JPH0347071A - Method for obtaining highly glycyrrhizin-producing strain of glycyrrhiza glabra l. var root stem cell - Google Patents

Method for obtaining highly glycyrrhizin-producing strain of glycyrrhiza glabra l. var root stem cell

Info

Publication number
JPH0347071A
JPH0347071A JP1182180A JP18218089A JPH0347071A JP H0347071 A JPH0347071 A JP H0347071A JP 1182180 A JP1182180 A JP 1182180A JP 18218089 A JP18218089 A JP 18218089A JP H0347071 A JPH0347071 A JP H0347071A
Authority
JP
Japan
Prior art keywords
medium
glycyrrhizin
cells
concentration
licorice
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1182180A
Other languages
Japanese (ja)
Inventor
Makiko Himi
氷見 真希子
Kazunori Fujita
一紀 藤田
Shigeya Yonetani
米谷 繁也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP1182180A priority Critical patent/JPH0347071A/en
Publication of JPH0347071A publication Critical patent/JPH0347071A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable to efficiently produce glycyrrhizin by transplanting the root stem cells of Glycyrrhiza glabra L. var from a plant tissue culture medium to any other medium changed in the concentration of a plant growth hormone to give a chemical stress to the cells. CONSTITUTION:An auxin such as 2,4-D, a cytokinin such as benzyladenine, etc., are added to a medium such as a MS medium containing a large amount of an inorganic salt such as NH4NO3, a fine amount of inorganic salt such as FeSO4, organic nutrients such as vitamins and a carbon source such as sucrose, and the root stem cell of Glycyrrhiza glabra L. var is cultured in the prepared medium. On the culture, the cells are transferred from the medium containing the hormones into a medium not containing the hormones during the culturing process, or from the medium having a hormore concentration of approximately 0.5-20ppm into a medium having a hormone concentration of approximately 0.01-0.5ppm to give a chemical stress to the Glycyrrhiza glabra L. var. The difference between the hormone concentrations is required to be >=0.5ppm. The secondary metabolic system of the plant is stimulated by the chemical stress to accelerate the production of glycyrrhizin.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はカンゾウ根茎細胞の選抜方法に係り、特にグリ
チルリチン高生産株の大量取得に好適な選抜方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a selection method for licorice rhizome cells, and particularly to a selection method suitable for obtaining a large amount of glycyrrhizin-producing strains.

〔従来の技術〕[Conventional technology]

植物の細胞培養(カルス培養を含む)において幼苗の大
量生産や植物の有用な二次代謝物の生産を目的とした、
培地組成、培養環境の最適化に関する研究がなされてい
る0例えば、ミシマサイコの葉および茎のカルスを、オ
ーキシン濃度を変化させることにより再分化し、天然と
同一のサイコサポニンを生産する方法(生薬学雑誌:2
8く2>、152〜160)、また、薬用にんじんの組
織培養物を糖類のバランスを調整し、硝酸アンモニウム
を除去したMS培地で培養することにより、天然と同一
のサポニンを多量に含有するにんじんを生産する方法が
報告されている。(特公昭 第63−21470号公報
) これらの場合、有効物質を高効率で生産する細胞群の選
別は、カルスやプロトプラストの視覚的選抜法や、細胞
の二次代謝物の分析によって行われていた。しかし、こ
れらの方法は非常に手間がかかる上、−度に大量のサン
プルを処理することはできない。
For the purpose of mass production of seedlings in plant cell culture (including callus culture) and production of useful secondary metabolites of plants,
Research has been conducted on optimizing the medium composition and culture environment.For example, a method of redifferentiating callus from leaves and stems of A. japonica by changing the auxin concentration to produce the same saucosaponin as naturally occurring (Herbal Pharmacology) Magazine: 2
8, 2>, 152-160), and by culturing medicinal carrot tissue culture in MS medium in which the balance of sugars has been adjusted and ammonium nitrate has been removed, carrots containing a large amount of the same natural saponin can be produced. A method for producing it has been reported. (Special Publication No. 63-21470) In these cases, cell groups that produce effective substances with high efficiency are selected by visual selection of callus and protoplasts or by analysis of secondary metabolites of cells. Ta. However, these methods are very time-consuming and cannot process a large number of samples at once.

一方、カンデラは根茎に含有するグリチルリチンが有効
物質として広く使用されるが、国内生産はほとんどなさ
れていない。カンデラの細胞培養は、シナカンゾウ(G
lycyrrhiza echinata)の細胞をア
ルギン酸カルシウムビーズに固定化することにより、エ
キナチンを細胞レベルで長期間生産させる方法(発酵と
工業:  Voffi45  Nα12)が報告されて
いる。しかし、グリチルリチンを含有するスペインカン
ゾウ(Glycyrrhiza glabra)やウラ
ルカンゾウ(Glycyrrhiza uralens
is)の細胞培養、またグリチルリチンを高効率で作る
細胞の培養法は見られない。
On the other hand, glycyrrhizin contained in the rhizome of candela is widely used as an active substance, but it is hardly produced domestically. Candela cell culture is based on Chinese licorice (G.
A method for producing echinatine at the cellular level for a long period of time (fermentation and industry: Voffi45 Nα12) has been reported by immobilizing cells of lycyrrhiza echinata on calcium alginate beads. However, Spanish licorice (Glycyrrhiza glabra) and Ural licorice (Glycyrrhiza uralens), which contain glycyrrhizin,
is), and no method for culturing cells that produces glycyrrhizin with high efficiency has been found.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記のように、従来グリチルリチンを含むカンゾウ根茎
細胞の培養や、グリチルリチン高生産株取得については
明らかにされていない。このため培養細胞のグリチルリ
チン生産能を明らかにし、グリチルリチン生産細胞を効
率的に選抜できる方法が要望されていた。
As mentioned above, the culture of licorice rhizome cells containing glycyrrhizin and the acquisition of strains with high glycyrrhizin production have not been clarified so far. Therefore, there has been a need for a method that can clarify the glycyrrhizin-producing ability of cultured cells and efficiently select glycyrrhizin-producing cells.

本発明の目的は、カンゾウ根茎細胞に効率よくグリチル
リチンを生産させ、グリチルリチン高生産株を取得する
方法を提供することにある。
An object of the present invention is to provide a method for efficiently producing glycyrrhizin in licorice rhizome cells and obtaining a highly glycyrrhizin-producing strain.

〔課題を解決するための手段〕[Means to solve the problem]

上記した目的は、カンゾウ根茎細胞を植物組織培養培地
における植物成長ホルモンの濃度が変化する培地に移植
し、化学的ストレスを与えることによって達成される。
The above objectives are achieved by transplanting licorice rhizome cells into a plant tissue culture medium with varying concentrations of plant growth hormone and by applying chemical stress.

カンゾウ細胞は、HNO,、NH4NO3。Licorice cells are HNO, NH4NO3.

CaC1x 、Mg5Oa 、KHz POa等の多量
無機塩11100〜3000ppm、Fe5Oa。
11100-3000 ppm of large amounts of inorganic salts such as CaC1x, Mg5Oa, KHz POa, Fe5Oa.

Mn5Oa 、H3BOi 、K I、Cu5On 。Mn5Oa, H3BOi, KI, Cu5On.

Co Cl !等の微量無機塩W(0、O1〜50 p
 p m、またビタミンB群、ビタミンC,グリシン、
アデニン等の有機栄養素0.1〜50ppm含む任意の
固体培地又は液体培地で培養することができ、その基礎
培地にはB5.MS、SH,white等がある。本発
明において特に好ましい培地は、シェルライト0.5〜
2.0%を含む2に希釈したMS培地である。
CoCl! Trace inorganic salt W (0, O1~50 p
PM, also vitamin B group, vitamin C, glycine,
It can be cultured in any solid or liquid medium containing 0.1 to 50 ppm of organic nutrients such as adenine, and the basal medium contains B5. There are MS, SH, white, etc. Particularly preferred medium in the present invention is Shelllite 0.5~
MS medium diluted to 2 containing 2.0%.

培地にはシュークロース、グルコース、ソルビトール等
の炭素源1〜10%が添加されるが、2〜3%のシェー
クロースを添加したものが好ましい。
The medium contains 1 to 10% of a carbon source such as sucrose, glucose, or sorbitol, preferably 2 to 3% of sucrose.

培地に添加される植物成長ホルモンとしては、オーキシ
ン種として2.4−D、NAA、IAA、サイトカイニ
ン種として、ヘンシルアデニン、カイネチン、ゼアチン
等があり、継代維持培養においてはそれぞれ2種のホル
モンよりひとつを選択し、各0.01ppm〜20pp
m添加する。特に2.4−Dとベンジルアデニン、又は
NAAとカイネチンの組み合わせで各0.1〜2.0p
 p mが好ましい。
Plant growth hormones added to the culture medium include auxin species such as 2.4-D, NAA, and IAA, and cytokinin species such as hensyl adenine, kinetin, and zeatin, and two types of hormones are added to each culture in subculture maintenance. Select one from 0.01ppm to 20pp each
Add m. In particular, the combination of 2.4-D and benzyladenine, or NAA and kinetin, each 0.1 to 2.0 p.
pm is preferred.

カンゾウ細胞に与える化学的ストレスは、培地中にホル
モンを含有する培地からホルモンを含有しない培地へ、
又はホルモン濃度が0.5p p m〜20PPmの培
地から0.01〜0.5p p mの培地へ細胞を移す
ことによって与えられる。特に、0゜2.0p p m
のホルモン含有培地より、0〜0.5ppmのホルモン
含有培地に移すことが望ましい。
The chemical stress applied to licorice cells changes from a medium containing hormones to a medium containing no hormones.
or by transferring cells from a medium with a hormone concentration of 0.5 ppm to 20 ppm to a medium with a hormone concentration of 0.01 to 0.5 ppm. Especially, 0゜2.0p p m
It is preferable to transfer to a hormone-containing medium of 0 to 0.5 ppm rather than a medium containing hormones of 0 to 0.5 ppm.

この時、ホルモン濃度の差は、0.5p p m以上で
あるとよい。
At this time, the difference in hormone concentration is preferably 0.5 ppm or more.

化学゛的ストレスは培地にオーキシン、サイトカイニン
の両者を含有するものから、どちらか一方を除去するこ
と、又は濃度を下げることによっても与えられる。さら
に、あらかじめオーキシン。
Chemical stress can also be applied by removing or lowering the concentration of either auxin or cytokinin in a medium that contains both. Additionally, auxin in advance.

サイトカイニンの一方のみ含有するものにおいて、上記
のようにストレスを与えても効果がある。特にベンジル
アデニン又はゼアチンを0.1〜20ppm含有する培
地より、ホルモンを含有しない培地に移すことが好まし
く、ベンジルアデニン0.5〜2.0p p m含有す
る培地からのホルモンを含有しない培地に移植する場合
、最も効果が大きい。
In those containing only one of the cytokinins, even if stress is applied as described above, it is effective. In particular, it is preferable to transfer to a hormone-free medium from a medium containing 0.1 to 20 ppm benzyladenine or zeatin, and transfer from a medium containing 0.5 to 2.0 ppm benzyladenine to a hormone-free medium. The effect is greatest when

化学的ストレスを与えると同時に、低温ストレス等の物
理的ストレスを与えても効果がある。
It is effective to apply physical stress such as low temperature stress in addition to chemical stress.

ホルモン濃度差の変化による化学的ストレスを与える際
、培地中の他の成分、例えば無機栄養素などの濃度を変
えてもよいが、変えない方が望ましい。
When applying chemical stress due to a change in hormone concentration, the concentration of other components in the medium, such as inorganic nutrients, may be changed, but it is preferable not to do so.

(発明の効果〕 以上のように本発明によれば、植物成長ホルモンの濃度
差による化学的ストレスをカンゾウ根茎細胞に与えるこ
とによってグリチルリチン生産が促進される。
(Effects of the Invention) As described above, according to the present invention, glycyrrhizin production is promoted by applying chemical stress to licorice rhizome cells due to a difference in concentration of plant growth hormone.

これは、植物体の防御機構とも考えられる。すなわち、
二次代謝系が化学的ストレスによって刺激され、グリチ
ルリチン生産が促進されるためと考えられる。
This is also considered to be a plant defense mechanism. That is,
This is thought to be because the secondary metabolic system is stimulated by chemical stress, promoting glycyrrhizin production.

〔実施例〕〔Example〕

以下、本発明を実施例により更に詳細に説明する。 Hereinafter, the present invention will be explained in more detail with reference to Examples.

実施例1 %に希釈したMS培地で、シgtJ!20.OOOpp
m、塩酸チアミン0.1p p m、塩酸ピリドキシン
0.1p p m、ニコチン酸0.5p pm、 my
 o −イノシトール1100pp、グリシン3.0p
 p m、ジェルライト0.6%を含むものを基本固体
培地とし、これに植物成長ホルモンとして、ナフタレン
酢酸(NAA)と、カイネチンを各lppmずつ添加し
た固体培地で、温度10°Cで継代培養したカンゾウ根
茎カルス約0.1gを、植物成長ホルモンを添加しない
上記の基本固体培地に着床して温度10℃で培養した。
Example 1 In MS medium diluted to 1%, SigtJ! 20. OOOpp
m, thiamine hydrochloride 0.1p pm, pyridoxine hydrochloride 0.1p pm, nicotinic acid 0.5p pm, my
o-inositol 1100pp, glycine 3.0p
The basic solid medium was one containing 0.6% Gelrite, and the plant growth hormones naphthalene acetic acid (NAA) and kinetin were added to this solid medium at a temperature of 10°C. Approximately 0.1 g of cultured licorice rhizome callus was implanted on the above-mentioned basic solid medium to which no plant growth hormone was added and cultured at a temperature of 10°C.

42日後、カルス重量を測定すると、重量は着床時の約
2倍であった。また、カルスを超音波破砕し、水で抽出
した抽出液を液体クロマトグラフィーで分析すると、グ
リチルリチンを2.4X10−”%(カルス乾燥重量)
含有していた。
When the weight of the callus was measured after 42 days, the weight was approximately twice that of implantation. In addition, when callus was crushed ultrasonically and the extract extracted with water was analyzed by liquid chromatography, glycyrrhizin was found to be 2.4 x 10% (callus dry weight).
It contained.

比較例1 実施例1と同様にして得たカルスを、同様の基本固体培
地に、植物成長ホルモンとして、NAAとカイネチンを
各lppmずつ添加した固体培地に着床し、温度10°
Cで培養した。42日後、カルス重量は着床時の約3.
5倍であった。また、実施例1と同様にして得たカルス
の水抽出液はグリチルリチンを1.8X10−”%(t
Jルス乾燥重量)を含有していた。
Comparative Example 1 Calli obtained in the same manner as in Example 1 were implanted on the same basic solid medium to which lppm each of NAA and kinetin were added as plant growth hormones, and the temperature was 10°C.
Cultured in C. After 42 days, the callus weight was about 3.5 mm at implantation.
It was 5 times more. In addition, the water extract of callus obtained in the same manner as in Example 1 contained glycyrrhizin at 1.8×10-”% (t
J. russ dry weight).

実施例1.比較例1より、最初からグリチルリチンを生
産するカルスにホルモン除去による化学的ストレスを与
えると、グリチルリチン生産性は向上することが判明し
た。
Example 1. From Comparative Example 1, it was found that glycyrrhizin productivity was improved when chemical stress was applied by hormone removal to callus that produced glycyrrhizin from the beginning.

実施例2 実施例1と同様の基本固体培地に、植物成長ホルモンと
して、ゼアチンを0.5p p m添加した固体培地で
、mK2o°Cで継代培養したカンゾウ根茎カルス約0
.1gを植物成長ホルモンを添加しない上記の基本固体
培地に着床し、温度20°Cで培養した。42日後、カ
ルス重量は着床時の約3.5倍であった。また、実施例
1と同様にして得たカルスの水抽出液はグリチルリチン
を1.3X10−”%(カルス乾燥重量)含有していた
Example 2 Approximately 0 licorice rhizome callus was subcultured at mK2o°C on the same basic solid medium as in Example 1 to which 0.5 ppm of zeatin was added as a plant growth hormone.
.. 1 g was implanted on the above-mentioned basic solid medium to which no plant growth hormone was added, and cultured at a temperature of 20°C. After 42 days, the callus weight was about 3.5 times that of implantation. Further, the water extract of callus obtained in the same manner as in Example 1 contained 1.3 x 10-''% (callus dry weight) of glycyrrhizin.

比較例2 実施例2と同様にして得たカルスを、同様の基本固体培
地に植物成長ホルモンとして、ゼアチン0.5p p 
m添加した固体培地に着床し、温度20°Cで培養した
。42日後、カルス重量は着床時の約7.0倍であった
。しかし、実施例1と同様にして得たカルスの水抽出液
からグリチルリチンは検出されなかった。
Comparative Example 2 Callus obtained in the same manner as in Example 2 was placed on the same basic solid medium as a plant growth hormone, and zeatin 0.5 p p
The cells were implanted on a solid medium supplemented with m and cultured at a temperature of 20°C. After 42 days, the callus weight was about 7.0 times that of implantation. However, no glycyrrhizin was detected in the aqueous extract of callus obtained in the same manner as in Example 1.

実施例3 実施例1と同様の基本固体培地に植物成長ホルモンとし
て、ベンジルアデニンを0.5p p m添加した固体
培地を用い、温度20°Cで継代したカンヅウ根茎カル
ス約0.1gを、植物成長ホルモンを添加しない上記の
基本固体培地に着床し、温度20゛Cで培養した。42
日後、カルス重量は着床時の約5.0倍だった。また、
実施列lと同様にして得たカルスの水抽出液は、グリチ
ルリチンを1.5X 10−”%(カルス乾燥重量)含
有していた。
Example 3 Using a basic solid medium similar to that of Example 1 to which 0.5 ppm of benzyladenine was added as a plant growth hormone, approximately 0.1 g of C. rhizome callus was subcultured at a temperature of 20°C. The plants were implanted on the above-mentioned basic solid medium to which no plant growth hormone was added and cultured at a temperature of 20°C. 42
Days later, the callus weight was approximately 5.0 times that of implantation. Also,
The aqueous callus extract obtained in the same manner as in Example 1 contained 1.5 x 10-''% glycyrrhizin (callus dry weight).

比較例3 実施例3と同様にして得たカルスを、同様の基本固体培
地に植物成長ホルモンとして、ベンジルアデニン0.5
p p m添加した固体培地に着床し、温度20°Cで
培養した。42日後、カルス重量は約7.0倍であった
。しかし、実施例1と同様にして得たカルスの水抽出液
からグリチルリチンは検出されなかった。
Comparative Example 3 Callus obtained in the same manner as in Example 3 was placed on the same basic solid medium as a plant growth hormone, and 0.5 benzyladenine was added.
The cells were implanted on a solid medium supplemented with p p m and cultured at a temperature of 20°C. After 42 days, the callus weight was about 7.0 times larger. However, no glycyrrhizin was detected in the aqueous extract of callus obtained in the same manner as in Example 1.

実施例2及び実施例3.比較例2及び比較例3より、最
初グリチルリチンを生産しないカルスにホルモン除去に
よる化学的ストレスを与えると、グリチルリチンを生産
しはじめることが判明した。
Example 2 and Example 3. From Comparative Examples 2 and 3, it was found that when callus, which does not initially produce glycyrrhizin, is subjected to chemical stress by hormone removal, it begins to produce glycyrrhizin.

以上のように、カンゾウ根茎カルスを培養する際、あら
かじめホルモン含有培地で培養し、その後、培地中の植
物成長ホルモンを除去することによってカルスにグリチ
ルリチンを生産させ、高生産株を得ることができる。
As described above, when culturing licorice rhizome callus, it is possible to culture in a hormone-containing medium in advance, and then remove the plant growth hormone in the medium to cause the callus to produce glycyrrhizin, thereby obtaining a high-producing strain.

Claims (3)

【特許請求の範囲】[Claims] (1)植物組織培養培地を用いてカンゾウ根茎細胞を培
養するに際し、前記カンゾウ根茎細胞を培養する培地か
ら、この培地に対し植物成長ホルモン濃度が減少する培
地に移植して、カンゾウ根茎細胞に化学的ストレスを与
えることを特徴とするカンゾウ根茎細胞のグリチルリチ
ン高生産株取得方法。
(1) When culturing licorice rhizome cells using a plant tissue culture medium, the licorice rhizome cells are transferred from the medium for culturing the licorice rhizome cells to a medium in which the concentration of plant growth hormone is decreased relative to this medium, and the licorice rhizome cells are A method for obtaining a high-glycyrrhizin-producing strain of licorice rhizome cells characterized by applying physical stress.
(2)前記カンゾウ根茎細胞を植物成長ホルモンを含有
する培地から、植物成長ホルモンを含有しない培地に移
植することを特徴とする請求項(1)記載のカンゾウ根
茎細胞のグリチルリチン高生産株取得方法。
(2) The method for obtaining a high-glycyrrhizin-producing strain of licorice rhizome cells according to claim (1), which comprises transplanting the licorice rhizome cells from a medium containing plant growth hormone to a medium not containing plant growth hormone.
(3)前記カンゾウ根茎細胞を培養する培地から植物成
長ホルモンが0.5ppm以上の濃度差で減少する培地
に移植することを特徴とする請求項(1)記載のカンゾ
ウ根茎細胞のグリチルリチン高生産株取得方法。
(3) The glycyrrhizin-rich glycyrrhizin-producing strain of licorice rhizome cells according to claim (1), characterized in that the licorice rhizome cells are transplanted from the medium in which the licorice rhizome cells are cultured to a medium in which the concentration of plant growth hormone is reduced by a concentration difference of 0.5 ppm or more. Acquisition method.
JP1182180A 1989-07-14 1989-07-14 Method for obtaining highly glycyrrhizin-producing strain of glycyrrhiza glabra l. var root stem cell Pending JPH0347071A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1182180A JPH0347071A (en) 1989-07-14 1989-07-14 Method for obtaining highly glycyrrhizin-producing strain of glycyrrhiza glabra l. var root stem cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1182180A JPH0347071A (en) 1989-07-14 1989-07-14 Method for obtaining highly glycyrrhizin-producing strain of glycyrrhiza glabra l. var root stem cell

Publications (1)

Publication Number Publication Date
JPH0347071A true JPH0347071A (en) 1991-02-28

Family

ID=16113742

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1182180A Pending JPH0347071A (en) 1989-07-14 1989-07-14 Method for obtaining highly glycyrrhizin-producing strain of glycyrrhiza glabra l. var root stem cell

Country Status (1)

Country Link
JP (1) JPH0347071A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0646840A (en) * 1992-08-04 1994-02-22 Nippon Zenyaku Kogyo Kk Solution for freezing and storing cell
CN117448254A (en) * 2023-10-23 2024-01-26 广州梵之容化妆品有限公司 Preparation method and application of Glycyrrhiza glabra stem cells

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0646840A (en) * 1992-08-04 1994-02-22 Nippon Zenyaku Kogyo Kk Solution for freezing and storing cell
CN117448254A (en) * 2023-10-23 2024-01-26 广州梵之容化妆品有限公司 Preparation method and application of Glycyrrhiza glabra stem cells
CN117448254B (en) * 2023-10-23 2024-04-09 广州梵之容化妆品有限公司 Preparation method and application of Glycyrrhiza glabra stem cells

Similar Documents

Publication Publication Date Title
Dunstan et al. Improved growth of tissue cultures of the onion, Allium cepa
US5034327A (en) Method for propagation of potatoes
Shimada et al. Chromosome numbers in cultured pith tissue of tobacco
Bagni Metabolic changes of polyamines during the germination of Phaseolus vulgaris
Guohua Effects of cytokinins and auxins on cassava shoot organogenesis and somatic embryogenesis from somatic embryo explants
YAMADA et al. Callus induction in rice, Oryza sativa L.
Lian et al. Effect of plant growth regulators and medium composition on cell growth and saponin production during cell-suspension culture of mountain ginseng (Panax ginseng CA Mayer)
EP0071999B1 (en) Method for producing secondary metabolites of plants
CA1160168A (en) Method of plant tissue and cell culture
Mitsuoka et al. Effect of intracellular 2, 4-D concentration on plantlet regeneration of rice (Oryza sauva L.) callus
JPH0347071A (en) Method for obtaining highly glycyrrhizin-producing strain of glycyrrhiza glabra l. var root stem cell
JPH0195771A (en) Production of eye drop tree by tissue culture
JPH0347072A (en) Method for obtaining highly glycyrrhizin-producing strain of glycyrrhiza glabra l. var root stem cell
US5212076A (en) Production of quercetin glucuronide
Bapat et al. Rhizogenesis in a tissue culture of the orchid Spathoglottis
Kikuta et al. Shoot-bud formation and plantlet regeneration in potato tuber tissue cultured in vitro
Lakshmanan In vitro establishment and multiplication of Nymphaea hybrid ‘James Brydon’
JP3517307B2 (en) Gravlidine manufacturing method
Al-Hamidi et al. Effect of 2, 4-D and NAA in Callus Induction and Differentiation from Different Explants of Moringa Oleifera Lam
JPH04166096A (en) Production of glycyrrhizin by glycyrrhizae radix cell
JPS6321470B2 (en)
Manuhara et al. OPTIMIZATION OF Talinum paniculatum Gaertn. ROOT INDUCTION AND THE EFFECT OF PHOSPHATE CONCENTRATIONS AND AMMONIUM: NITRATE RATIO ON BIOMASS OF ADVENTITIOUS ROOTS IN IN VITRO CULTURE
Crocomo et al. The induction of root and shoot morphogenesis in Phaseolus vulgaris tissue cultures
JP2743173B2 (en) High frequency callus induction method from immature coconut inflorescence
RU2070787C1 (en) Method of growing plants-regenerants rauwolfia vomitoria afz