JPH0328309A - Converter and method for cooling furnace body of converter - Google Patents

Converter and method for cooling furnace body of converter

Info

Publication number
JPH0328309A
JPH0328309A JP16067689A JP16067689A JPH0328309A JP H0328309 A JPH0328309 A JP H0328309A JP 16067689 A JP16067689 A JP 16067689A JP 16067689 A JP16067689 A JP 16067689A JP H0328309 A JPH0328309 A JP H0328309A
Authority
JP
Japan
Prior art keywords
converter
cooling
metal material
shell
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16067689A
Other languages
Japanese (ja)
Inventor
Sumio Yamada
純夫 山田
Nozomi Tamura
望 田村
Toshiro Tomiyama
淑朗 冨山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP16067689A priority Critical patent/JPH0328309A/en
Publication of JPH0328309A publication Critical patent/JPH0328309A/en
Pending legal-status Critical Current

Links

Landscapes

  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Abstract

PURPOSE:To efficiently cool a converter by arranging plural holes to outer iron shell in the converter, packing metal material having large heat conductivity therein and cooling this metal material. CONSTITUTION:Plural holes 3 are bored to the iron shell 1 forming outer shell of a converter and the metal material 4 for cooling of Cu, Cu alloy, Al alloy, etc., having a heat conductivity larger than that of the steel plate, is embedded therein. This embedding metal material 4 is embedded under condition of making this tip part to project from the iron sheel 1 in the converter and covered with half-cutting pipe 5 on this. Cooling water 6 is introduced inside thereof and the material 4 is cooled. At the other way, the embedding metal material 4 is forcedly cooled with air injection 8 from a nozzle 7 to efficiently cool the iron sheel 1.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、炉体の冷却能に優れた転炉とこの転炉に適
した転炉炉体の冷却方法に関する.(従来の技術) 転炉法において、炉体の耐火物にかかるコストは全コス
トの内で大きな部分を占め、そこでコスト低減をはかる
ための多くの技術が提案されている。例えば戒瀬庸一「
日本における耐火物の発展と課題」耐火物40 (19
88) P2〜13。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) This invention relates to a converter with excellent cooling performance for the furnace body and a method for cooling the converter body suitable for this converter. (Prior Art) In the converter method, the cost of refractories for the furnace body occupies a large portion of the total cost, and many techniques have been proposed to reduce the cost. For example, Yoichi Kaise ``
“Development and Challenges of Refractories in Japan” Refractories 40 (19
88) P2-13.

最近の転炉操業においては、鋼の高級化などによりその
精錬温度は高くなる傾向にある。
In recent converter operations, the refining temperature tends to be higher due to higher quality steel.

そしてれんが寿命が温度の上昇に反比例して低下してい
くことは周知の事実であり、れんが寿命を伸ばすために
転炉炉体の冷却を強化することも数多く試みられている
It is a well-known fact that the lifespan of bricks decreases in inverse proportion to the rise in temperature, and many attempts have been made to strengthen the cooling of the converter body in order to extend the lifespan of bricks.

とくにMgO − C系れんがにおいては、れんが自身
の熱伝導率が高いので外側からの冷却によりれんが稼動
面の温度低下をはかることができるため寿命の延長効果
も大きいことが、大手彰ら「転炉鉄皮冷却および一層巻
きライニングによる炉寿命向上」耐火物40 (198
8) P609 、樋口和也ら「転炉機械設備の長寿命
化技術の進歩」川崎技報20(1988) P48〜5
5および実開昭53−106707号公報などにて報告
されている。しかしながらこの技術はMgO − C系
れんがに限り有効で、転炉全搬には適用できない。
In particular, MgO-C bricks have a high thermal conductivity, so by cooling them from the outside, the temperature of the working surface of the brick can be lowered, which has a significant effect on extending the life of the brick. "Improving Furnace Life with Shell Cooling and Single-layer Wound Lining" Refractories 40 (198
8) P609, Kazuya Higuchi et al. “Advances in technology to extend the life of converter machinery and equipment,” Kawasaki Giho 20 (1988) P48-5
5 and Utility Model Application Publication No. 53-106707. However, this technique is only effective for MgO-C bricks and cannot be applied to the entire converter.

一方電気炉においてはさらに効果的なれんがの外部冷却
について、例えば京田洋「電気炉用耐火物の進歩」第1
14回 西山記念講座P139に開示がある。
On the other hand, for more effective external cooling of bricks in electric furnaces, for example, Hiroshi Kyoda, "Advances in Refractories for Electric Furnaces," Vol.
There is a disclosure on page 139 of the 14th Nishiyama Memorial Lecture.

(発明が解決しようとする課題) さて転炉において、上記の電気炉と同様に炉体の冷却を
行うことができれば、れんが寿命の向上に大きく寄与す
ると考えられる。
(Problems to be Solved by the Invention) Now, in a converter, if the furnace body can be cooled in the same manner as in the above-mentioned electric furnace, it is thought that it will greatly contribute to improving the life of the bricks.

ところが転炉の鉄皮は電気炉の壁(水冷部)と異なり全
体が1つの構造物であり、溶鋼静圧およびれんが重量を
支えているため、十分な強度を付与する必要がある。し
たがって鉄皮を水冷パネルのような分割構造にすること
はできず、熱膨張による応力を逃がすことは不可能であ
る。
However, unlike the wall (water-cooled part) of an electric furnace, the steel shell of a converter is a single structure, supporting the static pressure of the molten steel and the weight of the bricks, so it must be given sufficient strength. Therefore, the steel shell cannot be made into a divided structure like a water-cooled panel, and it is impossible to release stress caused by thermal expansion.

また転炉では溶鋼に接触しない部分は上部のトラニオン
サイドのみに限られており、水冷を大規模に適用するこ
とは構造上困難である。
Furthermore, in a converter, the only part that does not come into contact with molten steel is the upper trunnion side, making it structurally difficult to apply water cooling on a large scale.

上記の理由から、現状における転炉の水冷は鉄皮の外側
に水冷パイプを接触させる程度にとどまっていた。
For the above reasons, current water cooling of converters has been limited to the extent that water cooling pipes are brought into contact with the outside of the steel shell.

そこでこの発明は炉体、とくにれんがの冷却能に優れた
構造の転炉とこの転炉に適した炉体冷却方法について提
案することを目的とする。
Therefore, the object of this invention is to propose a converter having a structure with excellent cooling ability for the furnace body, especially bricks, and a furnace body cooling method suitable for this converter.

(課題を解決するための手段) 発明者らは、転炉鉄皮の機能を損わずに、しかも安全に
炉体の冷却を実現する方法について検討したところ、鉄
皮の熱伝導特性を改善すること、すなわち銅のように熱
伝導率の高い材料で鉄皮の一部を代替することが有効で
あるとの知見を得た。
(Means for Solving the Problem) The inventors investigated a method for safely cooling the furnace body without impairing the functions of the converter shell, and found that the heat conduction properties of the converter shell were improved. We have found that it is effective to replace part of the iron skin with a material with high thermal conductivity, such as copper.

すなわちこの発明は、鉄皮の内側にれんがを積み上げて
なる転炉であって、鉄皮の全体または一部に孔を設け、
該孔を鉄皮に比べ熱伝導率の高い材料で埋めてなる転炉
である。
That is, this invention is a converter made of bricks piled up inside a steel shell, with holes provided in the whole or part of the steel shell,
This converter is made by filling the holes with a material that has higher thermal conductivity than the steel shell.

またこの発明の方法は、上記の熱伝導率の高い材料を埋
めた部分に水冷または空冷による冷却を施すものである
. 次にこの発明に従う転炉について、具体的に説明する。
In addition, the method of this invention cools the portion filled with the above-mentioned material with high thermal conductivity by water cooling or air cooling. Next, the converter according to the present invention will be specifically explained.

第1図は転炉炉体の部分断面で、図示のように転炉も外
殻を構威している鉄皮1の全体あるいは部分に、開口形
状が円形あるいはだ円形などの、れんが2まで貫通した
孔3を複数、等間隔に形或し、これらの孔3を鉄皮1に
比べ熱伝導率の高い材料(例えば銅、銅合金またはAI
合会)よりなる埋込み材4で埋めてなる。
Figure 1 is a partial cross-section of the converter body, and as shown in the figure, the entire or part of the steel shell 1, which also forms the outer shell of the converter, is covered with bricks 2 with circular or oval openings. A plurality of through holes 3 are formed at equal intervals, and these holes 3 are made of a material with higher thermal conductivity than the iron skin 1 (for example, copper, copper alloy, or AI).
It is filled with an embedding material 4 made of (aggregation).

なお孔3の形状は鉄皮1が受ける荷重に対して応力集中
が発生しない形状であれば、円形またはだ円形に限る必
要はない。また孔3の径および間隔は、鉄皮1の熱によ
る歪を考慮して設定すること、さらに孔3形或後の鉄皮
が転炉に必要な強度をそなえること、を考慮して設定す
るとよい。具体的には第4図のように隣接する孔3の距
離Lと1 孔3の半径rとの関係r / Lが一以下となるよう8 選び、かつ、炉体支持の応力が加わる部分は、孔3を避
けるような配置とする。更に第5図に示す孔3の断面の
ごとく、一般に鉄皮1と埋め込み材4との熱膨張差が異
なるため、埋め込み材4との熱膨張力による鉄皮1への
引張応力増加をなくすように、孔3の径は埋め込み材4
の外径より太きくする。又、鉄皮1の孔3の開口まわり
は応力集中を緩和するために肉厚を大きくする。埋め込
み材4を固定する際、充填材9を用い、熱膨張差を吸収
させるようにする. 一方孔3を埋める埋込み材4は、鉄皮1表面よリ内側に
引っ込んでいるのでは冷却効果は少ないので、図示のよ
うに、その先端が鉄皮1よりわずかでも突出しているこ
とが好ましい.突出長さとしては、炉体支持構造物との
接触を避けるよう通常、100 mm以内の範囲が好適
である。あるいは第5図のように、放熱板10を設け放
熱に必要な面積を増すことも可能である。
Note that the shape of the hole 3 does not need to be limited to a circular or oval shape as long as it does not cause stress concentration against the load applied to the iron skin 1. In addition, the diameter and spacing of the holes 3 should be set taking into account the distortion of the shell 1 due to heat, and that the shell after the hole 3 shape has the strength necessary for the converter. good. Specifically, as shown in Fig. 4, the relationship r/L between the distance L between adjacent holes 3 and the radius r of the holes 3 is selected to be less than 1, and the portions to which the stress of supporting the furnace body is applied are , the arrangement is such as to avoid hole 3. Furthermore, as shown in the cross section of the hole 3 shown in FIG. 5, since the difference in thermal expansion between the steel shell 1 and the embedded material 4 is generally different, the increase in tensile stress on the steel shell 1 due to the thermal expansion force with the embedded material 4 is avoided. , the diameter of the hole 3 is the same as that of the filling material 4.
Make it thicker than the outer diameter of. Further, the wall thickness around the opening of the hole 3 of the iron shell 1 is increased in order to alleviate stress concentration. When fixing the embedded material 4, a filler material 9 is used to absorb the difference in thermal expansion. On the other hand, if the embedded material 4 filling the hole 3 is recessed inward from the surface of the steel shell 1, the cooling effect will be small, so it is preferable that its tip protrudes even slightly from the steel shell 1, as shown in the figure. The protrusion length is normally preferably within a range of 100 mm to avoid contact with the furnace support structure. Alternatively, as shown in FIG. 5, it is also possible to increase the area required for heat radiation by providing a heat sink 10.

また鉄皮lの孔3に埋込み材4を埋める場合、例えば埋
込み材4をCuチップとすると、CuO熱膨張率は鉄皮
よりも大きいため、冷しぼめ方式でCuチップを設置す
れば、鉄皮温度の上昇とともに、鉄皮とCuチップの接
触面は圧着状態となり、さらにCuは鉄皮に比べ硬度が
低いため、鉄皮面がCu部にくい込む状態となり、接触
による熱伝導の低下は無いに等しくなり有利である。な
お圧着状態の向上のため、鉄皮と埋込み材との接触面は
、スケール除去や脱脂を行うことが望まれる。
In addition, when filling the hole 3 of the iron shell 1 with the embedding material 4, for example, if the embedding material 4 is a Cu chip, the coefficient of thermal expansion of CuO is larger than that of the steel shell, so if the Cu chip is installed using the cooling method, As the skin temperature rises, the contact surface between the steel skin and the Cu chip becomes compressed, and since Cu has lower hardness than the steel skin, the steel skin surface sinks into the Cu part, so there is no reduction in heat conduction due to contact. , which is advantageous. In order to improve the crimping condition, it is desirable to remove scale and degrease the contact surface between the iron shell and the embedded material.

(作 用) 上記の構造を転炉に適用すれば炉体の冷却に有効である
が、さらに埋込み材4部分を強制冷却するとより効果的
である。
(Function) If the above structure is applied to a converter, it is effective for cooling the furnace body, but it is even more effective to forcibly cool the 4 parts of the embedded material.

すなわち第2図に示すように、埋込み材4部分を半割り
パイブ5で覆い、このバイブ5内に冷却水6を導入して
強制冷却する方法および、第3図に示すように、埋込み
材4部分に対向配置したノズル7からの空気流8にて強
制冷却する方法が有利である: 一般的に水冷において冷却強度αは α(kcal/m” ・hr ・’C) = k v 
” ’〜01V:冷却水流速m/s , k:水冷方法、水温により決まる定数 で整理され、例えばv = 1 m/sのときの冷却強
度αは5000〜7000kcal/m”  −hr 
・”Cとなり、大きな冷却効果が得られることがわかる
That is, as shown in FIG. 2, there is a method in which the embedding material 4 is covered with a half-split pipe 5 and cooling water 6 is introduced into the vibrator 5 for forced cooling, and as shown in FIG. It is advantageous to use a method of forced cooling with air flow 8 from nozzles 7 placed opposite to each other: In general, in water cooling, the cooling intensity α is α(kcal/m" ・hr ・'C) = k v
"'~01V: cooling water flow rate m/s, k: water cooling method, organized by constants determined by water temperature, for example, when v = 1 m/s, the cooling intensity α is 5000 to 7000 kcal/m" -hr
・It is clear that a large cooling effect can be obtained.

また衝突空気流を用いた空冷においても同様に冷却強度
αは α==kvO−7 V:空気流速tags, k:空冷方法、気温により決まる定数 で整理され、例えばV =100m/sのときの冷却強
度αは250kcal/m” ・hr ・”C %同5
0m/sで150kcal/mz・hr・゜C程度とな
り、大気放冷の6〜10倍の冷却効果が得られる. また鉄皮は通常厚みが50〜70mm程度あるため、埋
込み材への熱伝導に寄与する面積は比較的大きくとるこ
とが可能である。
Similarly, in air cooling using impinging airflow, the cooling intensity α is α = = kvO-7 V: air flow velocity tags, k: air cooling method, constant determined by air temperature. For example, when V = 100 m/s, Cooling intensity α is 250 kcal/m”・hr・”C% Same 5
At 0 m/s, the cooling effect is approximately 150 kcal/mz・hr・°C, which is 6 to 10 times more effective than air cooling. Further, since the iron skin usually has a thickness of about 50 to 70 mm, the area contributing to heat conduction to the embedded material can be relatively large.

(実施例) MgO − C (20%)れんがを内張リした85ト
ン上底吹き転炉において、上部絞り部及び側胴部の鉄皮
に30mmφの孔を15cmピッチで格子状に形戒し、
これらの孔に埋め込み材(純銅)を埋め込み、上部絞り
部は第2図に従って水冷(冷却水流速:2一/S、水温
:40゜C)L、側胴部は第3図に従って空冷(空気噴
出圧: 2 〜4 kg/cm”G) L、CrK石の
溶融還元を行った. また比較として、鉄皮に埋め込み材をそなえない転炉に
同様の冷却を施した場合についても、同様の操業を行っ
た。
(Example) In an 85-ton top-bottom blowing converter lined with MgO-C (20%) bricks, holes of 30 mmφ were formed in a lattice shape at a pitch of 15 cm in the steel shell of the upper throttle part and side body part. ,
Filling material (pure copper) is embedded in these holes, and the upper constriction part is water-cooled (cooling water flow rate: 21/S, water temperature: 40°C) L according to Fig. 2, and the side body part is air-cooled (air-cooled) according to Fig. 3. Ejection pressure: 2 to 4 kg/cm"G) L, CrK stone was melted and reduced. For comparison, similar cooling was performed in a converter without embedded material in the steel shell. The operation was carried out.

れんが積み後100チャージのCr鉱石の溶融還元吹錬
(平均吹錬時間70分)を行った後、101チャージ目
の鉄皮肉側およびれんが表面の温度と100チャージま
でのれんが損耗速度を測定した。その結果を下表に示す
After brick-laying, 100 charges of Cr ore were subjected to melt reduction blowing (average blowing time 70 minutes), and the temperature of the iron skin side and brick surface at the 101st charge and the wear rate of the bricks up to 100 charges were measured. The results are shown in the table below.

上ずるため、炉内耐火物の損耗が減少し炉寿命を大幅に
向上することができる。
Therefore, wear and tear on the refractories in the furnace is reduced, and the life of the furnace can be greatly extended.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明に従う転炉炉体の断面図、第2および
3図はこの発明に従う冷却方法を説明する断面図、 第4図は、孔径と隣接する孔の距離を示す模式図、 第5図は、鉄皮孔部分への埋め込み材の取付例を示す図
である。 1・・・鉄皮      2・・・れんが3・・・孔 
      4・・・埋め込み材5・・・半割りパイブ
  6・・・冷却水7・・・ノズル     8・・・
空気流9・・・充填材     10・・・放熱板(発
明の効果) この発明により転炉炉体の冷却効果が大幅に向第l図 第2図 第3図 第4図 第5図
FIG. 1 is a cross-sectional view of a converter body according to the present invention, FIGS. 2 and 3 are cross-sectional views explaining the cooling method according to the present invention, FIG. 4 is a schematic diagram showing hole diameters and distances between adjacent holes, FIG. 5 is a diagram showing an example of attaching the filling material to the steel shell hole portion. 1... Iron shell 2... Brick 3... Hole
4... Embedded material 5... Half pipe 6... Cooling water 7... Nozzle 8...
Air flow 9...Filling material 10...Radiation plate (effect of the invention) This invention greatly improves the cooling effect of the converter furnace body.Figure 1Figure 2Figure 3Figure 4Figure 5

Claims (1)

【特許請求の範囲】 1、鉄皮の内側にれんがを積み上げてなる転炉であって
、鉄皮の全体または一部に孔を設け、該孔を鉄皮に比べ
熱伝導率の高い材料で埋めてなる転炉。 2、転炉の鉄皮の全体または一部に孔を設け、該孔を鉄
皮に比べ熱伝導率の高い材料で埋め込み、該埋め込み部
分を水冷または空冷することを特徴とする転炉炉体の冷
却方法。
[Claims] 1. A converter made of bricks piled up inside a steel shell, with holes provided in all or part of the steel shell, and the holes made of a material with higher thermal conductivity than the steel shell. A buried converter. 2. A converter furnace body characterized in that holes are provided in all or part of the steel shell of the converter, the holes are embedded with a material having higher thermal conductivity than the steel shell, and the embedded portions are water-cooled or air-cooled. cooling method.
JP16067689A 1989-06-26 1989-06-26 Converter and method for cooling furnace body of converter Pending JPH0328309A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16067689A JPH0328309A (en) 1989-06-26 1989-06-26 Converter and method for cooling furnace body of converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16067689A JPH0328309A (en) 1989-06-26 1989-06-26 Converter and method for cooling furnace body of converter

Publications (1)

Publication Number Publication Date
JPH0328309A true JPH0328309A (en) 1991-02-06

Family

ID=15720064

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16067689A Pending JPH0328309A (en) 1989-06-26 1989-06-26 Converter and method for cooling furnace body of converter

Country Status (1)

Country Link
JP (1) JPH0328309A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0617928U (en) * 1992-03-10 1994-03-08 株式会社エンゼル産業 Plate material made of synthetic resin
JP2013127352A (en) * 2011-11-17 2013-06-27 Hyuga Seirensho:Kk Cooling method for three-phase ac electrode type circular electric furnace and the three-phase ac electrode type circular electric furnace

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0617928U (en) * 1992-03-10 1994-03-08 株式会社エンゼル産業 Plate material made of synthetic resin
JP2013127352A (en) * 2011-11-17 2013-06-27 Hyuga Seirensho:Kk Cooling method for three-phase ac electrode type circular electric furnace and the three-phase ac electrode type circular electric furnace

Similar Documents

Publication Publication Date Title
WO2000046561A1 (en) Water-cooling panel for furnace wall and furnace cover of arc furnace
CN111334629A (en) Cooling wall structure for improving cooling strength of blast furnace
US3379427A (en) Lining of the internal surface of a blast furnace
JP3796981B2 (en) Stave
JPH0328309A (en) Converter and method for cooling furnace body of converter
EP0128987B1 (en) Tuyere and method for blowing gas into molten metal
JP2914185B2 (en) Water-cooled refractory panels for blast furnace wall repair
JP3635779B2 (en) Blast furnace wall cooling plate
JP2725576B2 (en) Water-cooled refractory panels for blast furnace wall repair
US4477279A (en) Annular tuyere and method
JP4021948B2 (en) Blast furnace bottom cooling structure
EP1230402A1 (en) Cooling panel for a shaft furnace, shaft furnace provided with cooling panels of this nature, and a process for producing such a cooling panel
KR100456036B1 (en) Cooling panel for a shaft furnace
JPH017704Y2 (en)
JP7192360B2 (en) converter
JPH0345108Y2 (en)
JPS5916914A (en) Cooling construction of furnace wall of blast furnace constituted of two layers cooling zone
JPH0987714A (en) Stave cooler
JP2000073110A (en) Stave cooler for blast furnace
JPS6137904A (en) Protective wall of blast furnace body
JPH05320727A (en) Stave cooler provided with brick holding mechanism
JPH0634362Y2 (en) Blast furnace wear ring liner for protection of hardware
JP2571492Y2 (en) Electric furnace brick bottom structure
JPH0723498B2 (en) Iron bath smelting reduction furnace
JP2001123209A (en) Stave cooler