JPH04949B2 - - Google Patents

Info

Publication number
JPH04949B2
JPH04949B2 JP60122123A JP12212385A JPH04949B2 JP H04949 B2 JPH04949 B2 JP H04949B2 JP 60122123 A JP60122123 A JP 60122123A JP 12212385 A JP12212385 A JP 12212385A JP H04949 B2 JPH04949 B2 JP H04949B2
Authority
JP
Japan
Prior art keywords
aln
thermal conductivity
weight
sintered body
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60122123A
Other languages
Japanese (ja)
Other versions
JPS61281074A (en
Inventor
Akyasu Okuno
Shoichi Watanabe
Kazuhiko Ikoma
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP60122123A priority Critical patent/JPS61281074A/en
Publication of JPS61281074A publication Critical patent/JPS61281074A/en
Publication of JPH04949B2 publication Critical patent/JPH04949B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は、絶縁基板、ヒートシング等に使用さ
れる高熱伝導性窒化アルミニウム焼結体に関する
ものであり、特に、メタライズの容易な高熱伝導
性窒化アルミニウム焼結体に関する。 [従来の技術] 近年、電子機器の小形化や機能向上に対する要
求は極めて大きくなつており、それに伴つて半導
体は集積密度の向上、多機能化、高速化、高出力
化、高信頼化の方向に急速に進展している。これ
らに対応して半導体から発生する熱量はますます
増加しており、従来のAl2O3基板にわかる放熱能
力の大きい基板が要求されるようになつている。 この放熱能力の大きい基板材料、即ち熱伝導性
の高い材料としては、ダイヤモンド、立方晶BN
(窒化硼酸)、SiC(炭化珪素)、BeO(ベリリア)、
AIN(窒化アルミニウム)、Si等をあげることが
できる。しかし、ダイヤモンド、立方晶BNは基
板として利用できる大きさを製造することが困難
であり、又、非常に高価である。SiCは半導体で
あるために電気絶縁性、誘電率等の電気特性が
Al2O3より劣り、Al2O3基板のかわりとして使用
できない。BeOは電気特性が非常に優れている
が、成形時、研削加工時等に発生する粉末が毒性
をもつために国内で生産されず、海外から求める
必要があるために供給が不安定となる恐れがあ
る。Siは電気特性が悪く、又、機械的強度も小さ
いので、基板材料としての使用は限られる。
AlNは高絶縁性、高絶縁耐圧、低誘電率などの
優れた電気特性に加えて、常圧焼結が適用できる
が、所要面に金属層が形勢出来ず、未だ高出力用
の多層基板は開発されていないのが実情である。 [発明の解決しようとする問題点] この様に、AlNは、金属との濡れ性が悪いた
めに、メタライズできず基板としての使用は困難
であつた。 又、例えば、特開昭50−75208や特開昭59−
40404のように、AlN基板表面を酸化させてから
メタライズしたり、特開昭53−102310のように、
先ず、AlN基板表面に金属酸化物を設け、その
後にメタライズする等の技術が知られているが、
いずれも焼結体表面にメタライズすることは出来
ても、多層化を目的とする同時焼成法には適用す
ることが出来ず、又メタライズされた金属層の
AlN基板との間に比較的熱伝導率の低い層が介
在することになるために熱伝導率の低下はさけら
れないといつた欠点を有していた。 [問題点を解決するための手段] 本発明は上記問題点を解決するために次の手段
を採用した。 本発明の高熱伝導性窒化アルミニウム焼結体
は、窒化アルミニウムを100重量部と、 Ti,Zr,Hf,V,Nb,Ta及びCrの各炭化物
から選ばれた1種又は2種位上の化合物を、金属
元素に換算して総量0.1〜10重量部と からなることを特徴とする。 Ti,Zr,Hf,V,Nb,Ta及びCrの各炭化物
として、例えばTiC,ZrC,HfC,VC,NbC,
TaC,Cr3C2等をあげることができる。 これらの炭化物から選ばれた1種又は2種以上
の化合物が、金属元素に換算して総量でAlN100
重老部に対し、0.1重量部以上10重量部以下であ
るのは、この範囲より少ないとAlN焼結体の金
属との濡れが改善されないためであり、逆にこの
範囲により多いとAlN焼結体の高熱導電性が劣
化し、又、焼結性が劣化するためである。 本発明は上記成分のみでも十分であるが、必要
に応じてY2O3やCaO等の焼結助剤をAlN100重量
部に対して5重量部を越えない範囲で含んでもよ
い。 又、この焼結体の相対密度(論理密度に対する
見掛け比重比%)が90%以上であるとAlNの持
つ高熱伝導率の効果が大きく、又、メタライズの
接着強度が大きい。 本発明は、AlN粉末及び前述の炭化物粉末に
必要に応じて焼結助剤粉末を加えて金型等により
成形し、通常のN2,Ar,NH3分解ガス、H2等の
非酸化性雰囲気下で焼結したり、最終的に炭化物
になる化合物を用いて焼結することによつて得る
ことができる。 [作用] Ti,Zr,Hf,V,Nb,Ta及びCrの各炭化物
はAlN粒子中に固溶することなく、AlN粒子間、
即ち、粒界に存在して、金属と結合するために、
本発明は、AlNの金属との濡れ性を改善すると
思われる。 又、通常、粒界に添加物が存在すると熱伝導性
は悪化するが、本発明は、前述の炭化物がAlN
の粒界に存在するにもかかわらず、AlNの高熱
伝導性を損わないことを見出したものである。こ
の理由は、添加した化合物がAlNと反応して、
他の化合物を生成することがなく、又、AlNの
粒子全体を覆う様な存在をしない為に、AlN粒
子同志の結合は損なわれず、AlN本来の特性を
維持しながら、AlNの金属との濡れ性を改善で
きるものと思れる。 [発明の効果] 本発明ほ高熱伝導性窒化アルミニウム焼結体
は、窒化アルミニウムにTi,Zr,Hf,V,Nb,
Ta及びCrの各炭化物を含有することによつて窒
化アルミニウムの優れた熱伝導性を損うことな
く、金属との濡れ性を改善できた。 本発明はメタライズ時に基板表面に酸化物等の
層を設けないために、メタライズした金属層と
AlN基板とが直接接合するため、接合強度、熱
伝導率において優れた性質をもつ。 又、本発明をIC等の基板に利用することによ
り、放熱性に優れた電子部品を得ることができる
が、従来のように、基板表面の処理等を必要とせ
ず、又同時焼成による多層基板を容易に得ること
ができる。 [実施例] 本発明の一実施例について説明する。 本実施例は、平均粒子1.0μmのAlN粉末100重
量部に対して炭化物を第1表に示す金属換算の所
定量加えて混合し、エタノール中で4時間、湿式
混合して原料粉末をつくり、その後、密度及び熱
伝導率測定用の試料と、金属との濡れ性測定用の
試料とを得た。 密度及び熱伝導率の測定は、原料粉末を直径11
mm圧さ3mmに成形圧力1.5ton/cm2で成形した後、
1700℃の窒素雰囲気中で1時間常圧焼結を行つて
得た試料について行つた。密度は相対密度(論理
密度に対する見掛け比重比%)として測定し、
又、熱伝導率は、試料の厚みを2mmに平研加工し
た後にレーザーフラツシユ法を用いて測定した。 金属との濡れ性は、メタライズの接着強度とし
て測定した。メタライズの接着強度は、原料粉末
を30×10×5mmに成形圧力1.5ton/cm2で成形した
後に、通常メタライズに用いられるW粉末(平均
粒子1.0μm)を含むペーストを該成形体表面に2
×2mm、厚さ20μmに塗布し、乾燥して、1700℃
窒素雰囲気下で1時間常圧焼結し、次いで、該焼
結体表面に電解NiメツキによつてNi層を2〜5μ
m形成し、850℃、10分間シンターした後に、共
晶銀ローを用いて1×1mmのコバール(コバルト
鉄を含むニツケル合金)板を930℃、5分間でロ
ー付し、その接着強度をピール強度として測定し
た。 このピール強度は上記コバール板に接合された
リード線を接着面に対して垂直方向に向つて0.5
mm/secの速度で引張り、上記コバール板が焼結
体から剥離したときの強度である。 第1表に相対密度、熱伝導率、ピール強度の測
定結果を示す。尚、第1表に示された組成以外は
全てAlNであり、組成の含有量の単位はAlN100
重量部に対する金属換算の重量部である。
[Industrial Application Field] The present invention relates to a highly thermally conductive aluminum nitride sintered body used for insulating substrates, heat sinks, etc., and particularly relates to a highly thermally conductive aluminum nitride sintered body that can be easily metalized. [Conventional technology] In recent years, demands for miniaturization and improved functionality of electronic devices have become extremely large, and along with this, semiconductors have been moving toward higher integration density, multifunctionality, higher speed, higher output, and higher reliability. is rapidly progressing. Correspondingly, the amount of heat generated from semiconductors is increasing, and there is a demand for substrates with greater heat dissipation capacity than conventional Al 2 O 3 substrates. Substrate materials with high heat dissipation capacity, that is, materials with high thermal conductivity, include diamond, cubic BN,
(boric acid nitride), SiC (silicon carbide), BeO (beryria),
Examples include AIN (aluminum nitride) and Si. However, diamond and cubic BN are difficult to manufacture in a size that can be used as a substrate, and are also very expensive. Since SiC is a semiconductor, it has electrical properties such as electrical insulation and dielectric constant.
It is inferior to Al 2 O 3 and cannot be used as a substitute for Al 2 O 3 substrates. BeO has very good electrical properties, but the powder generated during molding, grinding, etc. is toxic, so it cannot be produced domestically and must be obtained from overseas, which may lead to unstable supply. There is. Si has poor electrical properties and low mechanical strength, so its use as a substrate material is limited.
In addition to its excellent electrical properties such as high insulation, high dielectric strength, and low dielectric constant, AlN can be applied to pressureless sintering, but a metal layer cannot be formed on the required surface, and multilayer substrates for high output are still not available. The reality is that it has not been developed. [Problems to be Solved by the Invention] As described above, since AlN has poor wettability with metals, it cannot be metalized and it has been difficult to use it as a substrate. Also, for example, JP-A-50-75208 and JP-A-59-
40404, the surface of the AlN substrate is oxidized and then metalized, or as in JP-A No. 102310/1983,
There are known techniques such as first providing a metal oxide on the surface of an AlN substrate and then metalizing it.
Although it is possible to metalize the surface of the sintered body in either case, it cannot be applied to the simultaneous firing method for the purpose of creating multiple layers, and the metallized metal layer
It has the disadvantage that a decrease in thermal conductivity cannot be avoided because a layer with relatively low thermal conductivity is interposed between the AlN substrate and the AlN substrate. [Means for solving the problems] The present invention employs the following means to solve the above problems. The highly thermally conductive aluminum nitride sintered body of the present invention comprises 100 parts by weight of aluminum nitride and one or two higher compounds selected from the carbides of Ti, Zr, Hf, V, Nb, Ta, and Cr. , in a total amount of 0.1 to 10 parts by weight in terms of metal elements. Examples of carbides of Ti, Zr, Hf, V, Nb, Ta and Cr include TiC, ZrC, HfC, VC, NbC,
Examples include TaC, Cr3C2 , etc. One or more compounds selected from these carbides have a total amount of AlN100 in terms of metal elements.
The reason why the amount is 0.1 parts by weight or more and 10 parts by weight or less with respect to the heavy aging part is that if it is less than this range, the wettability of the AlN sintered body with the metal will not be improved, and conversely, if it is more than this range, the AlN sintering This is because the high thermal conductivity of the body deteriorates and the sinterability also deteriorates. Although the above-mentioned components alone are sufficient for the present invention, if necessary, a sintering aid such as Y 2 O 3 or CaO may be included in an amount not exceeding 5 parts by weight per 100 parts by weight of AlN. Moreover, when the relative density (apparent specific gravity ratio % to logical density) of this sintered body is 90% or more, the effect of the high thermal conductivity of AlN is large, and the adhesive strength of the metallization is large. In the present invention, a sintering aid powder is added to AlN powder and the above-mentioned carbide powder as needed, and the mixture is molded using a mold, etc., and then non-oxidizing gas such as ordinary N 2 , Ar, NH 3 decomposition gas, H 2 It can be obtained by sintering in an atmosphere or by sintering using a compound that ultimately becomes a carbide. [Function] Each carbide of Ti, Zr, Hf, V, Nb, Ta, and Cr does not form a solid solution in the AlN particles, but between the AlN particles,
In other words, in order to exist in the grain boundaries and bond with the metal,
The present invention appears to improve the wettability of AlN with metals. Further, normally, the presence of additives at grain boundaries deteriorates thermal conductivity, but in the present invention, the above-mentioned carbide is AlN
It was discovered that AlN does not impair its high thermal conductivity even though it exists at grain boundaries. The reason for this is that the added compound reacts with AlN,
Since other compounds are not generated and there is no presence that covers the entire AlN particles, the bond between AlN particles is not impaired, and the original properties of AlN are maintained while wetting the AlN with metal. I think it can improve sex. [Effects of the invention] The highly thermally conductive aluminum nitride sintered body of the present invention contains Ti, Zr, Hf, V, Nb,
By containing Ta and Cr carbides, the wettability with metals could be improved without impairing the excellent thermal conductivity of aluminum nitride. In order to avoid forming a layer such as oxide on the substrate surface during metallization, the present invention
Because it is directly bonded to the AlN substrate, it has excellent bonding strength and thermal conductivity. Furthermore, by applying the present invention to substrates such as ICs, electronic components with excellent heat dissipation properties can be obtained, but unlike conventional substrates, there is no need for substrate surface treatment, and multilayer substrates can be produced by simultaneous firing. can be easily obtained. [Example] An example of the present invention will be described. In this example, a predetermined amount of carbide in terms of metal shown in Table 1 was added to 100 parts by weight of AlN powder with an average particle size of 1.0 μm, and the mixture was wet-mixed in ethanol for 4 hours to prepare a raw material powder. Thereafter, samples for measuring density and thermal conductivity and samples for measuring wettability with metal were obtained. Measurement of density and thermal conductivity was performed using raw powder with a diameter of 11 mm.
After molding at a molding pressure of 1.5ton/ cm2 to a thickness of 3mm,
The test was performed on a sample obtained by pressureless sintering in a nitrogen atmosphere at 1700°C for 1 hour. Density is measured as relative density (apparent specific gravity % relative to logical density),
Thermal conductivity was measured using a laser flash method after flat-grinding the sample to a thickness of 2 mm. Wettability with metal was measured as adhesive strength of metallization. The adhesive strength of metallization is determined by molding the raw material powder into a size of 30 x 10 x 5 mm at a molding pressure of 1.5 ton/cm 2 , and then applying a paste containing W powder (average particles 1.0 μm), which is usually used for metallization, to the surface of the molded product.
Coat 2mm x 20μm thick, dry at 1700℃
The sintered body is sintered under normal pressure for 1 hour in a nitrogen atmosphere, and then a 2-5 μm Ni layer is applied to the surface of the sintered body by electrolytic Ni plating.
After sintering at 850℃ for 10 minutes, a 1 x 1mm Kovar (nickel alloy containing cobalt iron) plate was brazed at 930℃ for 5 minutes using eutectic silver brazing, and the adhesive strength was peeled off. It was measured as strength. This peel strength is 0.5 when the lead wire bonded to the Kovar plate is oriented perpendicularly to the adhesive surface.
This is the strength when the Kovar plate is peeled off from the sintered body by pulling at a speed of mm/sec. Table 1 shows the measurement results of relative density, thermal conductivity, and peel strength. All compositions other than those shown in Table 1 are AlN, and the unit of content is AlN100.
It is a part by weight in terms of metal compared to parts by weight.

【表】 本実施例より、第1表に示す如く、AlNにTi,
Zr,Hf,V,Nb,Ta及びCrの各炭化物から選
ばれた1種又は2種以上を、金属に換算して0.1
〜10重量部含有させることにより、熱伝導率が高
く、ピール強度の高い、即ち、金属との濡れ性の
良好な焼結体が得られることが分かつた。 尚、第1表に示した炭化物同志の組き合わせを
用いた場合も、第1表に示した試料と同様に、熱
伝導率が高く金属との濡れ性の良好な焼結体が得
られた。 尚、従来のAlN焼結体(相対密度99%)の熱
伝導率は0.14〜0.24cal/cm.sec.℃、ピール強度
は0.5Kg/mm2より小さい。又、Al2O3(相対密度99
%)の熱伝導率は0.04〜0.07cal/cm.sec.℃で、
ピール強度は2〜5Kg/mm2である。
[Table] From this example, as shown in Table 1, Ti and
One or more carbides selected from Zr, Hf, V, Nb, Ta and Cr, converted to metal, 0.1
It has been found that by containing up to 10 parts by weight, a sintered body having high thermal conductivity and high peel strength, that is, good wettability with metal, can be obtained. Furthermore, even when the combinations of carbides shown in Table 1 are used, sintered bodies with high thermal conductivity and good wettability with metals can be obtained, similar to the samples shown in Table 1. Ta. The thermal conductivity of conventional AlN sintered bodies (relative density 99%) is 0.14 to 0.24 cal/cm. sec.℃, peel strength is less than 0.5Kg/ mm2 . Also, Al 2 O 3 (relative density 99
%) thermal conductivity is 0.04 to 0.07 cal/cm. sec.℃,
Peel strength is 2-5 Kg/ mm2 .

Claims (1)

【特許請求の範囲】 1 窒化アルミニウムを100重量部と、 Ti,Zr,Hf,V,Nb,Ta及びCrの各炭化物
から選ばれた1種又は2種位上の化合物を、金属
元素に換算して総量で0.1〜10重量部と からなることを特徴とする高熱伝導性窒化アルミ
ニウム焼結体。
[Claims] 1. 100 parts by weight of aluminum nitride and one or two higher compounds selected from the carbides of Ti, Zr, Hf, V, Nb, Ta and Cr, converted into metal elements. A highly thermally conductive aluminum nitride sintered body, comprising a total of 0.1 to 10 parts by weight.
JP60122123A 1985-06-05 1985-06-05 High heat conductivity aluminum nitride sintered body Granted JPS61281074A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60122123A JPS61281074A (en) 1985-06-05 1985-06-05 High heat conductivity aluminum nitride sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60122123A JPS61281074A (en) 1985-06-05 1985-06-05 High heat conductivity aluminum nitride sintered body

Publications (2)

Publication Number Publication Date
JPS61281074A JPS61281074A (en) 1986-12-11
JPH04949B2 true JPH04949B2 (en) 1992-01-09

Family

ID=14828187

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60122123A Granted JPS61281074A (en) 1985-06-05 1985-06-05 High heat conductivity aluminum nitride sintered body

Country Status (1)

Country Link
JP (1) JPS61281074A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0717453B2 (en) * 1985-11-28 1995-03-01 京セラ株式会社 Aluminum nitride sintered body and method for manufacturing the same
JP2678213B2 (en) * 1988-05-27 1997-11-17 住友電気工業株式会社 Manufacturing method of aluminum nitride sintered body
JPH02271969A (en) * 1989-04-12 1990-11-06 Toshiba Ceramics Co Ltd Aln-based sintered body

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49126707A (en) * 1973-04-05 1974-12-04

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49126707A (en) * 1973-04-05 1974-12-04

Also Published As

Publication number Publication date
JPS61281074A (en) 1986-12-11

Similar Documents

Publication Publication Date Title
US4877760A (en) Aluminum nitride sintered body with high thermal conductivity and process for producing same
US4695517A (en) Composite layer aluminum nitride base sintered body
JPH0569797B2 (en)
US5679469A (en) Metallized ceramic substrate having smooth plating layer and method for producing the same
JPH0261539B2 (en)
JPS62197379A (en) Aluminum nitride substrate
JPH06296084A (en) Thermal conductor of high conductivity, wiring board provided therewith and manufacture thereof
JPH0243700B2 (en)
JP3408298B2 (en) High thermal conductive silicon nitride metallized substrate, method of manufacturing the same, and silicon nitride module
JPH022836B2 (en)
JPH0323512B2 (en)
KR20050029128A (en) Member for semiconductor device
JPH04949B2 (en)
JPH0969590A (en) Silicon nitride circuit substrate
JPH0313190B2 (en)
JP3833410B2 (en) Ceramic circuit board
JP2563809B2 (en) Aluminum nitride substrate for semiconductors
JPH04950B2 (en)
JPH07105464B2 (en) Semiconductor device for mounting semiconductor elements
JP2677748B2 (en) Ceramics copper circuit board
JPH06166573A (en) Sintered aluminum nitride having high thermal conductivity
JPH0323511B2 (en)
JP2650044B2 (en) Connection structure between components for semiconductor devices
JP3420424B2 (en) Wiring board
JPS62197376A (en) Aluminum nitride substrate