JPH03284848A - Silicon wafer - Google Patents

Silicon wafer

Info

Publication number
JPH03284848A
JPH03284848A JP8638190A JP8638190A JPH03284848A JP H03284848 A JPH03284848 A JP H03284848A JP 8638190 A JP8638190 A JP 8638190A JP 8638190 A JP8638190 A JP 8638190A JP H03284848 A JPH03284848 A JP H03284848A
Authority
JP
Japan
Prior art keywords
film
silicon nitride
wafer
nitride film
silicon wafer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8638190A
Other languages
Japanese (ja)
Inventor
Tatsumi Kusaba
草場 辰巳
Akinori Takada
高田 明範
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KYUSHU ELECTRON METAL CO Ltd
Osaka Titanium Co Ltd
Original Assignee
KYUSHU ELECTRON METAL CO Ltd
Osaka Titanium Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KYUSHU ELECTRON METAL CO Ltd, Osaka Titanium Co Ltd filed Critical KYUSHU ELECTRON METAL CO Ltd
Priority to JP8638190A priority Critical patent/JPH03284848A/en
Publication of JPH03284848A publication Critical patent/JPH03284848A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce warpage of a wafer while giving it intrinsic gettering by coating the back of a wafer with a CVD film of silicon nitride and then with a polysilicon film. CONSTITUTION:A silicon nitride film, having a compressive stress, is grown on the rear surface of a wafer by low-pressure CVD. A polysilicon film, having a tensile stress, is grown on the nitride film. This structure reduces the total stress and thus decreases warpage. Preferably, the silicon nitride film is 0.05 to 0.1mum thick, and the polysilicon film is 0.5 to 1.5mum thick. The same effect may be obtained when such silicon nitride films and polysilicon films are alternately laminated by low-pressure CVD. The wafer is heat-treated to promote the precipitation of oxygen at an approximately 100mum thick surface region on the rear side of the wafer. Consequently, high-density precipitation takes place, and the IG effect is obtained, resulting in improved gettering.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、エンハンスドゲッタリング効果を有するシ
リコンウェーハの改良に係り、裏面に減圧CVDで窒化
シリコン膜、ポリシリコン膜を順次成膜することにより
、ウェーハの反り量が小さく、かつイントリンシックゲ
ッタリング効果を備えたシリコンウェーハに関スる。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to the improvement of silicon wafers having an enhanced gettering effect. The present invention relates to a silicon wafer that has a small amount of warpage and has an intrinsic gettering effect.

従来の技術 デイバイスプロセスでのゲッタリング手法の一つである
エンハンスドゲッタリングには、ウェーハの裏面にポリ
シリコン膜あるいは窒化シリコン膜の単層膜を成膜した
ものが知られている。
2. Description of the Related Art Enhanced gettering, which is one of the gettering methods used in conventional technology device processes, is known in which a single layer of polysilicon film or silicon nitride film is formed on the back surface of a wafer.

このエンハンスドゲッタリング効果を有するシリコンウ
ェーハは、裏面に設けた膜応力により、ウェーハに反り
が発生し、デイバイスプロセスのフォトリソグラフィの
時に問題となる。
In silicon wafers having this enhanced gettering effect, warpage occurs in the wafer due to film stress provided on the back surface, which poses a problem during photolithography in device processes.

すなわち、ポリシリコン膜の場合は、膜の引張り応力の
ために、シリコンウェーハの鏡面側が凹型に反りが発生
し、窒化シリコン膜の場合は、減圧CVDでの窒化シリ
コン膜では圧縮能力のためにシリコンウェーハの鏡面が
凸型に反りが発生し、プラズマCVDでの窒化シリコン
膜では引張り応力のため、シリコンウェーハの鏡面が凹
型に反りが発生し、デイバイス・プロセス中に問題とな
る。
In other words, in the case of a polysilicon film, the mirror surface side of the silicon wafer warps in a concave shape due to the tensile stress of the film, and in the case of a silicon nitride film, the silicon wafer warps in a concave shape due to its compressive ability. The mirror surface of the wafer is warped in a convex manner, and the silicon nitride film produced by plasma CVD is warped in a concave manner due to tensile stress, which causes problems during device processing.

この発明は、エンハンスドゲッタリング効果を有スるシ
リコンウェーハにおいて、反りの少すいシリコンウェー
ハの提供を目的としている。
The present invention aims to provide a silicon wafer having an enhanced gettering effect and having less warpage.

また、この発明は、前述した薄膜によるゲッタリング効
果を、各膜のもつ特性を利用しさらに向上させ得る薄膜
を設けたシリコンウェーハの提供を目的としている。
Another object of the present invention is to provide a silicon wafer provided with a thin film that can further improve the gettering effect of the thin film described above by utilizing the characteristics of each film.

発明の概要 この発明は、エンハンスドゲッタリング効果を有するシ
リコンウェーハの反り防止と、ゲッタリング効果の向上
を目的に、薄膜について種々検討した結果、裏面に減圧
CVDによる窒化シリコン膜、ポリシリコン膜を順次成
膜した2層膜構成とすることにより、薄膜による反りが
著しく減少し、かつ前記2層膜がイントリンシックゲッ
タリング効果(以下IG効果という)を有することを知
見し、この発明を完成した。
Summary of the Invention The present invention has been developed to prevent warping of silicon wafers having an enhanced gettering effect and to improve the gettering effect. As a result of various studies on thin films, the present invention has been developed by sequentially applying a silicon nitride film and a polysilicon film to the back surface by low-pressure CVD. The present invention was completed based on the finding that warping caused by the thin film is significantly reduced by forming a two-layer film structure, and that the two-layer film has an intrinsic gettering effect (hereinafter referred to as the IG effect).

すなわち、この発明は、 裏面に減圧CVDによる窒化シリコン膜、ポリシリコン
膜を順次成膜した2層以上の薄膜を有し、イントリンシ
ックゲッタリング効果を備えたことを特徴とするシリコ
ンウェーハである。
That is, the present invention is a silicon wafer characterized in that it has two or more thin films on the back surface of which a silicon nitride film and a polysilicon film are sequentially formed by low-pressure CVD, and has an intrinsic gettering effect.

また、この発明は、前記の構成において、窒化シリコン
膜厚みが0.05〜0.1よ、ポリシリコン膜厚みが0
.5〜1.5−であることを特徴とするシリコンウェー
ハである。
Further, in the above structure, the present invention has a silicon nitride film thickness of 0.05 to 0.1 and a polysilicon film thickness of 0.05 to 0.1.
.. It is a silicon wafer characterized in that it is 5 to 1.5-.

発明の構成 この発明によるシリコンウェーハは、その裏面に減圧C
VDによる窒化シリコン膜、ポリシリコン膜を順次成膜
した2層以上の薄膜を有することを特徴としている。
Structure of the Invention The silicon wafer according to the present invention is provided with a reduced pressure C on its back surface.
It is characterized by having two or more thin films formed by sequentially forming a silicon nitride film and a polysilicon film by VD.

かかる構成がシリコンウェーハの反りを低減できる機構
を説明すると、まず、ウェーハ裏面に、膜応力が圧縮応
力である減圧CVDによる窒化シリコン膜を成長させ、
その窒化シリコン膜の上に膜応力が引張応力であるポリ
シリコン膜を成長させることにより、シリコンウェーハ
に与える応力が緩和されシリコンウェーハの反り量が小
さくなる。
To explain the mechanism by which this configuration can reduce the warpage of a silicon wafer, first, a silicon nitride film is grown on the back surface of the wafer by low pressure CVD in which the film stress is compressive stress.
By growing a polysilicon film whose film stress is tensile stress on the silicon nitride film, the stress applied to the silicon wafer is relaxed and the amount of warpage of the silicon wafer is reduced.

反りを低減できる窒化シリコン膜とポリシリコン膜の厚
みには、好ましいい相関関係があり、窒化シリコン膜厚
みが0.05〜0.1μm、ポリシリコン膜厚みが0.
5〜1.5μmであることが望ましい。
There is a favorable correlation between the thickness of the silicon nitride film and the polysilicon film that can reduce warpage, and the thickness of the silicon nitride film is 0.05 to 0.1 μm, and the thickness of the polysilicon film is 0.05 to 0.1 μm.
The thickness is preferably 5 to 1.5 μm.

また、減圧CVDで窒化シリコン膜とポリシリコン膜を
交互に多数成膜する場合も同様効果を得ることができる
が、まず、シリコンウェーハに減圧CVDによる窒化シ
リコン膜を成膜する必要があり、多層の場合の全厚みは
、前記2層膜構成の全厚みを越えてもよい。
A similar effect can also be obtained by alternately forming a large number of silicon nitride films and polysilicon films by low pressure CVD, but it is first necessary to form a silicon nitride film on a silicon wafer by low pressure CVD, and multilayer The total thickness in this case may exceed the total thickness of the two-layer membrane configuration.

シリコンウェーハの裏面の膜構造が、シリコンウェーハ
/窒化シリコン膜lポリシリコン膜lどなる場合に限り
、熱処理を施すと、シリコンウェーハの裏面層の100
100p:み程度に、酸素析出物の増進が起り、高密度
の析出物が発生する。すなわち、この発明による2層膜
構成とすることにより、ジノコンウェーハに従来以上の
高密度の析出物によるIG効果が与えられ、実施例に示
す如く著しいゲッタリング効果の向上がみられる。
Only when the film structure on the back side of the silicon wafer is silicon wafer/silicon nitride film/polysilicon film/etc., 100% of the back side layer of the silicon wafer can be heated by heat treatment.
At about 100p, oxygen precipitates increase and high-density precipitates are generated. That is, by adopting the two-layer film structure according to the present invention, an IG effect is imparted to the Zinocon wafer due to the precipitates having a higher density than before, and as shown in the examples, a remarkable improvement in the gettering effect is observed.

IG効果を得るための熱処理方法は、1000℃以上の
雰囲気に1時間以上保持することが必要であり、例えば
1000℃であれば5時間以上、望ましくは10時間以
上の熱処理が必要で、実施例に示す如く、1150℃×
4時間と、高温雰囲気であれば短時間保持が可能となる
ので、加熱条件を適宜選定する必要ある。
The heat treatment method for obtaining the IG effect requires holding in an atmosphere of 1000°C or more for 1 hour or more. For example, if the temperature is 1000°C, heat treatment is required for 5 hours or more, preferably 10 hours or more. As shown, 1150℃×
Since holding for a short time of 4 hours is possible in a high-temperature atmosphere, it is necessary to select the heating conditions appropriately.

製造方法の一例を示すと、シリコンウェーハ製造工程の
メカノケミカルポリッシング(MCP)加工前に、シリ
コンウェーハの全面に、減圧CVDにて窒化シリコン膜
を、例えば500A〜2000!みで成膜し、その窒化
シリコン膜の上にポリシリコン膜を、例えば200OA
−15000に享みで成膜した後、ジノコンウェーハの
鏡面となるべき表面側をMCP加工し、前記2層膜構成
を裏面側にのみ残し、その後洗浄を行ない、この発明に
よるシリコンウェーハに仕上げる。
To give an example of a manufacturing method, before the mechanochemical polishing (MCP) process in the silicon wafer manufacturing process, a silicon nitride film is formed on the entire surface of the silicon wafer by low pressure CVD, for example, at a temperature of 500A to 2000A! For example, a polysilicon film of 200 OA is formed on the silicon nitride film.
- After forming a film at a temperature of 15,000 yen, MCP processing is performed on the front side of the Zinocon wafer that should become a mirror surface, leaving the two-layer film structure only on the back side, and then cleaning is performed to finish the silicon wafer according to the present invention. .

また、鏡面となるべき表面側に所要のマスキングを施し
て、裏面側にのみ成膜してもよく、この場合、MCP加
工後にこの発明による前記2層膜構成に成膜してもよい
Alternatively, the film may be formed only on the back side by applying necessary masking to the front side that should become a mirror surface, and in this case, the film may be formed into the above-mentioned two-layer film structure according to the present invention after MCP processing.

実施例 実施例1 5インチシリコンウェーハの裏面に、窒化シリコン膜、
ポリシリコン膜をそれぞれ単層で設けた場合の反り発生
量を測定した。
Examples Example 1 A silicon nitride film,
The amount of warpage generated when each polysilicon film was provided as a single layer was measured.

また、窒化シリコン膜とポリシリコン膜の2層構成とし
たこの発明のシリコンウェーハの場合の反り発生量を測
定した。測定結果は、前記単層の場合と合わせて第1表
に示す。なお、表中の入厚みは全成膜厚みである。
Further, the amount of warpage was measured in the case of a silicon wafer of the present invention having a two-layer structure of a silicon nitride film and a polysilicon film. The measurement results are shown in Table 1 together with the case of the single layer. Note that the thickness in the table is the total thickness of the film formed.

第1表に明らかなとおり裏面の膜が1層である場合、窒
化シリコン膜は13μm〜20μmの鏡面側が凸型の反
りが発生する。ポリシリコン膜の場合は30μm程の鏡
面側が凹型の反りが発生する。
As is clear from Table 1, when the film on the back surface is one layer, the silicon nitride film has a convex warp of 13 μm to 20 μm on the mirror surface side. In the case of a polysilicon film, a concave warp of about 30 μm occurs on the mirror surface side.

ところが、この発明による2層構造にすることにより、
シリコンウェーハの反り量が、8〜10μmの鏡面側が
凹型タイプの低反りのシリコンウェーハが得られる。
However, by creating a two-layer structure according to this invention,
A low-warpage silicon wafer with a concave mirror surface side and a warpage amount of 8 to 10 μm can be obtained.

実施例2 5インチシリコンウェー ハ(N(100) p 4〜
6Ω−cm。
Example 2 5-inch silicon wafer (N(100) p 4~
6Ω-cm.

[Oil 15.5X10  atom/cc、 Cs
 1.0X10 atm/cc)を用いて、種々条件で
成膜、熱処理(1150℃×4時間)を施した場合の裏
面成膜側への析出物状況を顕微鏡観察した。
[Oil 15.5X10 atom/cc, Cs
1.0 x 10 atm/cc) under various conditions and subjected to heat treatment (1150° C. x 4 hours), and the state of precipitates on the back side where the film was formed was observed using a microscope.

第1図はシリコンウェーハの裏面に窒化シリコン膜とポ
リシリコン膜の2層構成としたものである。
FIG. 1 shows a two-layer structure of a silicon nitride film and a polysilicon film on the back surface of a silicon wafer.

第2図は裏面に窒化シリコン膜を設けた場合で、 同図aは窒化シリコン膜を成膜した後、さらにボッシリ
コン膜を設けた場合(本発明)、同図すは窒化シリコン
膜を成膜した後、さらにボッシリコン膜堆積条件による
アニール処理をした場合、 同図Cは窒化シリコン膜堆積条件によるアニール処理を
し、さらにポリシリコン膜堆積条件によるアニール処理
をした場合であ る。
Figure 2 shows a case in which a silicon nitride film is formed on the back surface, and figure a shows a case in which a silicon nitride film is further formed after forming a silicon nitride film (the present invention). After the film is formed, annealing treatment is performed under the conditions for depositing a silicon film.C in the figure shows a case where annealing treatment is performed under the conditions for depositing a silicon nitride film, and then annealing treatment is performed under the conditions for depositing a polysilicon film.

第3図は、シリコンウェーハの裏面に、窒化シリコン膜
lポリシリコン膜を成膜した後、所要の熱処理を施した
場合であり、これにのみシリコンウェーハの裏面層10
011m程の所まで7×107コ1cm2以上の析出物
が見られる 発明の効果 この発明の2層膜(シリコンウェーハ/窒化シリコン膜
lポリシリコン膜)構成としたシリコンウェーハの反り
量は、従来の1層膜時と比べ、4層m−4層μm程の反
り量の低下がみられた。
FIG. 3 shows a case in which a silicon nitride film and a polysilicon film are formed on the back surface of a silicon wafer, and then the required heat treatment is performed.
Effects of the invention: Precipitates of 7 x 107 cm2 or more were observed up to a distance of about 0.11m Compared to the case of a single layer film, a reduction in the amount of warpage by about 4 layers m - 4 layers μm was observed.

さらに、シリコンウェーハの裏面層の析出物も、1層膜
の場合に比べ、5X103コ/cm2から7x107コ
/cm2以上へと析出物を著しく増加させることができ
、イントリンシックゲッタリング効果を備えたシリコン
ウェーハを容易に製造できる。
Furthermore, the precipitates on the back layer of the silicon wafer can be significantly increased from 5 x 103 co/cm2 to more than 7 x 107 co/cm2 compared to the case of a single layer film, which has an intrinsic gettering effect. Silicon wafers can be manufactured easily.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図a、b、c、第3図はシリコンウェーハ
の縦断面の顕微鏡写真である。
FIG. 1, FIG. 2 a, b, c, and FIG. 3 are microscopic photographs of longitudinal sections of silicon wafers.

Claims (1)

【特許請求の範囲】 1 裏面に減圧CVDによる窒化シリコン膜、ポリシリ
コン膜を順次成膜した2層以上の薄膜を有し、イントリ
ンシックゲッタリング効果を備えたことを特徴とするシ
リコンウェーハ。 2 窒化シリコン膜厚みが0.05〜0.1μm、ポリ
シリコン膜厚みが0.5〜1.5μmであることを特徴
とする請求項1記載のシリコンウェーハ。
[Scope of Claims] 1. A silicon wafer characterized in that it has two or more thin films formed by successively forming a silicon nitride film and a polysilicon film on its back surface by low-pressure CVD, and has an intrinsic gettering effect. 2. The silicon wafer according to claim 1, wherein the silicon nitride film has a thickness of 0.05 to 0.1 μm and the polysilicon film has a thickness of 0.5 to 1.5 μm.
JP8638190A 1990-03-30 1990-03-30 Silicon wafer Pending JPH03284848A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8638190A JPH03284848A (en) 1990-03-30 1990-03-30 Silicon wafer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8638190A JPH03284848A (en) 1990-03-30 1990-03-30 Silicon wafer

Publications (1)

Publication Number Publication Date
JPH03284848A true JPH03284848A (en) 1991-12-16

Family

ID=13885298

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8638190A Pending JPH03284848A (en) 1990-03-30 1990-03-30 Silicon wafer

Country Status (1)

Country Link
JP (1) JPH03284848A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100409407C (en) * 2002-09-25 2008-08-06 硅电子股份公司 Two layer LTO backside seal for a wafer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100409407C (en) * 2002-09-25 2008-08-06 硅电子股份公司 Two layer LTO backside seal for a wafer

Similar Documents

Publication Publication Date Title
JP7072121B2 (en) Semiconductor device with anti-deflection layer
CN110828298A (en) Single crystal thin film composite substrate and method for manufacturing same
JPH10223580A (en) Method for manufacturing semiconductor wafer whose one surface is coated and finished
JPH098124A (en) Insulation separation substrate and its manufacture
JPH03284848A (en) Silicon wafer
JPH0556872B2 (en)
Jiang et al. Effects of rapid thermal annealing on LPCVD silicon nitride
JPH0774839B2 (en) Mirror for SOR
JP2007156321A (en) Method for manufacturing optical multilayer filter
JPH03250615A (en) Manufacture of bonded wafer
JPH0613593A (en) Semiconductor substrate
JPS58138035A (en) Semiconductor device and manufacture thereof
JP2766417B2 (en) Manufacturing method of bonded dielectric separation wafer
JPS59114829A (en) Formation of silicon nitride film
JP3160936B2 (en) Wafer bonding method
JP2601208B2 (en) Semiconductor substrate processing method
JPH02137323A (en) Method for forming low stress thin film
JPH06267804A (en) Laminated semiconductor substrate and manufacture
JP2022182494A (en) Manufacturing method of semiconductor device
JPS61194635A (en) Production of thin film permanent magnet
JP2508881B2 (en) Method for manufacturing semiconductor substrate
JPH02246117A (en) Formation of thin film
JPH08111409A (en) Manufacturing for semiconductor device
KR970009864B1 (en) Forming method of gate oxide-film in the semiconductor device
JPH06120097A (en) Semiconductor device substrate