JPH03283550A - Manufacture of ic package - Google Patents

Manufacture of ic package

Info

Publication number
JPH03283550A
JPH03283550A JP8138090A JP8138090A JPH03283550A JP H03283550 A JPH03283550 A JP H03283550A JP 8138090 A JP8138090 A JP 8138090A JP 8138090 A JP8138090 A JP 8138090A JP H03283550 A JPH03283550 A JP H03283550A
Authority
JP
Japan
Prior art keywords
aluminum nitride
layer
baking
substrate
plating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8138090A
Other languages
Japanese (ja)
Inventor
Koji Shirasu
白須 孝治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NICHIGAI CERAMICS KK
NGK Insulators Ltd
Original Assignee
NICHIGAI CERAMICS KK
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NICHIGAI CERAMICS KK, NGK Insulators Ltd filed Critical NICHIGAI CERAMICS KK
Priority to JP8138090A priority Critical patent/JPH03283550A/en
Publication of JPH03283550A publication Critical patent/JPH03283550A/en
Pending legal-status Critical Current

Links

Landscapes

  • Parts Printed On Printed Circuit Boards (AREA)

Abstract

PURPOSE:To increase junction strength between an aluminum nitride substrate and a metallized layer by suppressing the growth of an alumina layer in the soldering step of metal fittings and in the baking step after plating. CONSTITUTION:An aluminum nitride baking substrate 1 is coated with an Mo-Mn metallizing paste 2 of specified composition. It is then dried for example at 100 deg.C: this is followed by baking of the paste-coated substrate 1 for example at a maximum temperature of 1300 deg.C in a reducing baking furnace to form a metallized layer 8. A metal fitting 6 is soldered to the metallized layer 8 under a pressure of 10<-3>Torr or less to prepare an aluminum nitride component 9. The next step is plating of the surface of this aluminum nitride component and then baking of the aluminum nitride component under a pressure of 10<-3>Torr or less. Soldering the metal fitting 6 and post-baking plating under a pressure of 10<-3>Torr suppress the growth of an alumina layer 3 to keep it stable at a thickness of approx. 10-20mum. This process can maintain a high junction strength between the substrate 1 and the metallized layer 8.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、半導体素子を搭載できる集積回路用パッケー
ジの製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method of manufacturing an integrated circuit package on which a semiconductor element can be mounted.

(従来の技術及びその問題点) 窒化アルミニウムはそのセラミックスの特性上、l)熱
膨張係数が25°C〜400°Cのとき4.4X10−
”/’Cとシリコン半導体の熱膨張係数に近<、2)熱
伝導率が絶縁セラミックスの中で140 W/+n、K
(25℃)と高く、特に高出力IC装着用の基板、パッ
ケージにその特性が有効であると考えられている。
(Prior art and its problems) Aluminum nitride has a thermal expansion coefficient of 4.4X10- at 25°C to 400°C due to its ceramic properties.
``/'C is close to the thermal expansion coefficient of silicon semiconductor <, 2) Thermal conductivity is 140 W/+n, K among insulating ceramics
(25°C), and its characteristics are considered to be particularly effective for substrates and packages for mounting high-power ICs.

しかしながら、窒化アルミニウムは窒化物セラミックス
で高熱伝導率を達成するために高純度セラミックスであ
り、熱膨張係数が小さいためメタライズとの間で残留応
力を生じパッケージ用窒化アルミニウム部品として安定
した高値のメタライズ強度を得ることが困難であった。
However, aluminum nitride is a high-purity ceramic that achieves high thermal conductivity with nitride ceramics, and its small coefficient of thermal expansion causes residual stress between it and the metallization, resulting in stable and high metallization strength for aluminum nitride parts for packages. was difficult to obtain.

従来、例えば酸化物セラミックスのメタライズ加工では
、メタライズ組成力(Mo、 H等の耐熱金属とガラス
成分よりなり焼成時にセラミックス中のガラス成分とメ
タライズのガラス成分とが相互拡散をし、メタライズ強
度を得ている。
Conventionally, for example, in the metallization processing of oxide ceramics, metallization strength (composed of heat-resistant metals such as Mo and H and glass components, and the glass component in the ceramic and the glass component of the metallization mutually diffuse during firing to obtain metallization strength) ing.

窒化アルミニウム基板の場合は窒化アルミニウムが高純
度窒化物セラミックスであり、粒界にガラス成分を持た
ないため、単に焼成しただけでは高値のメタライズ強度
が得られない欠点があった。
In the case of aluminum nitride substrates, aluminum nitride is a high-purity nitride ceramic and does not have a glass component in its grain boundaries, so it has the disadvantage that high metallization strength cannot be obtained simply by firing.

(発明に至る経過) この問題を解決し、窒化アルミニウム基板とメタライズ
層との接着を強固にするため、本出願人は、特開昭64
−90586号公報において、窒化アルミニウム基板表
面にメタライズペーストを塗布し、還元雰囲気中125
0〜1450℃の温度で焼成する方法を提案した。これ
により、窒化アルミニウムの酸化により得られるIV 
t Os と、メタライズのSin、等とが反応して得
られた厚さ0.2〜20μ−のアルミナ層を形成し、こ
のアルミナ層の上にメタライズ層を設け、メタライズ層
と窒化アルミニウム基板との接着を強固にしている。
(Process leading up to the invention) In order to solve this problem and strengthen the adhesion between the aluminum nitride substrate and the metallized layer, the present applicant has proposed
-90586, metallizing paste is applied to the surface of an aluminum nitride substrate, and 125% is applied in a reducing atmosphere.
A method of firing at a temperature of 0 to 1450°C was proposed. This allows the IV obtained by oxidation of aluminum nitride to
An alumina layer with a thickness of 0.2 to 20 μ- obtained by reacting t Os with metallized Sin, etc. is formed, a metallized layer is provided on this alumina layer, and the metallized layer and the aluminum nitride substrate are bonded. strengthens the adhesion.

しかし、集積回路用パッケージへの通用について本発明
者が更に詳しく研究を進めたところ、焼成によりメタラ
イズ層を形成した後、金具をメタライズ層へとろう付け
したり、更にこの後にめっきを施して焼成を行うときに
、上記のアルミナ層が成長し、好ましい値である207
7−を温かに越え、例えば50〜100 μ■もの厚さ
となることが明らかとなった。そして、アルミナ層が過
度に成長した結果、メタライズ層と金具との接着力はか
えって低下することが解った。
However, as the inventor conducted more detailed research into the applicability to integrated circuit packages, he discovered that after forming a metallized layer by firing, the metal fittings were brazed to the metallized layer, and after this, plating was applied and then fired. The above alumina layer grows when performing 207, which is the preferred value.
It has become clear that the thickness of the film warmly exceeds 7.5 mm, for example, 50 to 100 .mu.cm. It was also found that as a result of excessive growth of the alumina layer, the adhesion between the metallized layer and the metal fittings actually decreased.

(発明が解決しようとする課題) 本発明の課題は、金具のろう付は工程及びめっき後の焼
成工程におけるアルミナ層の成長を抑制し、窒化アルミ
ニウム基板とメタライズ層との接合強度を大きくできる
ような、集積回路用パッケージの製造方法を提供するこ
とである。
(Problem to be Solved by the Invention) The problem of the present invention is to suppress the growth of the alumina layer during the brazing process and the firing process after plating, and to increase the bonding strength between the aluminum nitride substrate and the metallized layer. Another object of the present invention is to provide a method for manufacturing an integrated circuit package.

(課題を解決するための手段) 本発明は、窒化アルミニウム基板表面にメタライズペー
ストを塗布し、還元雰囲気下に焼成してメタライズ層を
形成する工程と; 10− 3Torr以下の圧力下で金具を前記メタライ
ズ層へとろう付けして窒化アルミニウム部品を作成する
工程と; この窒化アルミニウム部品の表面にめっきを施す工程と
; 次いで10−3Torr以下の圧力下で前記窒化アルミ
ニウム部品を焼成する工程とを有することを特徴とする
集積回路用パッケージの製造方法に係るものである。
(Means for Solving the Problems) The present invention includes a step of applying a metallization paste to the surface of an aluminum nitride substrate and firing it in a reducing atmosphere to form a metallization layer; brazing to a metallized layer to create an aluminum nitride component; plating the surface of the aluminum nitride component; and then firing the aluminum nitride component under a pressure of 10 Torr or less. The present invention relates to a method for manufacturing an integrated circuit package, characterized in that:

(実施例) 第1図〜第5図は、本発明の一例によって窒化アルミニ
ウム部品を製造する方法を工程順に示す図である。
(Example) FIGS. 1 to 5 are diagrams showing a method of manufacturing an aluminum nitride part according to an example of the present invention in order of steps.

まず第1図に示すように、窒化アルミニウム焼成基板1
上に所定組成のMo−Mn系メタライズ用ペースト2 
(固形分としてはNo : 100重量部、Mn=5重
量部、1Vx(h  : 2重量部、Sing : 5
重量部にエチルセルロース系のバインダーでペースト状
に・したもの)を塗布する。次いで、例えば100°C
で乾燥を行う。次に第2図に示すように、ペーストを塗
布した基板1を通常使用されているセラミック還元焼成
炉により、例えば最高温度1300℃で40分保持して
焼成してメタライズ層8を形成する。
First, as shown in FIG. 1, an aluminum nitride fired substrate 1
Mo-Mn metallization paste 2 with a predetermined composition on top
(Solid content: No: 100 parts by weight, Mn = 5 parts by weight, 1Vx (h: 2 parts by weight, Sing: 5 parts by weight)
Apply a paste made with an ethyl cellulose binder to the weight part. Then, for example at 100°C
Dry with . Next, as shown in FIG. 2, the substrate 1 coated with the paste is fired in a commonly used ceramic reduction firing furnace at a maximum temperature of 1300° C. for 40 minutes to form a metallized layer 8.

このときの雰囲気中の酸素分圧は計算上は7.5×10
−”−1,4X10−”気圧の間と推定されるが、実際
は窒化アルミニウム部材形状、焼成炉により酸素分圧測
定は実質的には困難であるため、アルミナ層3の形成厚
みを測定し、適正な雰囲気の調整を実施することになる
。この焼成工程により、第2図に示すように窒化アルミ
ニウム基板1の表面全体に0.2〜20μmの厚さのア
ルミナ層3を形成する。
The oxygen partial pressure in the atmosphere at this time is calculated to be 7.5×10
Although it is estimated to be between -1.4 x 10 - atmospheric pressure, it is actually difficult to measure the oxygen partial pressure due to the shape of the aluminum nitride member and the firing furnace, so the thickness of the alumina layer 3 formed is measured. Appropriate atmosphere adjustments will be made. Through this firing process, an alumina layer 3 having a thickness of 0.2 to 20 μm is formed on the entire surface of the aluminum nitride substrate 1, as shown in FIG.

このときアルミナ層3の厚さが20μmを越えるとメタ
ライズ強度が低下し、かつ熱放散もアルミナ層が厚い程
低下する。また、0.2μm未満であるとアルミナ層は
緻密でなく、窒化アルミニウム基板1表面に充分にメタ
ライズのガラス層と反応したアルミナ層が形成されない
ため、窒化アルミニウム基板1とメタライズ層8との熱
膨張差による熱ストレス等の応力緩和層としての効果が
得られず、窒化アルミニウム基板1表面にマイクロクラ
ックが生ずる。
At this time, if the thickness of the alumina layer 3 exceeds 20 μm, metallization strength decreases, and heat dissipation also decreases as the alumina layer becomes thicker. If the thickness is less than 0.2 μm, the alumina layer will not be dense and an alumina layer that has sufficiently reacted with the metallized glass layer will not be formed on the surface of the aluminum nitride substrate 1, resulting in thermal expansion between the aluminum nitride substrate 1 and the metallized layer 8. The effect as a layer for alleviating stress such as thermal stress due to the difference cannot be obtained, and microcracks occur on the surface of the aluminum nitride substrate 1.

メタライズペースト2の焼成温度は1250〜1450
℃とすることが好ましい。これが1250°C未満であ
るとメタライズ層8内のioが充分結晶化されず、メタ
ライズ層8内体の強度が弱くかつ緻密なメタライズ層8
が得られないため、メタライズ表面にめっきを施した場
合フクレ等が発生しやすい。また、焼成温度が1450
°Cを越えると、アルミナ層3とメタライズ層8との界
面又はメタライズ表面にガラス層が発生し、いずれも接
合強度の低下ならびにめっきのフクレ等の問題が発生す
る。
The firing temperature of metallization paste 2 is 1250 to 1450
It is preferable to set it as °C. If this temperature is less than 1250°C, io in the metallized layer 8 will not be sufficiently crystallized, and the inner strength of the metallized layer 8 will be weak and the metallized layer 8 will be dense.
Therefore, blisters are likely to occur when plating is applied to the metallized surface. Also, the firing temperature is 1450
If the temperature exceeds .degree. C., a glass layer will form on the interface between the alumina layer 3 and the metallized layer 8 or on the metallized surface, causing problems such as a decrease in bonding strength and blistering of the plating.

次いで、第3図に示すように、メタライズ層8の表面に
ニッケルめっきを施し、ニッケルめっき層4を形成する
Next, as shown in FIG. 3, nickel plating is applied to the surface of the metallized layer 8 to form a nickel plating layer 4.

次に、第4図に示すように、コパールからなるリード線
等の金具6を共晶銀ろう5によって800〜900°C
でろう付けし、窒化アルミニウム部品9を製造する。次
いで、第5図に示すように窒化アルミニウム部品の表面
にニッケル又は金めつきを施してめっき層7を形成し、
700〜900℃の温度で製品の焼成を行う。
Next, as shown in FIG.
The aluminum nitride part 9 is manufactured by brazing. Next, as shown in FIG. 5, the surface of the aluminum nitride component is plated with nickel or gold to form a plating layer 7,
The product is fired at a temperature of 700-900°C.

ここで、本発明に従い、金具6のろう付は工程とめっき
層7の形成後の焼成工程を、10− 3Torr以下の
圧力下で行うことが極めて重要である。
Here, according to the present invention, it is extremely important that the brazing process of the metal fitting 6 and the firing process after forming the plating layer 7 are performed under a pressure of 10 -3 Torr or less.

即ち、従来は上記の各工程を還元雰囲気下(N2+ H
e)で、水蒸気の存在しない乾燥条件下で行っていた。
That is, conventionally, each of the above steps was performed under a reducing atmosphere (N2+H
e) was carried out under dry conditions in the absence of water vapor.

ところが、これではアルミナ層3が過度に成長し、例え
ば50〜100μmの厚さに達していた。これは、共晶
銀ろうのろう付けに使用する治具や窒化アルミニウム部
品9全体に付着している酸素が、加熱時に窒化アルミニ
ウムと反応するためと考えられる。
However, in this case, the alumina layer 3 grew excessively, reaching a thickness of, for example, 50 to 100 μm. This is considered to be because oxygen adhering to the jig used for brazing the eutectic silver solder and the entire aluminum nitride component 9 reacts with the aluminum nitride during heating.

これに対し、本発明に従い共晶銀ろうによる金具6のろ
う付けと、めっき後の焼成とを10−3Torr以下の
圧力下で行うと、アルミナN3の成長が抑えられ、10
〜20μm程度の厚さのまま安定したのである。これに
より、集積回路用パッケージの製品においても、IvN
基板lとメタライズ層8との接合強度を非常に高く保持
することが可能となった。
On the other hand, if the brazing of the metal fitting 6 with eutectic silver solder and the firing after plating are performed under a pressure of 10-3 Torr or less according to the present invention, the growth of alumina N3 is suppressed and 10
The thickness remained stable at about 20 μm. As a result, even in integrated circuit package products, IvN
It became possible to maintain extremely high bonding strength between the substrate l and the metallized layer 8.

共晶銀ろうによる金具6のろう付けと、めっき層7の形
成後の焼成とを行う際、雰囲気の圧力は10−3Tor
r以下とするが、10− 3Torr以下とすると更に
好ましい。好ましい理由は、10− 3Torr以上の
高真空にすると、酸素濃度が極端に低くなり、アルミナ
層の成長が一層確実におさえられるためである。
When brazing the metal fittings 6 with eutectic silver solder and baking after forming the plating layer 7, the atmospheric pressure is 10-3 Torr.
r or less, and more preferably 10-3 Torr or less. The reason why it is preferable is that if the vacuum is set to a high vacuum of 10 -3 Torr or more, the oxygen concentration becomes extremely low, and the growth of the alumina layer can be suppressed more reliably.

共晶銀ろうによる金具ろう付けは、800〜900°C
で行うことが好ましく、850〜900°Cで行うと更
に好ましい。めっき層7はニッケル又は金めつきとする
ことが好ましい。めっき層7を形成した後の焼成は、7
00〜900″Cで行うことが好ましい。
Brazing metal fittings using eutectic silver solder is at 800-900°C.
The temperature is preferably 850 to 900°C, and more preferably 850 to 900°C. The plating layer 7 is preferably nickel or gold plating. The firing after forming the plating layer 7 is performed in step 7.
It is preferable to carry out at 00 to 900''C.

金具としてはコパール類のリードの他、Fe −42%
Niアロイのリード、Cu、 Cu−一のヒートシンク
材等が挙げられる。
In addition to copal reeds, metal fittings include Fe -42%
Examples include Ni alloy leads, Cu, and Cu-1 heat sink materials.

集積回路用パッケージを作製する際は、公知の方法でl
vN基板に熱放散板(ヒートシンク)や金属セラミック
ス類のキャップ、ICチップ収容のためのキャビティな
ど、設計上必要な部材を設ける。
When manufacturing integrated circuit packages, l
Necessary design components such as a heat dissipation plate (heat sink), a cap made of metal ceramics, and a cavity for accommodating an IC chip are provided on the vN board.

以下、金具のろう付は工程時の圧力と、めっき層形成後
の焼成工程時の圧力を種々変更して第5図に示す窒化ア
ルミニウム部品を作製し、AffN基板lとメタライズ
層8との間の接合強度(メタライズ強度)を調べた例に
ついて述べる。
Hereinafter, the pressure during the brazing process of the metal fittings and the pressure during the firing process after the formation of the plating layer were variously changed to produce the aluminum nitride part shown in FIG. An example of investigating the bonding strength (metallization strength) of

実]1舛 Mo−Mn系のメタライズペーストを塗布厚25μm程
度に窒化アルミニウム基板上にスクリーン印刷した後、
還元焼成雰囲気中で還元ガスの一部をウニツタを通し、
1300°Cで焼成した。次にメタライズ層上にニッケ
ルめっきを施した後、共晶銀ろうを用いて約800°C
でコパール類のリードをろう付けした。
After screen printing a Mo-Mn metallization paste onto an aluminum nitride substrate to a coating thickness of about 25 μm,
A part of the reducing gas is passed through the sea urchin ivy in a reducing firing atmosphere,
It was fired at 1300°C. Next, after applying nickel plating on the metallized layer, heat it to about 80°C using eutectic silver solder.
I brazed the copal reeds.

次いで、この窒化アルミニウム部品の表面にニッケルめ
っきを施し、750°Cの温度で0.5時間焼成した。
Next, the surface of this aluminum nitride part was nickel plated and fired at a temperature of 750°C for 0.5 hour.

ただし、コパール類のリードをメタライズ層へとろう付
けする際の圧力と、ニッケルめっき後の焼成時の圧力と
は種々変更した。その後、窒化アルミニウム基板表面上
のアルミナ層の厚さと、基板とメタライズ層の接合強度
(メタライズ強度)をそれぞれ調べた。結果を表に示す
However, the pressure when brazing the copper lead to the metallized layer and the pressure during firing after nickel plating were varied. Thereafter, the thickness of the alumina layer on the surface of the aluminum nitride substrate and the bonding strength (metallization strength) between the substrate and the metallization layer were examined. The results are shown in the table.

表から解るように、コバール類のリードをろう付けする
時の圧力と、焼成時の圧力を10− 3Torr以下と
することが、メタライズ強度を向上させるうえで極めて
重要である。
As can be seen from the table, it is extremely important to keep the pressure when brazing Kovar leads and the pressure during firing to 10-3 Torr or less in order to improve the metallization strength.

(発明の効果) 本発明に係る集積回路用パッケージの製造方法によれば
、金具をメタライズ層へとろう付けする工程と、窒化ア
ルミニウム部品を焼成する工程とを、10− 3Tor
r以下の圧力下で行っているので、窒化アルミニウム基
板表面のアルミナ層の成長が抑えられ、所定の厚さのま
までアルミナ層を安定化させることができる。これによ
り、集積回路用パッケージの製品において、窒化アルミ
ニウム基板とメタライズ層との接合強度を非常に高くす
ることができ、機械的強度の高い集積回路用パッケージ
を得ることができる。
(Effects of the Invention) According to the method for manufacturing an integrated circuit package according to the present invention, the step of brazing the metal fittings to the metallized layer and the step of firing the aluminum nitride parts are performed at 10-3 Torr.
Since the process is carried out under a pressure of r or less, growth of the alumina layer on the surface of the aluminum nitride substrate is suppressed, and the alumina layer can be stabilized while maintaining a predetermined thickness. As a result, in an integrated circuit package product, the bonding strength between the aluminum nitride substrate and the metallized layer can be made very high, and an integrated circuit package with high mechanical strength can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図、第3図、第4図、第5図は、本発明の
一例による製造法を工程順に示す概略図である。 1・・・AfN基板(/’lfN焼成基板)3・・・ア
ルミナ層 4・・・Niめっき層 5・・・限ろう (共晶銀ろう) 6・・・金具(コバール類のリード) 7・・・めっき層 8・・・メタライズ層 9・・・窒化アルミニウム部品
FIG. 1, FIG. 2, FIG. 3, FIG. 4, and FIG. 5 are schematic diagrams showing a manufacturing method according to an example of the present invention in order of steps. 1...AfN substrate (/'lfN fired substrate) 3...Alumina layer 4...Ni plating layer 5...Filling solder (eutectic silver solder) 6...Metal fitting (Kovar type lead) 7 ... Plating layer 8 ... Metallized layer 9 ... Aluminum nitride parts

Claims (1)

【特許請求の範囲】 1、窒化アルミニウム基板表面にメタライズペーストを
塗布し、還元雰囲気下に焼成してメタライズ層を形成す
る工程と; 10^−^3Torr以下の圧力下で金具を前記メタラ
イズ層へとろう付けして窒化アルミニウム部品を作成す
る工程と; この窒化アルミニウム部品の表面にめっき を施す工程と; 次いで10^−^3Torr以下の圧力下で前記窒化ア
ルミニウム部品を焼成する工程とを有することを特徴と
する集積回路用パッケージの製造方法。
[Claims] 1. A step of applying a metallization paste to the surface of an aluminum nitride substrate and firing it in a reducing atmosphere to form a metallization layer; and applying a metal fitting to the metallization layer under a pressure of 10^-^3 Torr or less. and brazing to create an aluminum nitride part; plating the surface of the aluminum nitride part; and then firing the aluminum nitride part under a pressure of 10^-^3 Torr or less. A method for manufacturing an integrated circuit package characterized by:
JP8138090A 1990-03-30 1990-03-30 Manufacture of ic package Pending JPH03283550A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8138090A JPH03283550A (en) 1990-03-30 1990-03-30 Manufacture of ic package

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8138090A JPH03283550A (en) 1990-03-30 1990-03-30 Manufacture of ic package

Publications (1)

Publication Number Publication Date
JPH03283550A true JPH03283550A (en) 1991-12-13

Family

ID=13744695

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8138090A Pending JPH03283550A (en) 1990-03-30 1990-03-30 Manufacture of ic package

Country Status (1)

Country Link
JP (1) JPH03283550A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63122253A (en) * 1986-11-12 1988-05-26 Hitachi Ltd Seminconductor package
JPS6456867A (en) * 1987-08-27 1989-03-03 Fujitsu Ltd Method for metallizing aln ceramic

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63122253A (en) * 1986-11-12 1988-05-26 Hitachi Ltd Seminconductor package
JPS6456867A (en) * 1987-08-27 1989-03-03 Fujitsu Ltd Method for metallizing aln ceramic

Similar Documents

Publication Publication Date Title
JP4077888B2 (en) Ceramic circuit board
US4886709A (en) Member for semiconductor apparatus
JP3834351B2 (en) Ceramic circuit board
JPS6022347A (en) Substrate for semiconductor element mounting
JP3887645B2 (en) Manufacturing method of ceramic circuit board
JPH03283550A (en) Manufacture of ic package
JP3814924B2 (en) Semiconductor device substrate
JPH05238857A (en) Method for metallizing substrate of aluminum nitride
JP2003285195A (en) Ceramic circuit board and method for manufacturing the same
JP2652014B2 (en) Composite ceramic substrate
JP2000294696A (en) Member for electronic circuit and manufacture of the same
JPS62197375A (en) Aluminum nitride substrate
JPS62182182A (en) Aluminum nitride sintered body with metallized surface
JPH0450186A (en) Method for forming metallized layer on aluminum nitride substrate
JP2001110884A (en) Electrostatic chuck device and its manufacturing method
JPH07169881A (en) Heat radiating board and ceramic package for semiconductor
JPS63318760A (en) High heat dissipation insulating substrate
JPH04949B2 (en)
JPH0511070B2 (en)
JPH02153883A (en) High thermal conductivity base and its production
RU1799863C (en) Method of sintered silicon nitride soldering with metal making
JPH0256955A (en) Connecting structure between components of semiconductor device
JP3606908B2 (en) AlN metallized substrate
JPS63122253A (en) Seminconductor package
JPH0666546B2 (en) Method for manufacturing aluminum nitride parts