実施例1 ヘラドンナの茎を約5cmの長さに切り、70%エチル
アルコールで2分間、次いで次亜塩素酸ナトリウム水溶
液(有効塩素量0.5%)で100分間殺菌した後に5
〜10mmの切片に切った。該切片を、第1表に示した
ムラシゲ・スクーグ培地にN(2−クロロ−4−ピリジ
ル)−N−フェニル尿素を培地II2.当り1■および
寒天を培地12当り8gの濃度で添加した培地(以下、
培地aという。)10滅を含有する直径24mm、長さ
125祁の試験管に移植し、22°C12500ルクス
連続照明下30日間培養した。
Example 1 The stem of Helladonna was cut into lengths of about 5 cm and sterilized with 70% ethyl alcohol for 2 minutes, then with an aqueous sodium hypochlorite solution (available chlorine amount 0.5%) for 100 minutes, and then
Cut into ~10 mm sections. The sections were mixed with N(2-chloro-4-pyridyl)-N-phenylurea in the Murashige-Skoog medium shown in Table 1 in medium II2. Agar was added at a concentration of 1 g per 1 kg and 8 g per 12 medium (hereinafter referred to as
It is called medium a. ) was transplanted into a test tube with a diameter of 24 mm and a length of 125 mm, containing 100 ml of microorganisms, and cultured at 22° C. under continuous illumination of 12,500 lux for 30 days.

培養30日後、生育した組織を無菌的に取り出し、ピン
セットとメスを用いて組織から発生した根のみを無菌的
に採取した。これらの根を、第2表の組成からなる新鮮
培地100mRを含有するコニカルビーカーに移植して
、22°Cで30日間培養し、生育した根の塊を得た。
After 30 days of culture, the grown tissue was aseptically removed, and only the roots that had developed from the tissue were aseptically collected using tweezers and a scalpel. These roots were transplanted into a conical beaker containing 100 mR of fresh medium having the composition shown in Table 2, and cultured at 22°C for 30 days to obtain a mass of grown roots.

この根の塊をピンセットとメスを用いて無菌的に分割し
、再び第2表の組成からなる新鮮培地100mRを含有
するコニカルビーカーに移植して前記と同様の方法で継
代増殖を繰り返して根のみを増殖させた。このようにし
て増殖した根を無菌的に取り出し、ピンセットとメスを
用いて組織から発生した根のみを無菌的に採取した。こ
れらの根を前記第1表の組成のうちシュークロースを6
0.0gに変更し、さらにα−ナフタレン酢酸を0.3
 mgに変更した液体培地(以下培地すという。)10
0mf!を含有する300mj!容広ロフラスコに培地
100mn当り平均2gを移植して、22゛C5 G で35日間毎分120回転で回転振とう培養して培地1
00mj!当り平均約8gに生育させた。このようにし
て生育させた根を培養したフラスコに滅菌した電極(電
極ザイズー30X12mm、電極間隔2cm)を挿し込
み、根を電極間に挟むようにしてから最大電圧3000
V、時定数5マイクロ秒の減衰波パルスを20回処理し
た。処理後、電極をフラスコから取り出し、再度22°
C毎分120回転で3時間振とう培養した後、培地のみ
をクリーンベンチ内で無菌的に回収し、ヒヨスチアミン
、スコボレチンを定量すると共に、前記第1表の組成の
うちシュークロースを10gに変更し、さらに塩類濃度
をすべて1710倍に希釈変更した液体境地(以下、培
地Cという。)100mRを添加して再度22°C毎分
120回転で回転振とう培養を続けた。以後は5日間隔
で同様な電界処理と培養を4回繰返してそれぞれ培地を
回収してヒヨスチアミン、スコポレチンを定量すると共
に、培養終了後の根の呼吸活性を測定した。
This root mass was aseptically divided using tweezers and a scalpel, transplanted again into a conical beaker containing 100 mR of fresh medium having the composition shown in Table 2, and subcultured in the same manner as described above. only grew. The roots that had grown in this manner were removed aseptically, and only the roots that had developed from the tissues were aseptically collected using tweezers and a scalpel. These roots contain 6 sucrose in the composition shown in Table 1 above.
0.0g, and further added 0.3g of α-naphthaleneacetic acid.
Liquid medium (hereinafter referred to as medium) changed to 10 mg
0mf! 300mj containing! Transplant an average of 2 g per 100 mm of medium into a wide-capacity flask, and culture with rotational shaking at 120 revolutions per minute at 22°C5G for 35 days to obtain medium 1.
00mj! The average weight per plant was about 8g. Insert sterilized electrodes (electrode size: 30 x 12 mm, electrode spacing: 2 cm) into the flask in which the roots grown in this way were cultured, sandwich the roots between the electrodes, and then apply a maximum voltage of 3000.
V, a decaying wave pulse with a time constant of 5 microseconds was processed 20 times. After treatment, the electrode was removed from the flask and placed at 22° again.
After culturing with shaking at 120 revolutions per minute for 3 hours, only the medium was collected aseptically in a clean bench, hyoscyamine and scoboretin were quantified, and sucrose in the composition in Table 1 was changed to 10 g. Then, 100 mR of liquid medium (hereinafter referred to as medium C) in which all salt concentrations were diluted 1710 times was added, and the rotary shaking culture was continued again at 22°C and 120 revolutions per minute. Thereafter, the same electric field treatment and cultivation were repeated four times at 5-day intervals, and the culture medium was collected for each time to quantify hyoscyamine and scopoletin, and to measure the respiratory activity of the roots after the cultivation was completed.

以上の延べ5回の処理によるヒヨスチアミン、スコボレ
チンの定量結果を第3表に示す。測定したヒヨスチアミ
ン、スコボレチンの定量結果は培地1℃当りの含有量を
mg//2で表示した。また5回の処理終了後の根の呼
吸活性の測定結果は、酸素の消費量を組織の新鮮重量1
g当りの1時間の酸素消費量としてmgで表示した。
Table 3 shows the quantitative results of hyoscyamine and scoboletin obtained by the above five treatments in total. The quantitative results of hyoscyamine and scoboretin were expressed as mg//2 of the content per 1°C of the medium. In addition, the results of measuring the respiratory activity of the roots after 5 treatments showed that the amount of oxygen consumed was
It was expressed in mg as oxygen consumption per g per hour.

すなわち、電界処理した区は培地1ffi換算としてい
ずれの培地回収日にも3.7〜8.3 mg/ (lの
ヒヨスチアミンと0.9〜3.2 mg / lのスコ
ボレチンが回収された。これに対して電界処理しなかっ
た対照区はヒヨスチアミン、スコボレチン共に分泌量は
極微量あるいは全く分泌が認められなかった。呼吸量は
54日目に根をサンプリングして測定した結果、電界処
理した区が0.33mg Oz / g FW/ hで
あり、対照区の0.48mg O□/gF誓/hと比較
して31%の低下が認められるものの呼吸活性は強かっ
た。
That is, in the electric field-treated plot, 3.7 to 8.3 mg/(l) of hyoscyamine and 0.9 to 3.2 mg/l of scoboletin were recovered on any culture medium collection day in terms of 1ffi of the medium. On the other hand, in the control plot that was not treated with the electric field, the secretion of both hyoscyamine and scoboletin was minimal or no secretion was observed.The respiration rate was measured by sampling the roots on the 54th day, and the results showed that the amount of respiration was measured by sampling the roots on the 54th day. The respiratory activity was 0.33 mg Oz/g FW/h in the control group, which was a 31% decrease compared to 0.48 mg O□/gFW/h in the control group, but the respiratory activity was strong.

第1表 ムラシゲ・スクーグ培地組成 硝酸アンモニウム       1 、650mg7 8 硝酸カリウム 塩化カルシウム・2水塩 硫酸マグネシウム・7水塩 リン酸第−カリウム Naz・EDTA ・2水塩 硫酸第一鉄・7水塩 ホ  ウ  酸 硫酸マンガン・4水塩 硫酸亜鉛・7水塩 ヨウ化カリウム モリブデン酸ナトリウム・ 硫酸第一銅 塩化コバルト ビタミンB1 イノシトール 塩酸ピリドキシン ニコチン酸 グリシン シュークロース 1.900mg 40mg 70mg 70mg 37.3mg 27.8mg 6.2mg 22.3mg 8.6mg 0.83mg 2水塩  0.25mg 0.025mg 0.025mg 0.40mg 00mg 0.50mg 0.50mg 2.00mg 30.0g (前記の成分を脱イオン水に溶かして1℃とし、0、1
規定の水酸化ナトリウム水溶液でpHを6.2に調節し
、培養容器に分注した後121°Cで20分間殺菌する
。) 第2表 スクーグ改変培地組成 25mg 50mg 22On+g 85mg 5mg 18.65mg 13.9mg 3、1mg ]、1.1.5mg 4.3mg 0.415mg 0.125mg 0.0125mg ムラシゲ・ 硝酸アンモニウム 硝酸カリウム 塩化カルシウム・2水塩 硫酸マグネシウム・7水塩 リン酸第−カリウム Naz4DTA ・、 2水塩 硫酸第一鉄・7水塩 ホ  ウ  酸 硫酸マンガン・4水塩 硫酸亜鉛・7水塩 ヨウ化カリウム モリブデン酸ナトリウム・2水塩 硫酸第一銅 9 0 塩化コバルト ビタミンB1 イノシトール 塩酸ピリドキシン ニコチン酸 グリシン シュークロース ナフタレン酢酸 0.0125mg o、2mg 50.0mg 0.25mg 0.25mg 1.00mg 30.0g 0.1mg (前記の成分を脱イオン水に熔かして1でとし、0.1
規定の水酸化ナトリウム水溶液でpHを6.2に調節し
、培養容器に分注した後121°Cで20分間殺菌する
。) (本頁以下余白) 第3表 ベラドンナの根の培養からのヒヨスチアミンおよびスコ
ボレチンの回収 35日  8.3mg/ 1 0.9mg/ 1 0.
2mg/ 4239    5.4     3.2 
    0.145    6.3     2.4 
    0.250    3.7     2.7 
    0.154    4.6     1.6 
    0.1実施例2 ベラドンナの茎を約5cmの長さに切り、70%エチル
アルコールで2分間、次いで次亜塩素酸ナトリウム水溶
液(有効塩素量0.5%)で100分殺菌した後に5〜
10mmの切片に切った。該切片を、培地a 10mを
含有する直径24mm、長さ125mmの試験管に移植
し、22°C12500ルクス連続照明下30日間1 2 培養した。
Table 1 Murashige-Skoog medium composition Ammonium nitrate 1, 650 mg7 8 Potassium nitrate Calcium chloride Dihydrate Magnesium sulfate Heptahydrate Potassium phosphate Naz EDTA Dihydrate Ferrous sulfate Heptahydrate Boric acid Sulfuric acid Manganese / tetrahydrate Zinc sulfate / heptahydrate Potassium iodide Sodium molybdate / Cuprous sulfate Cobalt chloride Vitamin B1 Inositol Hydrochloride Pyridoxine Nicotinic acid Glycine Sucrose 1.900mg 40mg 70mg 70mg 37.3mg 27.8mg 6.2mg 22 .3mg 8.6mg 0.83mg Dihydrate 0.25mg 0.025mg 0.025mg 0.40mg 00mg 0.50mg 0.50mg 2.00mg 30.0g (Dissolve the above components in deionized water and bring to 1°C. ,0,1
Adjust the pH to 6.2 with a specified aqueous sodium hydroxide solution, dispense into culture containers, and sterilize at 121°C for 20 minutes. ) Table 2 Skoog modified medium composition 25mg 50mg 22On+g 85mg 5mg 18.65mg 13.9mg 3, 1mg ], 1.1.5mg 4.3mg 0.415mg 0.125mg 0.0125mg Murashige Ammonium nitrate Potassium nitrate Calcium chloride diwater Magnesium sulfate salt/Potassium phosphate heptahydrate Naz4DTA・Ferrous sulfate dihydrate・Boric acid heptahydrate Manganese sulfate tetrahydrate・Potassium iodide heptahydrate Sodium molybdate dihydrate Salt Cuprous sulfate 9 0 Cobalt chloride Vitamin B1 Inositol Hydrochloride Pyridoxine Nicotinic acid Glycine Sucrose Naphthalene Acetic acid 0.0125 mg o, 2 mg 50.0 mg 0.25 mg 0.25 mg 1.00 mg 30.0 g 0.1 mg Dissolve in deionized water and bring to a concentration of 0.1
Adjust the pH to 6.2 with a specified aqueous sodium hydroxide solution, dispense into culture containers, and sterilize at 121°C for 20 minutes. ) (Margins below this page) Table 3 Recovery of hyoscyamine and scoboletin from belladonna root culture 35 days 8.3 mg/ 1 0.9 mg/ 1 0.
2mg/ 4239 5.4 3.2
0.145 6.3 2.4
0.250 3.7 2.7
0.154 4.6 1.6
0.1 Example 2 Cut belladonna stems into lengths of about 5 cm, sterilize them in 70% ethyl alcohol for 2 minutes, then in a sodium hypochlorite aqueous solution (available chlorine amount 0.5%) for 100 minutes, and then sterilize them for 5 to 5 cm.
Cut into 10 mm sections. The section was transplanted into a test tube with a diameter of 24 mm and a length of 125 mm containing 10 ml of medium A, and cultured for 30 days 1 2 at 22° C. under continuous illumination of 12,500 lux.

培養30日後、生育した組織を無菌的に取り出し、ビン
セットとメスを用いて組織から発生した根のみを無菌的
に採取した。これらの根を、第2表の組成からなる新鮮
培地100mnを含有するコニカルビーカーに移植して
、22°Cで30日間培養し、生育した根の塊を得た。
After 30 days of culture, the grown tissue was aseptically removed, and only the roots that had developed from the tissue were aseptically collected using a vinset and a scalpel. These roots were transplanted into a conical beaker containing 100 ml of fresh medium having the composition shown in Table 2, and cultured at 22°C for 30 days to obtain a mass of grown roots.

この根の塊をビンセットとメスを用いて無菌的に分割し
、再び第2表の組成からなる新鮮培地100mj!を含
有するコニカルビーカに移して前記と同様の方法で継代
増殖を繰り返して根のみを増殖させた。このようにして
増殖した根を無菌的に取り出し、ビンセットとメスを用
いて組織から発生した根のみを無菌的に採取した。
This root mass was aseptically divided using a bottle set and a scalpel, and again 100 mj of fresh medium having the composition shown in Table 2 was used! The roots were transferred to a conical beaker containing the following, and subculture was repeated in the same manner as described above to propagate only the roots. The roots that had grown in this manner were removed aseptically, and only the roots that had developed from the tissues were aseptically collected using a vinset and a scalpel.

これらの根を培地b8j2を含有する10°!容の植物
器官の培養用培養槽(特願平1−243985号公報)
に電界処理するための電極(電極サイズ42X17mm
、電極間隔20mm)を培養槽当り1対設置した培養槽
当りコニカルビーカー4木分を移植して、22°Cで3
5日間毎分30回転でほぐし装置を5目間隔で運転して
培養し、集塊を形成することなく根を培養槽全体に均一
に分散して培養槽当り乾燥型として約60g(新鮮重量
として約700g相当)に生育させた(この結果は培地
の電気伝導度の変化量から計算した)。
These roots were grown in medium containing b8j2 at 10°! Culture tank for culturing plant organs (Japanese Patent Application No. 1-243985)
Electrode for electric field treatment (electrode size 42 x 17 mm)
, 1 pair of conical beakers per culture tank were installed with electrode spacing of 20 mm).
For 5 days, the loosening device was operated at 30 rotations per minute at 5-speed intervals to cultivate the roots, and the roots were uniformly dispersed throughout the culture tank without forming clumps. (equivalent to approximately 700 g) (this result was calculated from the amount of change in electrical conductivity of the medium).

このようにして培養した培養槽に、培養355回目電極
間ニ3000V (1500V/cm) 、時定数8マ
イクロ秒の減衰パルスの電界を1秒間隔で1時間30分
与えた。電界処理開始後5時間目まで1時間毎に培地を
サンプリングして根の細胞から培地に分泌放出されたス
コボレチンの量を経時的に測定した。
For the 355th time of culture, a decaying pulse electric field of 3000 V (1500 V/cm) between the electrodes and a time constant of 8 microseconds was applied to the culture tank thus cultured at 1 second intervals for 1 hour and 30 minutes. The culture medium was sampled every hour until 5 hours after the start of the electric field treatment, and the amount of scoboletin secreted into the culture medium from the root cells was measured over time.

電界処理開始後5時間目に培地の全量を回収し、ヒヨス
チアミン、スコポレチンを定量とすると共に、培地8℃
を添加して再度同一条件で7日間培養を続けた後、2回
目の電界処理を1回目と同様な条件で行った後に培地の
全量回収を行い、培地中のヒヨスチアミン、スコボレチ
ンを定量した。
Five hours after the start of electric field treatment, the entire volume of the medium was collected, hyoscyamine and scopoletin were quantitatively determined, and the medium was heated at 8°C.
was added and the culture was continued for 7 days again under the same conditions, a second electric field treatment was performed under the same conditions as the first time, the total amount of the medium was recovered, and hyoscyamine and scoboretin in the medium were quantified.

その結果、電界処理開始後5時間目までのスコボレチン
の分泌量の変化は、第4表に示すようになり、処理開始
後1時間で培地1で当り0.57mg、2時間目には0
.84mgとなり、以後は緩やかに増加し3 4 続けて5時間目には1 、07 mgに達した。2回目
に回収した培地中のスコポレチン量は培地11当り3.
02mgであった。また、電界処理開始後5時間目に回
収した培地中のヒヨスチアミン量は、培地11当り4.
3 mg、さらに2回目に回収した培地中のヒヨスチア
ミン量は培地II!、当り9.3 mgであった。
As a result, changes in the secretion amount of scoboretin up to 5 hours after the start of electric field treatment were as shown in Table 4, and were 0.57 mg per medium 1 at 1 hour after the start of treatment, and 0.57 mg per medium at 2 hours after the start of treatment.
.. The amount was 84 mg, and thereafter it increased slowly and reached 1.07 mg at the 5th hour. The amount of scopoletin in the medium collected the second time was 3.
It was 02 mg. In addition, the amount of hyoscyamine in the culture medium collected 5 hours after the start of electric field treatment was 4.5 hours per 11 hours of culture medium.
3 mg, and the amount of hyoscyamine in the second medium collected was medium II! , 9.3 mg per serving.

なお、電界処理しない対照区については、多くの実験結
果からヒヨスチアミンもスコポレチンも細胞外には実質
上はとんど分泌しないことがわかっている。
As for the control group that is not treated with an electric field, many experimental results have shown that neither hyoscyamine nor scopoletin is substantially secreted outside the cells.

(来夏以下余白) 第4表 ジャーファーメンタ−でのベラドンナの根の培養から培
地中へのスコポレチンの透過の経時変化0.02 0.57 0.84 0.95 1.01 1.07 〔発明の効果〕 本発明によれば、代謝物質を含有する植物の細胞または
組織を水性液中電界処理して細胞または組織中に生産蓄
積した代謝物質を水性液中に分泌放出させることにより
代謝物質を効率よく、容易に回収することができる。
(Leaving space below next summer) Table 4: Changes over time in permeation of scopoletin into the medium from belladonna root culture in jar fermenters 0.02 0.57 0.84 0.95 1.01 1.07 [ [Effects of the Invention] According to the present invention, the cells or tissues of plants containing metabolites are treated with an electric field in an aqueous solution to secrete and release the metabolites produced and accumulated in the cells or tissues into the aqueous solution. can be collected efficiently and easily.

5 65 6

Claims (1)

【特許請求の範囲】 1、代謝物質を含有する植物の細胞もしくは組織を水性
液中で電界処理し、該細胞もしくは組織から代謝物質を
水性液中に分泌させ、水性液からこれを採取することを
特徴とする植物の代謝物質の回収法。 2、代謝物質を含有する植物の細胞もしくは組織を含有
する水性液が植物の細胞もしくは組織を培地に培養して
得られる培養物である請求項1記載の植物の代謝物質の
回収法。 3、植物の細胞もしくは組織を培地に培養して細胞もし
くは組織内に代謝物質を生成させ、(イ)得られた培養
物もしくは培養物させた細胞もしくは組織を分離してこ
れを含有する水性液を細胞もしくは組織が代謝活性及び
呼吸活性を完全には失わない条件で電界処理して代謝物
質を培地中もしくは水性液中に分泌させ(電界処理工程
)(ロ)処理後の培養物もしくは水性液もしくはこれら
から細胞あるいは組織を分離し、これを含有させた新た
な水性液に要すれば代謝活性及び呼吸活性を維持するの
に必要な栄養分を加えて培養し、細胞もしくは組織に代
謝物質を生成させ(培養工程)以後電界処理工程及び培
養工程を繰り返し、分泌させた代謝物質含有液から代謝
物質を採取することを特徴とする植物の代謝物質の回収
法。
[Claims] 1. Electric field treatment of plant cells or tissues containing metabolites in an aqueous solution, secretion of metabolites from the cells or tissues into the aqueous solution, and collection of the metabolites from the aqueous solution. A method for recovering plant metabolites characterized by: 2. The method for recovering plant metabolites according to claim 1, wherein the aqueous liquid containing plant cells or tissues containing the metabolites is a culture obtained by culturing plant cells or tissues in a medium. 3. Cultivating plant cells or tissues in a medium to produce metabolic substances within the cells or tissues; (a) the resulting culture or an aqueous solution containing the cultured cells or tissues separated; treated with an electric field under conditions that cells or tissues do not completely lose their metabolic and respiratory activities to secrete metabolites into the medium or aqueous solution (electric field treatment step) (b) Culture or aqueous solution after treatment Alternatively, cells or tissues can be separated from these and cultured in a new aqueous solution containing them, with nutrients necessary to maintain metabolic and respiratory activity added if necessary, to produce metabolic substances in the cells or tissues. 1. A method for recovering plant metabolites, which comprises collecting metabolites from a solution containing secreted metabolites by repeating an electric field treatment step and a culturing step.
JP8547090A 1990-03-31 1990-03-31 Recovery method of plant metabolites Expired - Lifetime JPH07102141B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8547090A JPH07102141B2 (en) 1990-03-31 1990-03-31 Recovery method of plant metabolites

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8547090A JPH07102141B2 (en) 1990-03-31 1990-03-31 Recovery method of plant metabolites

Publications (2)

Publication Number Publication Date
JPH03285687A true JPH03285687A (en) 1991-12-16
JPH07102141B2 JPH07102141B2 (en) 1995-11-08

Family

ID=13859782

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8547090A Expired - Lifetime JPH07102141B2 (en) 1990-03-31 1990-03-31 Recovery method of plant metabolites

Country Status (1)

Country Link
JP (1) JPH07102141B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI661766B (en) * 2017-12-29 2019-06-11 財團法人工業技術研究院 Method for producing galanthamine using a plant
US11109538B2 (en) 2017-12-29 2021-09-07 Industrial Technology Research Institute Method for producing galanthamine by a plant and electrical stimulation device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI661766B (en) * 2017-12-29 2019-06-11 財團法人工業技術研究院 Method for producing galanthamine using a plant
US11109538B2 (en) 2017-12-29 2021-09-07 Industrial Technology Research Institute Method for producing galanthamine by a plant and electrical stimulation device

Also Published As

Publication number Publication date
JPH07102141B2 (en) 1995-11-08

Similar Documents

Publication Publication Date Title
Takayama et al. The mass propagation of Lilium in vitro by stimulation of multiple adventitious bulb-scale formation and by shake culture
CN102134561B (en) Culture medium used for fast breeding tissue-culture root-shaped stems of nervilia fordii
CN105850729A (en) Verbena bonariensis cultivation method
CN105660400A (en) Strengthening and weight increasing method for anoectochilus roxburghii tissue cultured seedlings
JPS61170385A (en) Production of raw material of konjak by cell culture
JPH03285687A (en) Recovery of vegetable metabolic substance
Basu et al. Induction of cell division in leaf cells of coconut palm by alteration of pH and its correlation with glyoxalase-I activity
Mahmud et al. Selection of cell source and the effect of pH and MS macronutrients on biomass production in cell cultures of tongkat ali (Eurycoma longifolia Jack)
Yamakawa et al. Application of feeder layer method for improved colony formation of grape cells and protoplasts at low cell density
JP2545359B2 (en) Plant culture cells
KR0140787B1 (en) Preparation process of sanguinarine and its derivatives by culturing cells from macleaya species
JP3517307B2 (en) Gravlidine manufacturing method
JP3151207B2 (en) Method and apparatus for tissue culture of plant and method for producing metabolite
WO2004033673A2 (en) Production process for plant biomass and its use
Reynolds et al. [41] Plant cell lines
JPH04202137A (en) Production of iridoid glucoside
JPH05103685A (en) Production of anthocyanin-based coloring matter
Button et al. The effect of subculture interval on organogenesis in callus cultures of Citrus sinensis
Ringe A further contribution to the question of cytokinin-like activity of 8-quinolinol sulphate
JPH0246295A (en) Production of physiologically active substance
JPH0335790A (en) Production of flavonoid glycoside having isoprenoid side chain
JPH01243991A (en) Production of plant metabolite
JPS63237784A (en) Culture of root of plant belonging to bupleurum genus
JPH0347071A (en) Method for obtaining highly glycyrrhizin-producing strain of glycyrrhiza glabra l. var root stem cell
JPH0838164A (en) Method for carrying out tissue culture of panax ginseng c. a. meyer