JPH03285208A - Conductive paste - Google Patents

Conductive paste

Info

Publication number
JPH03285208A
JPH03285208A JP8656490A JP8656490A JPH03285208A JP H03285208 A JPH03285208 A JP H03285208A JP 8656490 A JP8656490 A JP 8656490A JP 8656490 A JP8656490 A JP 8656490A JP H03285208 A JPH03285208 A JP H03285208A
Authority
JP
Japan
Prior art keywords
conductive paste
powder
weight
mgo
solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8656490A
Other languages
Japanese (ja)
Inventor
Shigetoshi Segawa
茂俊 瀬川
Yasuyuki Baba
康行 馬場
Yasukazu Fukunaga
靖一 福永
Hiroyuki Otani
博之 大谷
Kazuo Arisue
有末 一夫
Seiichi Nakatani
誠一 中谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP8656490A priority Critical patent/JPH03285208A/en
Publication of JPH03285208A publication Critical patent/JPH03285208A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make the sintering shrinkage timing of conductive paste agree with that of the material of a substrate to increase reliability by a method wherein conductive paste has an inorganic component containing glass frit and MgO powder in addition to CuO powder and an organic vehicle component made up of at least an organic binder and a solvent. CONSTITUTION:This conductive paste has an organic vehicle component made up of an inorganic component containing CuO powder at 87.0-99.4wt.%, glass frit at 0.5-10.0wt.% and MgO powder at 0.1-3.0wt.%, and an organic vehicle component made up of at least an organic binder and a solvent. Moreover, this conductive paste has an inorganic component containing CuO powder at 67.0-96.4wt.%, MgO powder at 0.1-3.0wt.% and at least one or more of Al2O3, SnO2, TiO2 and MnO2 at 3.0-20.0wt.%, and an organic vehicle component made up of at least an organic binder and a solvent. The amount of addition of MgO is 0.5-3wt.%. It is thereby possible to make the sintering shrinkage timing and the contraction volume of the conductive paste agree with those of the material of a substrate.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、回路基板用導電性ペーストに関するものであ
り、特に低温焼成セラミック多層配線基板(以下MLC
と略す。)の電極及びピアホール用電極材料として使用
される導電ペーストに関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a conductive paste for circuit boards, and in particular to low-temperature fired ceramic multilayer wiring boards (hereinafter referred to as MLC).
It is abbreviated as ) and a conductive paste used as an electrode material for a pier hole.

従来の技術 セラミック誘電体基質に適用する導体組成物には、Au
、Ag/Pd等の貴金属を用いるものと、Vv’、 M
o、 N i、  Cu等の卑金属を用いる場合がある
。特にMLCは、この金属材料に有機バインダ、溶剤を
加えてペースト状にしたものをアルミナ等の絶縁基板上
にスクリーン印刷し、焼き付けて導体パターンを形成す
るものである。又、セラミック多層基板ではこれらの導
体ペーストの他に絶縁材料としてのセラミックやガラス
粉末を有機バインダを溶かした溶剤中に分散させたもの
を用いて多層化する方法と、前記の絶縁粉末、有機バイ
ンダ等からなるグリーンシート上に、前記導体ペースト
でパターン形成したものを積層して多層化する方法があ
る。これらに使用される金属導体材料に注目すると、A
u、Ag/Pdは空気中で焼成できる反面、貴金属であ
るためコストが高い。一方、W、Ni、Cuは、卑金属
で安価であるが、焼成雰囲気を還元雰囲気か中性の雰囲
気で行う必要がある。又、W、Moでは、1500℃以
上の高温焼成となる。さらに信頼性の面からAuでは、
半田食われが問題となり、A g / P dでは、マ
イグレーション及び導体抵抗が高いという問題がある。
Prior Art Conductor compositions applied to ceramic dielectric substrates include Au
, those using noble metals such as Ag/Pd, and those using precious metals such as Vv', M
Base metals such as O, Ni, Cu, etc. may be used. In particular, in MLC, a conductive pattern is formed by adding an organic binder and a solvent to this metal material to form a paste, which is screen printed onto an insulating substrate such as alumina, and then baked. In addition to these conductor pastes, ceramic multilayer boards can also be multilayered by using ceramic or glass powder as insulating materials dispersed in a solvent containing an organic binder, or by using the above-mentioned insulating powders and organic binders. There is a method in which a pattern formed with the conductive paste is laminated on a green sheet made of a material such as the above to form a multilayer structure. Focusing on the metal conductor materials used in these, A
Although Ag/Pd can be fired in air, it is expensive because it is a noble metal. On the other hand, W, Ni, and Cu are base metals and are inexpensive, but the firing must be performed in a reducing atmosphere or a neutral atmosphere. Further, in the case of W and Mo, the firing is performed at a high temperature of 1500° C. or higher. Furthermore, in terms of reliability, Au
Solder erosion is a problem, and Ag/Pd has problems of high migration and conductor resistance.

そこで、安価で電気抵抗が低く、半田付は性の良好なC
uを用いるようになってきは、Cuペーストの組成、同
じく特開昭56−93396号公報に開示されている。
Therefore, C
The composition of Cu paste is also disclosed in JP-A-56-93396.

前者はCu粉にガラスフリットを含有する組成物、後者
はガラスフリットを含まない組成物での構成が記載され
ている。
The former describes a composition containing Cu powder and glass frit, and the latter describes a composition containing no glass frit.

しかしCuを使う上でも課題がある。それは、Cu電極
による誘電体基質への焼成は、還元もしくは中性雰囲気
となり、ペースト中の有機バインダの分解除去が困難と
なるからである。これは、窒素中の酸素濃度が低いため
バインダの分解が起こらず、カーボンの形で残り、メタ
ライズ性能に悪影響を及ぼす。逆に酸素濃度が高いと、
Cu電極が酸化され、誘電体中に拡散して電極として機
能しなくなる。そのため焼成は、窒素雰囲気中に若干の
酸素をコントロールしながら供給することで行われる。
However, there are also problems when using Cu. This is because firing the dielectric substrate using the Cu electrode creates a reducing or neutral atmosphere, making it difficult to decompose and remove the organic binder in the paste. This is because the binder does not decompose because the oxygen concentration in nitrogen is low, and it remains in the form of carbon, which adversely affects metallization performance. Conversely, if the oxygen concentration is high,
The Cu electrode becomes oxidized and diffuses into the dielectric and no longer functions as an electrode. Therefore, firing is performed by controlling and supplying a small amount of oxygen to the nitrogen atmosphere.

そして、残存したカーボンが酸化銅と反応して電極層に
ブリスタを発生させたり、電極−誘電体間のマツチング
を悪くさせる要因となる。
Then, the remaining carbon reacts with the copper oxide, causing blisters to occur in the electrode layer and causing poor matching between the electrode and the dielectric.

C+2CuO→Co2↑+2Cu このようにCuペーストは、有機バインダの使用に多く
の課題を有している。
C+2CuO→Co2↑+2Cu As described above, Cu paste has many problems when using an organic binder.

)そこで近年、導体材料の出発原料にCuOを用いる新
しいCu電極多層セラミック基板の製造方法が開発され
た。つまりセラミックグリーンシート上にCuO導体組
成物によって配線パターンを形成し、積層の後、酸化性
雰囲気中の熱処理で前記CuO導体組成物、及びセラミ
ックグリーンノート中の有機残基を熱分解する工程と、
還元雰囲気中の熱処理でCu金属に還元する工程と、窒
素雰囲気でのセラミック基質の焼成を行う工程より作製
されるという構成を備えたものである。
) Therefore, in recent years, a new method for manufacturing a Cu electrode multilayer ceramic substrate using CuO as the starting material for the conductor material has been developed. That is, a step of forming a wiring pattern using a CuO conductor composition on a ceramic green sheet, and after lamination, thermally decomposing the organic residue in the CuO conductor composition and the ceramic green note by heat treatment in an oxidizing atmosphere;
It has a structure in which it is manufactured by a process of reducing Cu metal by heat treatment in a reducing atmosphere and a process of firing a ceramic substrate in a nitrogen atmosphere.

例えば特開昭61−26293号公報、米国特許4.7
95.512号明細書、同じく米国特許4.863.6
83号明細書に開示されている。このセラミック積層体
の製造方法によれば絶縁基板及びペースト中の有機バイ
ンダの分解除去が容易となり、かつ良好なCuのメタラ
イズが得られる。
For example, Japanese Patent Application Laid-Open No. 61-26293, U.S. Patent No. 4.7
No. 95.512, also U.S. Pat. No. 4.863.6
It is disclosed in the specification of No. 83. According to this method of manufacturing a ceramic laminate, the organic binder in the insulating substrate and paste can be easily decomposed and removed, and good Cu metallization can be obtained.

発明が解決しようとする課題 しかしながら上記のような構成では、MLCの内部1i
極及びピアホールを形成する時、CuOを還元、焼結さ
せるために、金属Cuの収縮により第2図に示すように
各誘電体層(グリーンシート)2と内部電極部1の間に
空洞部4が発生する。又同時にピアホール電極3と誘電
体層2の間隙に空洞部4が同じく発生するという課題を
育していた。前者の空洞部は誘電体材料とCu粉の焼結
収縮タイミングが同一でないために起こると考えられ、
又後者は焼結後の収縮率の差、換言すれば焼結後の体積
差から起こるもの(ミスマツチ)と考えられる。このよ
うな現象が起こると、内部電極とピアホール電極の導通
不良等の信頼性を著しく低下させるという不都合があっ
た。
Problems to be Solved by the Invention However, in the above configuration, the internal 1i of the MLC
When forming poles and pier holes, in order to reduce and sinter the CuO, a cavity 4 is created between each dielectric layer (green sheet) 2 and the internal electrode part 1 as shown in FIG. 2 by contraction of the metal Cu. occurs. Moreover, at the same time, a problem arises in that a cavity 4 is also generated in the gap between the peer hole electrode 3 and the dielectric layer 2. The former cavity is thought to occur because the timing of sintering contraction of the dielectric material and the Cu powder is not the same.
The latter is considered to be caused by a difference in shrinkage rate after sintering, in other words, a difference in volume after sintering (mismatch). When such a phenomenon occurs, there are disadvantages such as poor conduction between the internal electrode and the peer hole electrode, which significantly reduces reliability.

本発明は上記課題に鑑み、焼結収縮タイミングの基板材
料との同一化で信頼性の高い内部電極用導電性ペースト
を提供するものである。又、焼結体積をコントロールす
ることで良好なピアホール用導電性ペーストをあわせて
提供するものである。
In view of the above problems, the present invention provides a highly reliable conductive paste for internal electrodes that has the same sintering shrinkage timing as the substrate material. Moreover, by controlling the sintered volume, a good conductive paste for pier holes is also provided.

課題を解決するための手段 上記課題を解決するために本発明の導電性ペーストは、
CuO粉末の他にガラスフリットとMgO粉末を含有し
た無機成分と、少なくとも有機バインダと溶剤よりなる
有機ビヒクル成分よりなる。
Means for Solving the Problems In order to solve the above problems, the conductive paste of the present invention has the following features:
It consists of an inorganic component containing glass frit and MgO powder in addition to CuO powder, and an organic vehicle component consisting of at least an organic binder and a solvent.

又、一方の導電性ペーストはCuO粉末の他にガラスフ
リットとMgO粉末、さらにA/20コ。
In addition to CuO powder, one conductive paste contains glass frit, MgO powder, and A/20.

SnO2,Tie、MnO2の肉牛なくとも1種以上を
含有した無機成分と、少なくとも有機バインダと溶剤よ
りなる有機ビヒクル成分よりなる。
It consists of an inorganic component containing at least one of SnO2, Tie, and MnO2, and an organic vehicle component consisting of at least an organic binder and a solvent.

特に前者の導電性ペーストは内部電極用として適し、後
者はピアホール電極用として適している。
In particular, the former conductive paste is suitable for internal electrodes, and the latter is suitable for peer hole electrodes.

作用 本発明は、セラミック積層体をつくる上で上記した構成
のCuOペーストを用いることにより、セラミック材料
と良好なマツチング性を得ることができるものである。
Function: According to the present invention, by using the CuO paste having the above-mentioned structure in making a ceramic laminate, it is possible to obtain good matching properties with the ceramic material.

本発明のCuOペーストは、CuOの他にガラスフリッ
トとMgOを添加すること、もしくはさらにAl2O3
,SnO2゜T i 02. Mn 02の内少なくと
も1種以上を添加して得られる。本発明の導電性ペース
トはセラミック積層体として、主に多層セラミック配線
基板(MLC)等に適用され、MLCに対して本発明の
CuOペーストは、前記の添加物を加えることで基板材
料との焼結収縮タイミング、及び収縮体積を一致させる
ことができCuとMLCとの一体化に適している。
The CuO paste of the present invention can be prepared by adding glass frit and MgO in addition to CuO, or by adding Al2O3 in addition to CuO.
, SnO2°T i 02. It is obtained by adding at least one kind of Mn02. The conductive paste of the present invention is mainly applied as a ceramic laminate to multilayer ceramic wiring boards (MLC), etc. For MLC, the CuO paste of the present invention can be used as a ceramic laminate by adding the above-mentioned additives to prevent sintering with the substrate material. It is possible to match the contraction timing and contraction volume and is suitable for integrating Cu and MLC.

本発明の導電性ペーストに含まれる添加物のうち、Mg
Oは種々の検討の結果、Cu粉の焼結性を阻害する効果
のあることを見いだした。つまり、還元工程後のCu粉
は基板材料と比べ焼結のタイミングが早過ぎるために隙
間が生じたり、セラミック層にクラックが生じる原因と
なっていたが、MgOを添加することで、基板材料の焼
結温度付近で焼結反応が起こるようになり、本発明のC
u○組成物では上記のような問題が起こらない。この時
、MgOの添加量が0.1重量%以下では効果が少なく
空洞発生を抑えられない。又3重量%以上では焼結タイ
ミングが遅すぎ、セラミック層にクラックを発生させる
原因となる。よって望ましくは0.5〜3%が良い。又
、Al2O3゜SnO2,T io2.MnO□等の添
加物を同時に添加することで、電極層の焼結後の体積収
縮がセラミック基板材料のそれと大差なくなる。その結
果、ピアホール等の電極層で良好なメタライズが得られ
かつ良好な性能のピアホールが形成できる。又、これら
の添加物の総添加物量が3重量%以下では、電極層の体
積収縮を抑えることができない。よって、ピアホールと
セラミック層との間隙に空洞ができる。逆に20重量%
以上では導体層の収縮か小さすぎるため、焼結体とのマ
ツチング性か悪くなる。又、導体層のインピーダンスが
著しく高くなるので良くない。望ましくは添加物が10
〜15重量%が良い。
Among the additives contained in the conductive paste of the present invention, Mg
As a result of various studies, it was found that O has the effect of inhibiting the sinterability of Cu powder. In other words, the Cu powder after the reduction process was sintered too early compared to the substrate material, which caused gaps and cracks in the ceramic layer, but by adding MgO, the substrate material The sintering reaction begins to occur near the sintering temperature, and the C of the present invention
The above-mentioned problems do not occur with the u○ composition. At this time, if the amount of MgO added is less than 0.1% by weight, the effect is small and the generation of cavities cannot be suppressed. Moreover, if it is more than 3% by weight, the sintering timing will be too slow, causing cracks to occur in the ceramic layer. Therefore, it is preferably 0.5 to 3%. Also, Al2O3°SnO2, Tio2. By simultaneously adding additives such as MnO□, the volumetric shrinkage of the electrode layer after sintering is not much different from that of the ceramic substrate material. As a result, good metallization can be obtained in electrode layers such as pier holes, and pier holes with good performance can be formed. Further, if the total amount of these additives is less than 3% by weight, volumetric shrinkage of the electrode layer cannot be suppressed. Therefore, a cavity is formed in the gap between the peer hole and the ceramic layer. Conversely, 20% by weight
Above this, the shrinkage of the conductor layer is too small, resulting in poor matching performance with the sintered body. Also, the impedance of the conductor layer becomes significantly high, which is not good. Preferably the additive is 10
~15% by weight is good.

実施例 以下本発明の一実施例の多層セラミック配線基板につい
て、図面を参照しながら説明する。第1図は、本発明の
第一の実施例における多層セラミック配線基板の断面図
を示すものである。第1図において、1は内部電極、2
は誘電体層、3はピアホール電極層である。
EXAMPLE Hereinafter, a multilayer ceramic wiring board according to an example of the present invention will be described with reference to the drawings. FIG. 1 shows a cross-sectional view of a multilayer ceramic wiring board in a first embodiment of the present invention. In FIG. 1, 1 is an internal electrode, 2
3 is a dielectric layer, and 3 is a peer hole electrode layer.

本発明のセラミック多層基板に使用した材料は、ガラス
成分として硼珪酸ガラス(コーニング社製#7059)
をセラミック成分としてアルミナ粉末を重量比で50対
50混合した物を用いた。次に前記基板材料粉末を無機
成分とし、有機バインダとしてポリブチルブチラール可
塑剤としてジ−n−ブチルフタレート、溶剤としてトル
エンとイソプロピルアルコールの混合液(30対70重
量比)を第1表の通りの組成で混合しスラリーとした。
The material used for the ceramic multilayer substrate of the present invention is borosilicate glass (#7059 manufactured by Corning Inc.) as a glass component.
A mixture of alumina powder and alumina powder in a weight ratio of 50:50 was used as a ceramic component. Next, the substrate material powder was used as an inorganic component, polybutylbutyral was used as an organic binder, di-n-butyl phthalate was used as a plasticizer, and a mixed solution of toluene and isopropyl alcohol (30:70 weight ratio) was added as a solvent as shown in Table 1. The composition was mixed to make a slurry.

第1表 誘電体組成、グリーンシート組成このスラリー
を充分混合の後、ドクターブレード法で有機フィルム上
に造膜し、グリーンシートとした。乾燥後の膜厚は、約
200であった。このグリーンシートに必要に応じてピ
アホールを金型にてパンチングする。ピアホール径は、
0.2鵬φであった。
Table 1 Dielectric composition, green sheet composition After thoroughly mixing this slurry, a film was formed on an organic film using a doctor blade method to form a green sheet. The film thickness after drying was approximately 200 mm. Pier holes are punched into this green sheet using a mold as needed. The pier hole diameter is
It was 0.2 Pengφ.

次に導電性ペーストは、酸化第二銅粉(平均粒径3μm
)に接着強度を得るためのガラスフリット及び各種の添
加物を、第2表のような組成で混合した物を用いた。
Next, the conductive paste was made of cupric oxide powder (average particle size 3 μm).
) was prepared by mixing glass frit and various additives in the composition shown in Table 2 to obtain adhesive strength.

本発明の導電性ペーストの作製方法は、前記組成の無機
粉末に、有機バインダであるエチルセルロースをターピ
ネオールに溶かしたビヒクルとともに加えて、3段ロー
ルにより、適度な粘度になるまで混練したものである。
The method for producing the conductive paste of the present invention is to add ethyl cellulose, which is an organic binder, to the inorganic powder having the above composition along with a vehicle dissolved in terpineol, and knead the mixture using three-stage rolls until a suitable viscosity is obtained.

このようにして得られた導電性ペーストを、スクリーン
印刷法にて前記のグリーンシート上に印刷し、乾燥の後
に所望の暦数熱と圧力を加えて積層する。そののち脱パ
インダニ程として、空気中で30分間熱処理した。脱バ
インダの温度は600℃であった。次に還元工程として
水素を10%含む窒素雰囲気中で450℃の温度で1時
間還元処理を行った。そして最後に窒素雰囲気中で10
分間焼成した。焼成温度は900℃であった。それぞれ
の熱処理は、メッシニヘルト炉で自動的に行われる。
The conductive paste thus obtained is printed on the green sheet by screen printing, and after drying, a desired number of heat and pressure are applied to laminate the sheets. Thereafter, heat treatment was performed in air for 30 minutes to remove pine mites. The temperature for debinding was 600°C. Next, as a reduction step, reduction treatment was performed at a temperature of 450° C. for 1 hour in a nitrogen atmosphere containing 10% hydrogen. and finally 10 in nitrogen atmosphere.
Bake for a minute. The firing temperature was 900°C. Each heat treatment is performed automatically in a Messiniherd furnace.

完成したMLC基板の内部電極部のメタライズ性能をシ
ート抵抗値(膜厚10μm換算)で評価した。又、内部
電極の空洞化の抑制効果及びピアホールの電極埋設状態
を、ピアホールマツチング性として評価した。空洞の評
価は、内部電極の膜厚に対して空洞部の厚みの比で表し
た。すなわち、全く空洞が存在しない場合は01内部電
極の膜厚の10%までが△、それ以上空洞がある場合は
Xとした。ピアホールマツチング性の評価は、定量的に
表せないのでSEM観察による目視で評価した。以上の
結果を第2表に示す。第2表からも明らかなように空洞
化の抑制にMgOの添加が効果的であることが明らかで
ある。又、添加物としてAl2O3,SnO2,’ri
o2.Mn0zを加えた場合でも同様に、ピアホールの
マツチング性に効果があることがわかる。特に本実施例
の場合、MgOを添加した導電性ペーストは、MLCの
内部電極用に適し、他の添加物として特にAl2O3を
加えたものは、ピアホールの埋設用の導電性ペーストと
して最適である。
The metallization performance of the internal electrode portion of the completed MLC substrate was evaluated based on the sheet resistance value (converted to a film thickness of 10 μm). In addition, the effect of suppressing hollowing of the internal electrodes and the state of burying the electrodes in the peer holes were evaluated as peer hole matching properties. The evaluation of the cavity was expressed by the ratio of the thickness of the cavity to the film thickness of the internal electrode. That is, if there were no cavities at all, it was rated as Δ up to 10% of the film thickness of the 01 internal electrode, and if there were more cavities, it was rated as X. Since the evaluation of the peer hole matching property cannot be expressed quantitatively, it was evaluated visually using SEM observation. The above results are shown in Table 2. As is clear from Table 2, it is clear that the addition of MgO is effective in suppressing cavitation. Also, as additives Al2O3, SnO2, 'ri
o2. It can be seen that even when Mn0z is added, it is similarly effective on the matching properties of peer holes. Particularly in the case of this example, the conductive paste to which MgO is added is suitable for internal electrodes of the MLC, and the conductive paste to which Al2O3 is added as other additives is most suitable as a conductive paste for burying peer holes.

発明の効果 以上のように本発明のCuOペーストは、CuOの他に
ガラスフリットとMgOを添加すること、もしくはさら
にA l 203 、  S n 02 、 T i 
021M n O2の内少なくとも1種以上を添加する
ことで、基板材料との焼結収縮タイミング及び収縮体積
を一致させることができ、CuとMLCとの一体化に適
している。これにより、より信頼性の高いCu内部電極
及びピアホールを持つMLCを提供するものである。
Effects of the Invention As described above, the CuO paste of the present invention can be prepared by adding glass frit and MgO in addition to CuO, or by adding A l 203 , S n 02 , T i
By adding at least one of 021M n O2, the sintering shrinkage timing and shrinkage volume can be matched with the substrate material, making it suitable for integrating Cu and MLC. This provides an MLC with more reliable Cu internal electrodes and peer holes.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例における導電性ペーストを使
用して作製したMLCの内部電極ならびにピアホールの
断面図、第2図は従来のCuOペーストによるMLCの
内部電極ならびにピアホールの断面図である。 1・・・・・・内部電極、2・・・・・・誘電体層、3
・・・・・・ピアホール電極層、4・・・・・・空洞部
FIG. 1 is a cross-sectional view of the internal electrodes and peer holes of an MLC manufactured using a conductive paste according to an embodiment of the present invention, and FIG. 2 is a cross-sectional view of the internal electrodes and peer holes of an MLC manufactured using a conventional CuO paste. . 1... Internal electrode, 2... Dielectric layer, 3
...Pier hole electrode layer, 4...Cavity part.

Claims (2)

【特許請求の範囲】[Claims] (1)CuO粉末87.0〜99.4重量%に、ガラス
フリット0.5〜10.0重量%と、MgO粉末0.1
〜3.0重量%含有した無機成分と、少なくとも有機バ
インダと溶剤よりなる有機ビヒクル成分を備えたことを
特徴とする導電性ペースト。
(1) 87.0-99.4% by weight of CuO powder, 0.5-10.0% by weight of glass frit, and 0.1% by weight of MgO powder.
A conductive paste comprising an inorganic component containing ~3.0% by weight and an organic vehicle component consisting of at least an organic binder and a solvent.
(2)CuO粉末67.0〜96.4重量%に、ガラス
フリット0.5〜10.0重量%と、MgO粉末0.1
〜3.0重量%、さらにAl_2O_3,SnO_2,
TiO_2,MnO_2の内少なくとも1種以上を3.
0〜20.0重量%含有した無機成分と、少なくとも有
機バインダと溶剤よりなる有機ビヒクル成分を備えたこ
とを特徴とする導電性ペースト。
(2) 67.0-96.4% by weight of CuO powder, 0.5-10.0% by weight of glass frit, and 0.1% by weight of MgO powder.
~3.0% by weight, further Al_2O_3, SnO_2,
3. At least one of TiO_2 and MnO_2.
A conductive paste comprising an inorganic component containing 0 to 20.0% by weight and an organic vehicle component consisting of at least an organic binder and a solvent.
JP8656490A 1990-03-30 1990-03-30 Conductive paste Pending JPH03285208A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8656490A JPH03285208A (en) 1990-03-30 1990-03-30 Conductive paste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8656490A JPH03285208A (en) 1990-03-30 1990-03-30 Conductive paste

Publications (1)

Publication Number Publication Date
JPH03285208A true JPH03285208A (en) 1991-12-16

Family

ID=13890511

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8656490A Pending JPH03285208A (en) 1990-03-30 1990-03-30 Conductive paste

Country Status (1)

Country Link
JP (1) JPH03285208A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6960271B2 (en) * 2000-12-28 2005-11-01 Denso Corporation Laminate-type dielectric device, a production method and an electrode paste material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6960271B2 (en) * 2000-12-28 2005-11-01 Denso Corporation Laminate-type dielectric device, a production method and an electrode paste material

Similar Documents

Publication Publication Date Title
EP0163478B1 (en) Process of manufacturing ceramic circuit board
US4795512A (en) Method of manufacturing a multilayer ceramic body
JPH04169002A (en) Conductive paste and manufacture of multilayer ceramic wiring substrate using it
JPH04221888A (en) Ceramic circuit board and manufacture thereof
JPH06223621A (en) Conductor paste composition
JPH05159621A (en) Conductive paste
JPH03285208A (en) Conductive paste
JPH06169173A (en) Method for manufacturing aluminum nitride substrate
JPH0348415A (en) Paste composition and manufacture of laminated ceramic capacitor
JPH0632379B2 (en) Method for manufacturing ceramic wiring board
JPH0320914B2 (en)
JPH0680897B2 (en) Method for manufacturing ceramic copper multilayer wiring board
JPH0588557B2 (en)
JPH11157945A (en) Production of ceramic electronic part and green sheet for dummy used therefor
JP2005277058A (en) Method for manufacturing ceramic electronic component and conductive paste
JPH08134388A (en) Electrically conductive ink
JPH0348676B2 (en)
JPH0321109B2 (en)
JP3051434B2 (en) Copper metallizing paste and method of manufacturing ceramic substrate for electronic circuit
JPH0554718B2 (en)
JPH06268373A (en) Manufacture of multilayer circuit board
JPH1116419A (en) Electrically conductive paste and manufacture of ceramic multilayer substrate using this
JPS6263488A (en) Manufacturing thick film substrate
JPH0685468B2 (en) Method for manufacturing ceramic multilayer substrate
JPS62198198A (en) Manufacture of ceramic multilayer interconnecting board