JPH0328211A - Continuous production of rubber-modified high impact resin - Google Patents

Continuous production of rubber-modified high impact resin

Info

Publication number
JPH0328211A
JPH0328211A JP1162692A JP16269289A JPH0328211A JP H0328211 A JPH0328211 A JP H0328211A JP 1162692 A JP1162692 A JP 1162692A JP 16269289 A JP16269289 A JP 16269289A JP H0328211 A JPH0328211 A JP H0328211A
Authority
JP
Japan
Prior art keywords
reaction tank
rubber
monomer
reaction
rubbery polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1162692A
Other languages
Japanese (ja)
Other versions
JP2764056B2 (en
Inventor
Tetsuyuki Matsubara
松原 徹行
Noribumi Ito
伊藤 紀文
So Iwamoto
岩本 宗
Kazuo Sugazaki
菅崎 和男
Kozo Ichikawa
市川 功三
Toshihiko Ando
敏彦 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP16269289A priority Critical patent/JP2764056B2/en
Priority to DE68917447T priority patent/DE68917447T2/en
Priority to EP89123912A priority patent/EP0376232B1/en
Priority to CA002006738A priority patent/CA2006738C/en
Priority to CN 89109826 priority patent/CN1027542C/en
Priority to KR1019890019938A priority patent/KR900009721A/en
Priority to KR1019890009940A priority patent/KR930001698B1/en
Publication of JPH0328211A publication Critical patent/JPH0328211A/en
Priority to US07/961,026 priority patent/US5210132A/en
Application granted granted Critical
Publication of JP2764056B2 publication Critical patent/JP2764056B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Graft Or Block Polymers (AREA)

Abstract

PURPOSE:To prepare a rubber-modified high impact resin contg. rubber particles having a desired particle diameter by polymerizing a raw material soln. comprising a mixture of an arom. vinyl monomer with a vinyl cyanide monomer and a rubbery polymer dissolved therein while passing the soln. through the first reactor, a particle-dispersing machine, and the second reactor in this order. CONSTITUTION:A raw material soln. comprising a mixture of an arom. vinyl monomer with a vinyl cyanide monomer and a rubbery polymer dissolved therein is fed continuously with a radical polymn. initiator to the first reactor, wherein the monomer mixture is copolymerized to a conversion needed to cause the dissolved rubbery polymer to change into dispersed particles. The reacted soln. is fed to a particle-dispersing machine which has at least three fast-rotating blades or rotors within it and in which the dispersed particles are treated with shear. The treated soln. is then fed continuously to the second reactor and then, if necessary, to the third and subsequent reactors to continue the polymn.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はゴム変性耐衝撃性′樹脂の連続的製造方法に関
する. さらに詳しくは芳香族ビニル単量体とシアン化ビニル単
量体との混合物にゴム状重合体を溶解した原料溶液を連
続的に塊状もしくは溶液重合させ、ゴム状重合体を所望
の粒子径をもつ分散粒子に粒子化して、耐薬品性、耐熱
性、剛性に優れ、外観良好なゴム変性耐衝撃性樹脂を製
造する方法に関する. 〔従来の技術〕 ハイインパクトボリスチレン樹脂(以下HIPS樹脂と
略称する)は、ゴム威分の存在下にスチレンを重合させ
て得られるボリスチレン樹脂の耐衝撃性を改良した樹脂
で、幅広い分野に使用されている.このH I−PS樹
脂は、塊状−?A濁法等のバッチ重合でも製造されてい
るが、最近の傾向として連続塊状重合で多く製造されて
いる.方、ゴム戒分の存在下にスチレンおよびアクリロ
ニトリルを重合させて得られるABS樹脂は、優れた耐
衝撃性、耐薬品性、耐熱性、剛性、表面光沢の良さ等の
理由で多くの用途を得ている.このABS樹脂は、一般
にゴム威分を含むラテックスにスチレンおよびアクリロ
ニトリルモノマーを添加して重合する、いわゆる乳化重
合法で製造されている.乳化重合法においては、重合体
の数倍の量のラテックスを使用するため、重合設備が大
型になること、乳化工程、凝固工程、乾燥工程などの諸
工程を必要とし工程管理が複雑になること、乳化剤、凝
固剤などの添加剤を使用するため、重合体へ不純物が混
入すること等の問題がある.乳化重合方法の改良方法と
して、特公昭49−35354、35355のように、
ゴムラテックス中のゴム戒分をそのままスチレン及びア
クリロニトリルモノマーで抽出した後、連続塊状重合に
移行させてABS啄樹脂を製造する方法が提案されてい
る.この方法においても通常の乳化重合法に比べ工程が
簡単になっているものの繁雑な抽出工程が残されている
.ABSの他の製造方法として、連続塊状または溶液重
合方法が提案されている.これには例えば特公昭45−
20303、特開昭47−9144 、特開昭55−3
6201等の方法があり、重合工程および後処理工程が
簡単で公害となる廃棄物質が少ない等のメリットが挙げ
られているが、これらの方法では、得られる樹脂が物性
的に必ずしも優れていなかったり、特にABS樹脂の一
つの特徴である表面光沢が不良となったり、あるいは特
殊な装置を必要とするなどの問題があった. 連続塊状または溶液重合法にてABS樹脂を製造するに
際し、製品中のゴム状重合体粒子の大きさは衝撃強度、
光沢等の性能に大きな影響を与えるので、粒子径の調節
操作は極めて重要な位置を占めている.ゴム状重合体を
含む相(ゴム相)を分散粒子に転換する操作として、単
量体の重合体への転化率の比較的低い段階で強い攪拌を
施す方法は公知である.本発明者らはこのような工程に
おいて撹拌槽型反応器を用いる方法を特公昭63−22
84号にて提案している. 又、生成したゴム粒子に分散機を用いて剪断処理を施し
、所望の粒子径のゴム粒子を得る方法も特公昭49−1
8477に提案されている.この方法においては、分散
機を用いてゴム粒子に剪断処理を施した後に、架橋剤を
添加して150〜200℃でゴムの架橋と重合の完結を
同時に行なっている.〔発明が解決しようとする問題点
〕 しかしながら、近年ABS樹脂の用途の拡大に伴う市場
からの高性能製品の要求およびより効率的製法による低
コスト生産志向に高まりに対応するために、連続的製造
法におけるゴム状重合体の分散粒子化に関して、次のよ
うな課題の解決が要請されている. (1)単一の製造装置で衝撃性及び威形物の表面光沢等
の市場の要求性能のバランスに応じた平均粒子径、ゴム
含有量及び/またはゴムのIl類の異なる銘柄を自在に
製造できること.例えば特公昭63−2284の方法は
簡単な方法ではあるが、粒子径を0.6μ以下にするの
に多大な攪拌動力を要する点を改善すること. (2)衝撃物性、光沢性能及びその他の威形物の外観性
能をより良くするために粒子化操作の段階での巨大粒子
(フィンシェアイとしてあるいは成形物の外観不良とし
て観察される)の発生を防ぐこと. 本発明の目的は上記要請にこたえ、粒子径をコントロー
ルするために多大な攪拌動力を要せず、又複雑な操作を
要せずに、極めて効率的に、所望の粒子径のゴム粒子を
もつ外観良好なゴム変性耐衝撃性樹脂を製造する方法を
提供することにある.〔課題を解決するための手段〕 すなわち本発明は、芳香族ビニル単量体とシアン化ビニ
ル単量体との混合物にゴム状重合体を溶解した原料溶液
およびラジカル重合開始剤を第1反応槽へ連続的に供給
して、ゴム状重合体が分散粒子に転換するのに必要な単
量体転化率以上の単量体の重合を行ない、該第1反応槽
より原料溶液の供給量に相当する量の反応液を連続的に
取り出し、該反応液を内部に高速で回転する翼あるいは
ローターを少なくとも3つ以上もつ粒子分散機に送って
ゴム状重合体の分散粒子を剪断処理し、ついで該粒子分
散機で処理された反応液を第2反応槽に連続的に供給し
て、重合を継続するか、あるいはさらに必要に応じて第
3反応槽以降の反応槽に供給して重合を継続させること
によりなるゴム変性耐衝撃性樹脂の連続製造方法におい
て、(A)原料溶液中の芳香族ビニル単量体/シアン化
ビニル単量体の重量混合比が99/lないし50/50
であり、 (B)第1反応槽中で反応液のしめる容積をv1、粒子
分散機の容積をv8とした時 Vt/Vl< 0.2 をみたしており、 (C)該粒子分散機内のそれぞれの翼あるいはローター
の外周の線速度が0.5m /sec以上であり、(D
)第2反応槽が撹拌槽型反応槽で該反応槽での単量体転
化率が25重量%以上に保たれている、ことを特徴とす
る外観良好なゴム変性耐衝撃性樹脂の連続的製造方法で
ある. 本発明で用いられる芳香族ビニル単量体としては、スチ
レン、α−メチルスチレン、ベンゼン環がアルキル置換
されたスチレン、例えば〇−m−もしくはP−メチルス
チレン、0−、m−もしくはρ一ターシャリプチルスチ
レン、ベンゼン環がハロゲン化されたスチレン、例えば
0−、mーもしくはp−クロルまたはプロムスチレン等
の一種以上を用いることができる. シアン化ビニル単量体としては、アクリロニトリル、メ
タクリロニトリル等の1種以上を用いることができる. また、これらの単量体にメチルメタクリレートのような
アクリル酸エステル、無水マレイン酸、マレイミド等の
共重合可能な単量体を必要に応して加えてもよい. 原料溶液中の芳香族ビニル単量体/シアン化ビニル単量
体の重量混合比は、99/1ないし50/50の範囲で
あり、好ましくは95/5ないし50/50の範囲であ
る.芳香族ビニル単量体/シアン化ビニル単量体の混合
比が99/1より大きい場合は得られる樹脂の耐薬品性
、剛性および耐熱性が劣り、また50/50より小さい
場合は、得られる樹脂の表面光沢が劣り且つ流動性の悪
いものとなるため好ましくない. ゴム状重合体としては、これらの単量体に溶解できるも
のであれば通常用いられる何れでもよく、例えばブタン
ジエンゴム、スチレンープタジエン共重合体ゴム、アク
リロニトリルーブタジエン共重合体ゴム、クロロブレン
ゴム、エチレンープロピレン共重合体ゴム、エチレンー
プロピレンージエン共重合体ゴムなどがある.これらの
ゴム戒分としては、その5%スチレン溶液の25“Cで
の粘度が100センチポイズ以下であるものが適当であ
る.周知のように塊状又は溶液重合では、最初均一溶液
として存在したゴム威分がある単量体の重合率以上では
相分離し分散粒子の形をとる.これが一般に相転移と呼
ばれる現象であるが、原料溶液中のゴム成分の上記の溶
液粘度が100センチボイズを超える場合は、第1反応
槽で生成するゴム粒子が大きく、そのゴム粒子を後で述
べる粒子分散機で処理してもゴム粒子を充分小さくする
ことができず、得られる樹脂は表面光沢が劣るので好ま
しくない. 本発明で用いる原料溶液としては、芳香族ビニル単量体
、シアン化ビニル単1体およびゴム状重合体だけでもよ
いが、必要に応じて芳香族炭化水素、脂肪族炭化水素、
脂環族炭化水素、ハロゲン化炭化水素、ケトン類のよう
な熔剤を40重量%以下になるよう添加してもよいof
@剤の量が40重量%を超えると連鎖移動効果が大きく
なって、第1反応槽で生或するゴム粒子が大きくなり、
そのゴム粒子を粒子分敵機で処理してもゴム粒子を充分
小さくすることができず、また生産効率も低下して好ま
しくない.本発明の原料溶液とはこのような溶剤を添加
した溶液をも含むものである.本発明の方法においては
、原#4溶液を第1の反応槽に連続的に供給して重合を
行なうに際し、同時に触媒としてラジカル重合開始剤を
上記反応槽に供給して重合を行なうのが好ましい.用い
られるラジカル重合開始剤としては、有機過酸化物、ア
ゾ化合物等があるが、その10時間半減期分解温度が1
00℃以下、好ましくは90℃以下のものがよい.この
ようなラジカル重合開始剤としては、ラウロイルバーオ
キサイド、ターシャルブチルパーオキシ(2−エチルヘ
キサノネイト)、ペンゾイルパーオキサイド、1.1−
ビス(ターシャリブチルバーオキシ)  3.3.5−
}リメチルシク口ヘキサン、アゾビスイソブチロニトリ
ル、アゾビス−2メチルプチロニトリル等があり、これ
らの11以上が用いられる.第1反応槽においてラジカ
ル重合開始剤を用いずに熱的に重合を開始した場合は、
理由は不明確であるが、第1反応槽で生成したゴム粒子
が大きく、そのゴム粒子を粒子分散機で処理してもゴム
粒子を充分小さくすることができず、所望の値にコント
ロールできなく好ましくない. また、ラジカル重合開始剤を用いて重合させても、用い
るラジカル重合開始剤のlo時間半減期分解温度が10
0℃を超えるものを用いる場合は、重合温度を高くする
必要があるので、熱的に重合が開始される割合が増え、
ラジカル重合開始剤を用いる効果が少なくなり好ましく
ない.第1反応槽に供給するラジカル重合開始剤の量は
、原料溶液に対して30 pp+s以上、好ましくは5
0 pp一以上がよい.ラジカル重合開始剤の量が30
 9ρ一未満の場合は、重合温度を高くする必要がある
ので熱的に重合が開始される割合が増え、同じくラジカ
ル重合開始剤を用いる効果が少なくなり好ましくない.
本発明のおける第1反応槽は、完全混合槽タイプのPR
i↑槽型反応槽、あるいはプラグフロ一タイプの塔式反
応槽等いずれのタイプの反応槽を用いてもよい.第1反
応槽として撹拌槽型反応槽を用いた場合は、該第1反応
槽内では単量体はゴム状重合体が分散粒子に転換するの
に必要な単量体転化率以上の単量体転化率に保たれてい
なければならない.又、第1反応槽として塔式反応槽を
用いた場合は、該第1反応槽の出口における重合液中の
単量体が、ゴム状重合体が分散粒子に転換するのに必要
な単量体転化率以上の単量体転化率に保たれていなけれ
ばならない。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for continuously producing rubber-modified impact-resistant resin. More specifically, a raw material solution in which a rubbery polymer is dissolved in a mixture of an aromatic vinyl monomer and a vinyl cyanide monomer is continuously subjected to bulk or solution polymerization to form a rubbery polymer with a desired particle size. This article relates to a method for producing a rubber-modified impact-resistant resin that has excellent chemical resistance, heat resistance, and rigidity, and has a good appearance by forming dispersed particles. [Prior art] High impact polystyrene resin (hereinafter abbreviated as HIPS resin) is a resin with improved impact resistance of polystyrene resin obtained by polymerizing styrene in the presence of rubber components, and is used in a wide range of fields. It has been done. This HI-PS resin is a block-? It is also produced by batch polymerization such as the A turbidity method, but as a recent trend, it is often produced by continuous bulk polymerization. On the other hand, ABS resin obtained by polymerizing styrene and acrylonitrile in the presence of rubber compounds has many uses due to its excellent impact resistance, chemical resistance, heat resistance, rigidity, and good surface gloss. ing. This ABS resin is generally manufactured by the so-called emulsion polymerization method, in which styrene and acrylonitrile monomers are added to latex containing rubber components and polymerized. In the emulsion polymerization method, the amount of latex that is several times the amount of polymer is used, so the polymerization equipment becomes large and various processes such as emulsification, coagulation, and drying are required, making process control complicated. Because additives such as emulsifiers and coagulants are used, there are problems such as impurities being mixed into the polymer. As a method for improving the emulsion polymerization method, as in Japanese Patent Publication No. 49-35354 and 35355,
A method has been proposed in which the rubber components in rubber latex are directly extracted with styrene and acrylonitrile monomers, and then transferred to continuous bulk polymerization to produce ABS taku resin. Although this method is simpler than the usual emulsion polymerization method, it still requires a complicated extraction step. Continuous bulk or solution polymerization methods have been proposed as other methods for producing ABS. This includes, for example,
20303, JP-A-47-9144, JP-A-55-3
There are methods such as 6201, which have advantages such as simple polymerization and post-treatment steps and fewer waste materials that cause pollution, but these methods do not necessarily produce resins with excellent physical properties. In particular, there were problems such as poor surface gloss, which is one of the characteristics of ABS resin, and the need for special equipment. When manufacturing ABS resin using continuous bulk or solution polymerization methods, the size of the rubbery polymer particles in the product is determined by impact strength,
Adjusting the particle size plays an extremely important role, as it has a significant impact on performance such as gloss. As an operation for converting a phase containing a rubbery polymer (rubber phase) into dispersed particles, a method of applying strong stirring at a stage when the conversion rate of monomers to polymer is relatively low is known. The present inventors have proposed a method using a stirred tank reactor in such a process as described in Japanese Patent Publication No. 63-22.
This is proposed in No. 84. In addition, a method for obtaining rubber particles of a desired particle size by shearing the produced rubber particles using a dispersing machine is also disclosed in Japanese Patent Publication No. 49-1.
8477. In this method, rubber particles are sheared using a dispersing machine, and then a crosslinking agent is added to simultaneously complete crosslinking and polymerization of the rubber at 150 to 200°C. [Problems to be solved by the invention] However, in recent years, in order to meet the market's demand for high-performance products and the growing trend towards low-cost production through more efficient manufacturing methods, as the use of ABS resin has expanded, continuous manufacturing has been developed. Regarding the dispersion of rubbery polymers into particles in the process, the following problems are required to be solved. (1) A single production device can freely produce brands with different average particle diameters, rubber contents, and/or rubber class Il depending on the balance of market-required performance such as impact resistance and surface gloss of imposing objects. What you can do. For example, the method of Japanese Patent Publication No. 63-2284 is a simple method, but it needs to be improved in that it requires a large amount of stirring power to reduce the particle size to 0.6μ or less. (2) Generation of giant particles (observed as fin shears or poor appearance of molded products) during the particleization process to improve impact properties, gloss performance, and other appearance performance of imposing objects. To prevent The purpose of the present invention is to meet the above-mentioned requirements and to produce rubber particles of a desired particle size in an extremely efficient manner without requiring a large amount of stirring power or complicated operations in order to control the particle size. The object of this invention is to provide a method for producing a rubber-modified impact-resistant resin with a good appearance. [Means for Solving the Problems] That is, the present invention provides a raw material solution in which a rubbery polymer is dissolved in a mixture of an aromatic vinyl monomer and a vinyl cyanide monomer and a radical polymerization initiator in a first reaction tank. to polymerize monomer at a monomer conversion rate higher than that required for converting the rubber-like polymer into dispersed particles, and the amount corresponds to the amount of raw material solution supplied from the first reaction tank. An amount of the reaction solution is continuously taken out, and the reaction solution is sent to a particle dispersion machine having at least three or more blades or rotors that rotate at high speed to shear the dispersed particles of the rubbery polymer. The reaction solution treated with the particle disperser is continuously supplied to the second reaction tank to continue polymerization, or if necessary, it is further supplied to the third reaction tank and subsequent reaction tanks to continue polymerization. In the continuous production method of rubber-modified impact-resistant resin, (A) the weight mixing ratio of aromatic vinyl monomer/cyanide vinyl monomer in the raw material solution is from 99/l to 50/50.
(B) When the volume of the reaction liquid in the first reaction tank is v1 and the volume of the particle disperser is v8, Vt/Vl < 0.2 is satisfied, (C) Inside the particle disperser The linear velocity of the outer circumference of each blade or rotor is 0.5 m/sec or more, and (D
) Continuous production of rubber-modified impact-resistant resin with good appearance, characterized in that the second reaction tank is a stirred tank type reaction tank, and the monomer conversion rate in the reaction tank is maintained at 25% by weight or more. This is the manufacturing method. Examples of the aromatic vinyl monomer used in the present invention include styrene, α-methylstyrene, styrene in which the benzene ring is substituted with alkyl, such as 〇-m- or P-methylstyrene, 0-, m- or ρ-tertyl styrene. One or more types of styrene such as liptylstyrene, styrene in which the benzene ring is halogenated, such as 0-, m- or p-chlor, or promstyrene can be used. As the vinyl cyanide monomer, one or more of acrylonitrile, methacrylonitrile, etc. can be used. Furthermore, copolymerizable monomers such as acrylic esters such as methyl methacrylate, maleic anhydride, and maleimide may be added to these monomers as necessary. The weight mixing ratio of aromatic vinyl monomer/vinyl cyanide monomer in the raw material solution is in the range of 99/1 to 50/50, preferably in the range of 95/5 to 50/50. If the mixing ratio of aromatic vinyl monomer/vinyl cyanide monomer is greater than 99/1, the resulting resin will have poor chemical resistance, rigidity and heat resistance, and if it is less than 50/50, the resulting resin will have poor chemical resistance, stiffness and heat resistance. This is undesirable because the surface gloss of the resin is poor and the fluidity is poor. The rubbery polymer may be any commonly used rubber as long as it can be dissolved in these monomers, such as butane diene rubber, styrene-butadiene copolymer rubber, acrylonitrile-butadiene copolymer rubber, chlorobrene, etc. Rubber, ethylene-propylene copolymer rubber, ethylene-propylene-diene copolymer rubber, etc. Appropriate rubber components are those whose 5% styrene solution has a viscosity of 100 centipoise or less at 25"C. As is well known, in bulk or solution polymerization, the rubber components that initially existed as a homogeneous solution are When the polymerization rate of the monomer exceeds a certain level, the phase separates and takes the form of dispersed particles.This is a phenomenon generally called phase transition, but if the above-mentioned solution viscosity of the rubber component in the raw material solution exceeds 100 centivoids, , the rubber particles produced in the first reaction tank are large, and even if the rubber particles are treated with a particle dispersion machine described later, the rubber particles cannot be made small enough, and the resulting resin has poor surface gloss, which is undesirable. The raw material solution used in the present invention may be only an aromatic vinyl monomer, vinyl cyanide, and a rubbery polymer, but aromatic hydrocarbons, aliphatic hydrocarbons,
A welding agent such as alicyclic hydrocarbons, halogenated hydrocarbons, and ketones may be added to a concentration of 40% by weight or less.
When the amount of the @ agent exceeds 40% by weight, the chain transfer effect increases, and the rubber particles produced in the first reaction tank become larger.
Even if the rubber particles are treated with a particle separator, the rubber particles cannot be made sufficiently small, and the production efficiency also decreases, which is undesirable. The raw material solution of the present invention also includes solutions to which such solvents are added. In the method of the present invention, when the raw #4 solution is continuously supplied to the first reaction tank for polymerization, it is preferable to simultaneously supply a radical polymerization initiator as a catalyst to the reaction tank for polymerization. .. The radical polymerization initiators used include organic peroxides and azo compounds, but their 10-hour half-life decomposition temperature is 1.
00°C or lower, preferably 90°C or lower. Such radical polymerization initiators include lauroyl peroxide, tert-butyl peroxide (2-ethylhexanonate), penzoyl peroxide, 1.1-
Bis(tert-butylbaroxy) 3.3.5-
}Limethylcyclohexane, azobisisobutyronitrile, azobis-2methylbutyronitrile, etc., and 11 or more of these are used. When polymerization is started thermally in the first reaction tank without using a radical polymerization initiator,
The reason is unclear, but the rubber particles generated in the first reaction tank are large, and even if the rubber particles are treated with a particle dispersion machine, the rubber particles cannot be made small enough, making it impossible to control them to the desired value. I don't like it. Furthermore, even if polymerization is carried out using a radical polymerization initiator, the lo time half-life decomposition temperature of the radical polymerization initiator used is 10
When using a material with a temperature exceeding 0°C, it is necessary to raise the polymerization temperature, which increases the rate at which polymerization is initiated thermally.
This is not preferable as it reduces the effect of using a radical polymerization initiator. The amount of radical polymerization initiator supplied to the first reaction tank is 30 pp+s or more, preferably 5 pp+s based on the raw material solution.
0 pp or more is better. The amount of radical polymerization initiator is 30
If it is less than 9ρ1, the polymerization temperature needs to be raised, so the proportion of thermally initiated polymerization increases, and the effect of using the radical polymerization initiator decreases, which is not preferable.
The first reaction tank in the present invention is a complete mixing tank type PR.
Any type of reaction tank may be used, such as a tank type reaction tank or a plug-flow type column type reaction tank. When a stirred tank type reaction tank is used as the first reaction tank, the amount of monomer in the first reaction tank is higher than the monomer conversion rate necessary for converting the rubbery polymer into dispersed particles. The body conversion rate must be maintained. In addition, when a tower type reaction tank is used as the first reaction tank, the monomer in the polymerization liquid at the outlet of the first reaction tank is the monomer amount necessary for converting the rubbery polymer into dispersed particles. The monomer conversion must be maintained at a monomer conversion rate higher than the monomer conversion rate.

本発明における第1反応槽出口のゴム状重合体の割合を
X,重量%、重合した単量体の重合体の割合をx2重量
%とする時、X1及びx2の値は、1 <X,≦15 
 かつ 2.OXI−0.05X+” <X1< 4.0Xl−
0.05X12を満足するようにすることが好ましいs
Xl≦1においては通常の操作条件では製品中のゴム含
量が低くなり、得られたゴム変性樹脂は実用に供し得な
い.一方、XI>15においては、重合液の粘度が非常
に高くなり、反応槽の所要攪拌動力が大きくなるととも
に、第1反応槽でゴム状重合体が分散粒子に転換しない
か、粒子化できた場合においても、巨大粒子が発生する
.通常X1は好ましくは2<X,<12の範囲で選ばれ
る.X2の値についてxよ≦2.0X+−0.05X+
”の場合は、単量体転化率が低く、第l反応槽でゴム状
重合体が粒子化できないか、粒子化しても粒子は不安定
で大きいものとなる.第1反応槽出口での重合液の単量
体転化率が低くゴム状重合体が粒子化していないか、粒
子化しても不安定で大きい場合は、粒子分散機で処理し
ても、ゴム粒子は、所望の値にコントロールできずある
いは巨大粒子が発生し、本発明の目的に合致しない. 又、X.≧4.OXI−0.05X,”の場合は、第1
反応槽出口での重合液の粘度が非常に高くなり、第1反
応槽の後に続く粒子分散機での処理が困難になるととも
に該粒子分散機でのゴム粒子の処理の効果が顕著にはあ
らわれない. 第1反応槽では、ゴム状重合体を芳香族ビニル単量体と
シアン化ビニル単量体に溶解し、必要に応じて溶剤を加
えた原料溶液とラジカル重合開始剤を連続的に供給して
ゴム状重合体が分散粒子に転換するのに必要な重合率以
上になるよう重合を行なうが、通常50〜150℃、好
ましくは60〜130゛Cの温度で実施される. ここで単量体のポリマーへの転化率、したがって、ボリ
マー濃度xi (ffil%)は、重合温度、第1反応
槽への供給原料組成、原料供給速度及び重合開始剤の供
給量等の操作条件によって調節可能である. 第1反応槽は、通常攪拌翼によって重合液を攪拌しなが
ら重合を行なう.ゴム状重合体が粒子化する時は、一般
に攪拌強度によってその粒子径は変化するが、本発明に
おいては、ゴム粒子径は第1反応槽に続く粒子分wka
で最終的に決められるので、第1反応槽の撹拌は、第1
反応槽内でほぼ均一な混合状熊を維持しうるか、あるい
は滞留部分が生じない状態を雑持てきるものであればよ
い.本発明においては、原料溶液とラジカル重合開始剤
とを第1反応槽へ供給して、ゴム状重合体が分散粒子に
転換するのに必要な重合率以上に単量体の重合を行ない
、該第1反応槽より原料溶液およびラジカル重合開始剤
の供給量に相当する量の反応液を連続的に取り出し、該
反応液を内部に高速で回転する翼あるいはローターを少
なくとも3つ以上もつ粒子分散機に送って、第1反応槽
で生成したゴム粒子が所望の粒子径になるように剪断処
理される. 本発明でいう粒子分散機とは、流体の滞留時間が短く、
又反応液に高い剪断速度を与えることができる内部に高
速で回転する翼あるいはローターをもったコンパクトな
一種の攪拌混合機である.本発明においては粒子分散機
内の高速で回転する翼あるいはローターが少なくとも3
つ以上、より好ましくは4つ以上あることが必要である
.その際処理される反応液はこれらの翼あるいはロータ
ーの部分を順次通過する必要があり、ショートバスする
のは好ましくない.反応液のショートバスを防ぐ為にそ
れぞれの翼あるいはローターの間にバンフルあるいはス
テーターを設ける、あるいは、分散室を複数個直列に並
べて設けることが好ましい. 翼あるいはローターの数が3つ以下の場合は、第1反応
槽で生成したゴム粒子が剪断処理される回数が不充分で
、粒子分散機で所望の粒子径にするのがむつかしくなる
. 粒子分散機は、上記のような条件を満たしており、高い
剪断速度を与えるものであればどのようなものでもよい
が、例えば撹拌翼としてプロペラ舅、パドル翼、傾斜パ
ドル翼、タービン翼などを用い、それらの翼を同一軸上
に3つ以上とりつけ、各翼と翼との間にバンフルを設け
た撹拌混合機が使用される. 又、例えばくし歯状の歯切りされた同心リング状のロー
ター及びステーターの組みあわせで構成され、それらの
組みあわせが2組以上同心リング状に多層となっている
か、あるいは別室にて同一軸上に直列に2段以上の多段
に並んで設けられているか、さらに同心リング状での組
みあわせのちのが別室で直列に多段に並んで設けられて
いる撹拌混合機が使用される.その際多層あるいは多段
あるいは多層多段の組みあわせのなかでローターとステ
ーターの組みあわせの数が少なくとも3つ以上あること
が必要である.これらの例として!KA LILTRA
−TIII?RAX−INLIN[!、IKA [ll
SPAX−Rl!ACTOR(IKA社)、τKハイラ
インミル、Tκバイブラインホモ逅クサー(特殊機化工
業)、エバラマイルダー(荏原製作所)等を用いること
もできる.その際攪拌翼あるいはローターの外径d (
m)、攪拌翼あるいはローターの回転数をn (rps
)とするとV=π・d−n (s+ /秒)であらわさ
れる攪拌翼あるいはローターの外周の線速度Vが0.5
鋤/秒以上であることが好ましい. 線速度■が0.5m/秒未満の場合、粒子分散機内の剪
断速度が充分でなく、第1反応槽で生成したゴム粒子を
粒子分散機で所望の粒子径にするのがむづかしくなる.
本発明の方法において、ゴム状重合体の分散粒子は、粒
子分散機で所望の粒子径に調節することができる.例え
ば粒子分散機の撹拌翼あるいはローターの回転数nを適
当な条件に選ぶことによって、ゴム粒子径を調節するこ
とができる. 又、ローターとステーターの組みあわせより構戒されて
いる粒子分散機を用いる場合、それぞれのローターとス
テーターとのすき間をh(mとすると、ローターの外周
の線速度v(m/秒)との間の関係が、 v/h≧200  好ましくは v/h≧300を満足
することが好ましい. ローターとステーターの組みあわせより構成される粒子
分散機においては、該ローターとステーターとのすき間
において剪断力が生じるが、 ν/hが200未満の場
合、剪断力が充分でなく、第1反応槽で生威したゴム粒
子を粒子分散機で所望の粒子径にするのがむつかしくな
る. 本発明において、第l反応槽における反応液のしめる容
積をVい粒子分散機の容積をV,とした時Vz/Vt 
< 0.2  好ましくはv,/v,<0.15t’あ
る.!h/V+が0.2より小さくない場合は、反応液
流量に対して粒子分散機の容積が大きくなり、粒子分散
機内での平均滞留時間が増大して、その間に単量体の転
化率が高くなり、また反応液の粒度も上昇して、粒子分
散機の攪拌翼あるいはローターの高速回転の過大の動力
を要することになるので好ましくない. 本発明においては、第l反応槽から連続的に抜き出され
た反応液を粒子分散機で処理し、該処理された反応液を
つづいて第2反応槽に連続的に供給して重合を継続する
が、該第2反応槽は攬拌槽型反応槽であって、該第2反
応槽内での反応液の単量体転化率は25重量%以上に保
たれていることが必要である.この時、第2反応槽が攬
拌槽型反応槽以外の反応槽例えば反応槽入口と出口での
反応液の単量体転化率が異なる塔式反応槽である場合、
あるいは第2反応槽が攬拌槽型反応槽でも、該反応槽内
の反応液の単量体転化率が25重量%未溝の場合、得ら
れる樹脂中のゴム粒子径の分布が広いものとなり、好ま
しくない.Wi環ラインで生成されたゴム粒子は、重合
率の高い反応液中に供給してゴム粒子を安定化させるこ
とが必要である.第2反応槽として用いられる撹拌槽型
反応槽とは、反応槽内の反応液の組成及び温度がほぼ均
一になるように攪拌翼で混合されている反応槽であれば
よく、同業者では周知であり、例えばドラフト付スクリ
ュー型攪拌翼あるいはダブルヘリカル型攪拌翼を有する
反応槽等がある. 第2反応槽で重合を行なった反応液は、該反応槽より連
続的に抜き出し、必要に応じて1つ以上の撹拌槽型反応
槽又は塔型反応槽で重合を継続させた後、例えば 18
0〜260℃の温度範囲で真空下に未反応単量体及び溶
剤を蒸発させ、ゴム変性耐衝撃性樹脂を得る. 本発明において、生成ボリマーの分子量を調整するため
に通常メルカブタン類のような連鎖移動剤を使用しても
よい.連鎖移動剤を使用する際、全量第1反応槽に供給
する原料溶液に添加してもよく、また連鎖移動剤の一部
を第2反応槽に添加してもよい. さらに必要に応してアルヰル化フェノールのような酸化
防止剤、プチルステアレート、亜鉛ステアレート、ミネ
ラル油等の可塑剤または滑剤を原料溶液あるいは重合の
途中もしくは重合の終了した時点で添加してもよい. 〔実施例〕 次に本発明の実施例を示す. 実施例1 6.0重量部のポリブタジエン(旭化成製、商品名アサ
ブレン7000を55.5重量部のスチレン、18.5
重量部のアクリロニトリル(スチレン/アクリロニトリ
ル重量比75/25) 、20.0重量部のエチルベン
ゼンに溶解して原料溶液とした.アサプレン700Aの
5%スチレン溶液の25℃での溶液粘度は45センチポ
イズである.この原料溶液に分子量調整剤としてターシ
ャリドデシルメル力ブタンを0.2重量部、ラジカル重
合開始剤としてペンゾイルパーオキサイド( BPO 
: 10時間半減期温度74℃)を0.02重量部、抗
酸化剤として2.6−ジターシャリプチルフェノールを
0.2重量部添加後、満液型のドラフト付スクリュー型
攪拌翼を備えた容積(V+)18.Olの第1反応槽に
連続的に15.Of/時の速さで供給した.第1反応槽
では反応温度110℃、撹拌翼の回転数1.5rρSで
重合を行なって、ゴム状重合体を相転移させ、ゴム粒子
を生或させた.第1反応槽出口の反応液は、ゴム状重合
体L=6.omt%、単量体より生成した重量部κ.=
16.4重量%(単量体転化122.2重量%)であっ
た.第1反応槽よりの反応液を連続的に取り出し、粒子
分散機に送って該反応液を処理した.粒子分散機は内容
積(Vよ) 0.481, 13l拌翼として外径(d
 ) 0.05−の4枚パドル翼が6組1本のシャフト
に取りつけられており、又各パドル翼とパドル翼の間に
は、シャフトと同時に回転する円板がバンフルとして取
りつけられているものを用いた.粒子分散機内の攪拌翼
の回転数は(n)は16.7rps( 1000rpm
)で運転した.第1反応槽と粒子分散機の容積の比V 
Z / V lは0.027、該粒子分散機内のそれぞ
れの撹拌翼外周の腺速度は2.6m /秒となる. 該粒子分散機で処理された反応液は、つづいて満液型の
ドラフト付スクリュー型攪拌翼を備えた容積10.2f
fiの第2反応槽の連続的に供給して重合を継続した.
第2反応槽では反応温度110℃,撹拌翼の回転数はl
.Orpsで重合を行なった.単量体転化率は33.2
%であった. さらに第2反応槽で重合した反応液は連続的に取り出し
て、第1及び第2反応槽と同じドラフト付スクリュー型
撹拌翼を備えた第3、第4、第5の反応槽に供給して各
槽の出口温度がそれぞれllO℃S120℃、130℃
で重合を継続した.第5反応槽から連続的に取り出され
た反応液は、従来から知られている脱揮発分装置を用い
て、高温高真空下で未反応モノマー及び溶剤を除去した
後、押出機を用いてペレット化し、ABS樹脂の製品を
得た. 得られた製品中のゴム粒子の平均粒子径を電子顕@鏡写
真に基づき、その体積平均径を測定した.また製品を0
.1−一の厚さに押し出してQ,2ml+”以上の面積
を有するフィンシュアイの個数を測定した.さらに、4
ozの射出成形機を用いて試験片を戒形し、JIS Z
−8741により入射角60°で戒形物の表面光沢を測
定した.運転条件及び評価結果を表1に示した.以下の
実施例、比較例においても同様の評価を行ない、それぞ
れ表lおよび表2に示した. 実施例2、3 粒子分散機内攪拌翼の回転数を変更した他は、実施例l
と全く同じにして運転した. 実施例4 第l反応槽の反応温度を107℃に変更した他は実施例
lと全く同じにして運転した, 実施例5 実施例lにおいて原料溶液中のポリブタジエンの1を8
.帽1部とし、スチレン/アクリロニトリルの使用Wお
よび第1反応槽の温度を表1のように変えて運転した. 実施例6 原料溶液中のゴム状重合体として、スチレンブタジエン
共重合体(旭化成製、商品名;タフデン2000^ :
5%スチレン溶液の25℃での溶液粘度50センチボイ
ズ)を用いた以外は実施例1と同様に運転を行なった. 実施例7 ラジカル重合開始剤として10時間半減期分解温度62
℃のラウロイルバーオキサイド( LPO)を0.04
重量部を用い、第1反応槽の重合温度をl05℃にした
以外は実施例1と同様に運転を行なった.実施例8 実施例1において粒子分散機としてくし歯に歯′切りさ
れたローター及びステーターの組みあわせで横戒され、
それら2mが同心リング状に2層となっており、又それ
らの2層リング状のローターとステーターの組みあわせ
が別室にて同一軸上に直列に3段並んで設けられている
撹拌混合機を用いた.この装置においてローターとステ
ーターの組みあわせの数は6組となる.該粒子分散機の
内容積(v2)は0.24 ffi ,各段での2層の
ローターのうち外側のローターの外径(do)は0.0
55m 、内側のローターの外掻(di)は0.04m
であり、ローターとステーターのすき間(h)はそれぞ
れ0.001一である.粒子分散機内のローターの回転
数(n)は8.3rps (500prs)で運転した
.第1反応槽と粒子分散機の容積(cV1/V+は0.
013、該粒子分散機内のそれぞれのローター外周の線
速度は、外側のローターで(v.)1.44s/秒、内
側のローター(νi)で1.05m/秒、又ローターと
ステーターとのすき間とローター外周の線速度の関係v
 / hは、外側でV@ /h−1440、内側でvi
/h −1050となる. 実施例9、lO 粒子分散機内撹拌翼の回転数を変更した他は、実施例8
と全く同じにして運転した. 比較例1 第1反応槽と第2反応槽の間の粒子分散機がない他は、
実施例lと同じにして運転した.ゴム粒子の平均粒径は
大きく、巨大粒子もみられた.比較例2 比較例1において第1反応槽撹拌翼回転数を6,Orp
s (360rpm)にして運転した.巨大粒子はみら
れなかったが、実施例lに比べると平均粒子径は大きく
なった. 比較例3 実施例lにおいて、粒子分散機内の撹拌翼の回転数を2
.Orps (120rpm)にして運転した.比較例
4 実施例lにおいて、粒子分散機として、内容積(V.)
0.961 fi拌翼として外径(d)0.08m(7
) 4枚傾斜パトル翼を1つたけもつものを用い、撹拌
の回転数を16,7rps(1000rpm)で運転し
た.比較例5 実施g#lにおいて、粒子分散機として内容積7.62
、攪拌翼として外径(d)0.14mの4枚バトル翼が
6組取りつけられているものを用い、攪拌の回転数を3
.33rps (20Orpm)で運転した.比較例6 実施例1において第1反応槽および第2反応槽の温度を
第2反応槽の単量体転化率が25重量%以下になるよう
な条件(表2)変えて運転した.比較例7 比較例6において第1反応槽を95℃で運転したところ
、第1反応槽ではゴム状重合体は相転移をおこさず、連
続相のままであった.粒子分散機で処理してもゴム粒子
は生成せず、第2反応槽で温度を120℃に上げてはじ
めてゴム粒子が生成した比較例8 実施例1において第1反応槽の温度を123℃で運転し
たところ、第1反応槽で生威したゴム粒子は大きく、一
部に巨大粒子がみられた.この反応液を循環ライン及び
その途中のラインミキサーで処理したが、実施例lに比
較し平均粒子径も大きく、巨大粒子もわずかにみられた
. 比較例9 原料溶液中単量体のスチレン/アクリロニトリルの重量
比を40/60 (スチレン29.6重量部、アクリロ
ニトリル44.4重量部)に、またターシャリドデシル
メルカブタンの量を0.3重量部にした以外は実施例1
と同様に行なった,ABS樹脂として光沢も若干低下し
、流動性が悪くなった.比較例10 原料溶液中のゴム状重合体として高粘度のポリブタジエ
ン(旭化戒製ジエン55^、5%スチレン熔液25℃に
おける溶液粘度160センチボイズ)を用いた以外は実
施例1と同様にして行なった.I!!品中のゴム粒子径
が大きく、光沢が不艮になった比較例l1 実施例lにおいてラジカル重合開始剤としてジターシャ
リプチルバーオキサイド(10時間半減期分解温度12
4℃)を、0.04重量部用い、第1反応槽の温度を1
26℃にして運転を行なった.得られた製品は、ゴム粒
子径が大きく、光沢の低いものであった. 比較例l2 実施例1においてラジカル重合開始剤を用いずに第1反
応槽の温度を130℃にして、熱的重合を開始して運転
した.得られた製品はゴム粒子径が大きく、光沢の低い
ものであった. 比較例13 実施例lにおいて、原料溶液のゴム状重合体を16.0
重量部、スチレン48.0重量部、アクリロニトリル1
6.0重量部、エチルベンゼン20.0重量部にして運
転した.第1反応槽でゴム濃度が高すぎ、反応液の粘度
が上昇ゲル状となり、正常な製品は得られなかった. 比較例14 実施例1において原料溶液中のゴム状重合体を1.0重
量部、スチレン59.3ffi量部、アクリロニトリル
19.7重量部、エチルベンゼン20.0重量部にして
運転した.巨大粒子もみられず、平均粒子も小さいゴム
粒子が生威したが、製品中のゴム含有量が低く、ABS
樹脂としては衝撃強度等が低すぎた. 比較例15 実施例8において、粒子分散機内の口.一ターの回転数
を1.67rpi(100rpm)にして運転した.比
較例16 実施例8において、2層の同心リング状のローターとス
テーターの組みあわせが1段のみの粒子分散機を用い8
.3rps(500prs+)で運転した.比較桝l7 実施例日において、ローターとステーターとのすき間(
h)が0.01mの粒子分散機を用い、8.3r9s 
(50Orpm)で運転した.〔発明の効果〕 本発明によれば、特定の条件下で、第1反応槽で粒子化
したゴム成分を含む反応液を、内部に高速で回転する翼
あるいはローターを少なくとも3つ以上もつ粒子分散機
で処理して所望の粒子径のゴム粒子を得、さらに第2反
応槽で重合を行なってゴム粒子を安定化させるという方
法で、巨大粒子がほとんどなく所望の平均粒子径のゴム
粒子をもつ耐薬品性、耐熱性、剛性に優れ。外li5!
良好ないわゆるABS樹脂を極めて効率的に製造するこ
とができる. 本発明は、このようにゴム変性耐衝撃性樹脂の用途の拡
大に伴う高品質製品の製造の要求と、より効率的製法に
よる低コスト生産の要求に答える方法を提供し、その工
業的利用価値は極めて大きいものである.
In the present invention, when the proportion of the rubbery polymer at the outlet of the first reaction tank is X, weight %, and the proportion of the polymerized monomer is x2 weight %, the values of X1 and x2 are 1 <X, ≦15
And 2. OXI-0.05X+"<X1< 4.0Xl-
It is preferable to satisfy 0.05X12.
When Xl≦1, the rubber content in the product becomes low under normal operating conditions, and the resulting rubber-modified resin cannot be put to practical use. On the other hand, when XI>15, the viscosity of the polymerization solution becomes very high, the required stirring power of the reaction tank becomes large, and the rubber-like polymer does not convert into dispersed particles in the first reaction tank, or becomes particulate. In some cases, giant particles are also generated. Usually, X1 is preferably selected in the range of 2<X, <12. Regarding the value of X2, x≦2.0X+-0.05X+
”, the monomer conversion rate is low and the rubber-like polymer cannot be made into particles in the first reaction tank, or even if it is made into particles, the particles are unstable and large.Polymerization at the outlet of the first reaction tank If the monomer conversion rate of the liquid is low and the rubber-like polymer has not turned into particles, or if the particles are unstable and large, the rubber particles cannot be controlled to the desired value even if treated with a particle disperser. X.≧4.OXI−0.05X,” the first
The viscosity of the polymerization liquid at the outlet of the reaction tank becomes extremely high, making it difficult to process it in the particle disperser that follows the first reaction tank, and the effect of processing the rubber particles in the particle disperser becomes noticeable. do not have. In the first reaction tank, a rubbery polymer is dissolved in an aromatic vinyl monomer and a vinyl cyanide monomer, and a raw material solution with a solvent added as needed and a radical polymerization initiator are continuously supplied. Polymerization is carried out at a polymerization rate higher than that required for converting the rubbery polymer into dispersed particles, and is usually carried out at a temperature of 50 to 150°C, preferably 60 to 130°C. Here, the conversion rate of monomer to polymer, and therefore the polymer concentration xi (ffil%), is determined by operating conditions such as polymerization temperature, composition of feedstock to the first reaction tank, feedrate of feedstock, and feed rate of polymerization initiator. It can be adjusted by In the first reaction tank, polymerization is carried out while stirring the polymerization liquid using a stirring blade. When a rubbery polymer is turned into particles, the particle size generally changes depending on the stirring intensity, but in the present invention, the rubber particle size is determined by the particle size wka following the first reaction tank.
The agitation in the first reaction tank is determined by the
Any material that can maintain a nearly uniform mixture in the reaction tank or maintain a state in which no stagnation occurs will suffice. In the present invention, a raw material solution and a radical polymerization initiator are supplied to a first reaction tank, and the monomers are polymerized to a polymerization rate higher than that required for converting the rubbery polymer into dispersed particles. A particle dispersion machine that continuously takes out a reaction liquid in an amount corresponding to the supply amount of the raw material solution and radical polymerization initiator from the first reaction tank, and that has at least three internal blades or rotors that rotate at high speed. The rubber particles produced in the first reaction tank are sheared so that they have a desired particle size. The particle dispersion machine referred to in the present invention has a short fluid residence time,
It is also a type of compact stirring mixer with internal blades or rotors that rotate at high speed and can apply a high shear rate to the reaction solution. In the present invention, at least three blades or rotors rotating at high speed in the particle dispersion machine are used.
It is necessary that there be at least three, more preferably four or more. At this time, the reaction liquid to be treated must pass through these blades or rotors in sequence, and it is not preferable to use a short bath. In order to prevent a short bath of the reaction liquid, it is preferable to provide a banflue or stator between each blade or rotor, or to provide multiple dispersion chambers in series. When the number of blades or rotors is three or less, the number of times the rubber particles produced in the first reaction tank are sheared is insufficient, making it difficult to obtain the desired particle size using a particle disperser. The particle disperser may be of any type as long as it satisfies the above conditions and provides a high shear rate, but for example, propeller blades, paddle blades, inclined paddle blades, turbine blades, etc. may be used as stirring blades. A stirring mixer is used in which three or more of these blades are mounted on the same axis and a baffle is provided between each blade. Also, for example, it is composed of a combination of a concentric ring-shaped rotor and a stator with comb-like gears, and two or more of these combinations are arranged in a multilayer concentric ring shape, or they are arranged on the same axis in separate rooms. Stirring mixers are used that are installed in multiple stages of two or more in series, or are combined in a concentric ring shape and then installed in multiple stages in series in a separate room. In this case, it is necessary that there be at least three combinations of rotors and stators in a multi-layer, multi-stage, or multi-layer/multi-stage combination. As examples of these! KA LILTRA
-TIII? RAX-INLIN[! , IKA [ll
SPAX-Rl! ACTOR (IKA Corporation), τK Highline Mill, Tκ Vibrine Homogenizer (Tokushu Kika Kogyo), Ebara Milder (Ebara Corporation), etc. can also be used. At this time, the outer diameter d of the stirring blade or rotor (
m), the rotation speed of the stirring blade or rotor is n (rps
), then the linear velocity V of the outer periphery of the stirring blade or rotor, expressed as V=π・d−n (s+/sec), is 0.5.
It is preferable that it is more than plow/second. If the linear velocity (■) is less than 0.5 m/sec, the shearing speed within the particle dispersion machine is insufficient, and it becomes difficult to make the rubber particles produced in the first reaction tank into the desired particle size using the particle dispersion machine. ..
In the method of the present invention, the dispersed particles of the rubbery polymer can be adjusted to a desired particle size using a particle disperser. For example, the rubber particle diameter can be adjusted by appropriately selecting the rotation speed n of the stirring blade or rotor of the particle disperser. In addition, when using a particle dispersion machine that has a combination of a rotor and a stator, the gap between each rotor and stator is h (m), and the linear velocity v (m/sec) of the outer circumference of the rotor is It is preferable that the relationship between v/h≧200 and preferably v/h≧300 be satisfied. However, if ν/h is less than 200, the shearing force is insufficient and it becomes difficult to make the rubber particles grown in the first reaction tank a desired particle size using a particle disperser.In the present invention, When the volume of the reaction liquid in the first reaction tank is V and the volume of the particle disperser is V, Vz/Vt
<0.2 Preferably v, /v, <0.15t'. ! If h/V+ is not smaller than 0.2, the volume of the particle disperser becomes large relative to the flow rate of the reaction liquid, and the average residence time in the particle disperser increases, during which time the monomer conversion rate decreases. This is undesirable because the particle size of the reaction solution also increases, requiring excessive power from the high-speed rotation of the stirring blade or rotor of the particle disperser. In the present invention, the reaction liquid continuously extracted from the first reaction tank is treated with a particle disperser, and the treated reaction liquid is then continuously supplied to the second reaction tank to continue polymerization. However, it is necessary that the second reaction tank is a stirred tank type reaction tank, and that the monomer conversion rate of the reaction liquid in the second reaction tank is maintained at 25% by weight or more. .. At this time, when the second reaction tank is a reaction tank other than a stirred tank type reaction tank, for example, a column type reaction tank in which the monomer conversion rate of the reaction liquid at the inlet and outlet of the reaction tank is different,
Alternatively, even if the second reaction tank is a stirred tank type reaction tank, if the monomer conversion rate of the reaction liquid in the reaction tank is 25% by weight, the rubber particle size distribution in the resulting resin will be wide. , undesirable. It is necessary to stabilize the rubber particles produced in the Wi ring line by feeding them into a reaction solution with a high polymerization rate. The stirred tank type reaction tank used as the second reaction tank may be any reaction tank in which the reaction liquid in the reaction tank is mixed with a stirring blade so that the composition and temperature are almost uniform, and is well known in the art. For example, there are reaction vessels equipped with a screw type stirring blade with a draft or a double helical type stirring blade. The reaction liquid subjected to polymerization in the second reaction tank is continuously extracted from the reaction tank, and if necessary, the polymerization is continued in one or more stirred tank type reaction tanks or tower type reaction tanks, and then, for example, 18
Unreacted monomers and solvent are evaporated under vacuum at a temperature range of 0 to 260°C to obtain a rubber-modified impact-resistant resin. In the present invention, chain transfer agents such as mercabutanes may be used to adjust the molecular weight of the produced polymer. When using a chain transfer agent, the entire amount may be added to the raw material solution supplied to the first reaction tank, or a portion of the chain transfer agent may be added to the second reaction tank. Furthermore, if necessary, antioxidants such as alwylated phenol, plasticizers or lubricants such as butyl stearate, zinc stearate, and mineral oil may be added to the raw material solution, during polymerization, or at the end of polymerization. good. [Example] Next, an example of the present invention will be shown. Example 1 6.0 parts by weight of polybutadiene (manufactured by Asahi Kasei, trade name Asabrene 7000) and 55.5 parts by weight of styrene, 18.5 parts by weight
A raw material solution was prepared by dissolving 20.0 parts by weight of acrylonitrile (styrene/acrylonitrile weight ratio 75/25) in 20.0 parts by weight of ethylbenzene. The solution viscosity of a 5% styrene solution of Asaprene 700A at 25°C is 45 centipoise. To this raw material solution, 0.2 parts by weight of tertiary dodecyl butane was added as a molecular weight regulator, and penzoyl peroxide (BPO) was added as a radical polymerization initiator.
: After adding 0.02 parts by weight of 10-hour half-life temperature 74°C) and 0.2 parts by weight of 2,6-ditertiarybutylphenol as an antioxidant, the mixture was prepared using a liquid-filled, draft-equipped screw type stirring blade. Volume (V+)18. Continuously 15. It was supplied at a speed of /hour. In the first reaction tank, polymerization was carried out at a reaction temperature of 110° C. and a stirring blade rotation speed of 1.5 rρS to cause phase transition of the rubbery polymer and produce rubber particles. The reaction liquid at the outlet of the first reaction tank contains a rubbery polymer L=6. omt%, weight part produced from monomer κ. =
It was 16.4% by weight (monomer conversion 122.2% by weight). The reaction solution from the first reaction tank was continuously taken out and sent to a particle disperser for treatment. The particle disperser has an inner volume (V) of 0.481, and an outer diameter (d) as a 13l stirring blade.
) 6 sets of 0.05-4 paddle blades are attached to one shaft, and a disc that rotates at the same time as the shaft is installed between each paddle blade as a baffle. was used. The rotation speed (n) of the stirring blade in the particle disperser is 16.7 rps (1000 rpm
). Volume ratio V of the first reaction tank and particle disperser
Z/Vl is 0.027, and the velocity of the outer periphery of each stirring blade in the particle disperser is 2.6 m/sec. The reaction liquid treated with the particle disperser was then transferred to a 10.2f volume tank equipped with a liquid-filled screw-type stirring blade with a draft.
Polymerization was continued by continuously feeding fi to the second reactor.
In the second reaction tank, the reaction temperature was 110℃, and the rotation speed of the stirring blade was l.
.. Polymerization was carried out using Orps. Monomer conversion rate is 33.2
%Met. Furthermore, the reaction liquid polymerized in the second reaction tank is continuously taken out and supplied to third, fourth, and fifth reaction tanks equipped with the same draft screw type stirring blades as the first and second reaction tanks. The outlet temperature of each tank is 120℃ and 130℃, respectively.
Polymerization was continued at The reaction liquid continuously taken out from the fifth reaction tank is used to remove unreacted monomers and solvent under high temperature and high vacuum using a conventionally known devolatilization device, and then pelletized using an extruder. and obtained an ABS resin product. The volume average diameter of the rubber particles in the obtained product was measured based on electron micrographs. Also, the product is 0
.. The number of finshuai having an area of 2 ml+" or more after extruding to a thickness of 1-1 was measured.Furthermore, 4
The test piece was molded using a JIS Z
-8741 was used to measure the surface gloss of the precept at an incident angle of 60°. The operating conditions and evaluation results are shown in Table 1. Similar evaluations were conducted for the following Examples and Comparative Examples, and are shown in Tables 1 and 2, respectively. Examples 2 and 3 Same as Example 1 except that the rotation speed of the stirring blade in the particle dispersion machine was changed.
I drove it exactly the same way. Example 4 The operation was carried out in the same manner as in Example 1 except that the reaction temperature of the first reaction tank was changed to 107°C. Example 5 In Example 1, 1 of the polybutadiene in the raw material solution was changed to 8
.. The operation was carried out by changing the amount of styrene/acrylonitrile used and the temperature of the first reaction tank as shown in Table 1. Example 6 Styrene-butadiene copolymer (manufactured by Asahi Kasei, trade name: Tuffden 2000^) was used as the rubbery polymer in the raw material solution.
The operation was carried out in the same manner as in Example 1, except that a 5% styrene solution (solution viscosity at 25°C: 50 centivoise) was used. Example 7 10 hour half-life decomposition temperature 62 as a radical polymerization initiator
℃ lauroyl peroxide (LPO) 0.04
The operation was carried out in the same manner as in Example 1, except that parts by weight were used and the polymerization temperature in the first reaction tank was 105°C. Example 8 In Example 1, a combination of a rotor and a stator with comb teeth was used as a particle dispersion machine,
These 2 meters are arranged in two layers in a concentric ring shape, and the combination of the rotor and stator in the two-layer ring shape is arranged in three stages in series on the same axis in a separate room. Using. In this device, there are six combinations of rotor and stator. The internal volume (v2) of the particle disperser is 0.24 ffi, and the outer diameter (do) of the outer rotor of the two layers of rotors at each stage is 0.0.
55m, inner rotor outer displacement (di) is 0.04m
, and the clearance (h) between the rotor and stator is 0.001. The rotation speed (n) of the rotor in the particle disperser was 8.3 rps (500 prs). Volume of the first reaction tank and particle disperser (cV1/V+ is 0.
013, the linear velocity of the outer circumference of each rotor in the particle disperser is 1.44 s/sec for the outer rotor (v.), 1.05 m/sec for the inner rotor (νi), and the gap between the rotor and stator and the linear velocity of the rotor periphery v
/h is V@ /h-1440 on the outside, vi on the inside
/h -1050. Example 9, lO Example 8 except that the rotation speed of the stirring blade in the particle dispersion machine was changed.
I drove it exactly the same way. Comparative Example 1 Except that there is no particle disperser between the first reaction tank and the second reaction tank,
It was operated in the same manner as in Example 1. The average particle size of the rubber particles was large, and some giant particles were observed. Comparative Example 2 In Comparative Example 1, the rotation speed of the first reaction tank stirring blade was set to 6, Orp.
s (360 rpm). Although no giant particles were observed, the average particle size was larger than in Example 1. Comparative Example 3 In Example 1, the rotation speed of the stirring blade in the particle disperser was set to 2.
.. Orps (120 rpm). Comparative Example 4 In Example 1, as a particle disperser, the internal volume (V.)
0.961 fi Outer diameter (d) as stirring blade 0.08 m (7
) A stirrer with one 4-piece inclined pattle blade was used, and the stirring rotation speed was 16.7 rps (1000 rpm). Comparative Example 5 In implementation g#l, the internal volume was 7.62 as a particle disperser.
As stirring blades, six sets of four battle blades with an outer diameter (d) of 0.14 m were used, and the stirring rotation speed was set to 3.
.. It was operated at 33 rps (20 rpm). Comparative Example 6 In Example 1, the temperature of the first reaction tank and the second reaction tank were changed to such conditions (Table 2) that the monomer conversion rate of the second reaction tank was 25% by weight or less. Comparative Example 7 In Comparative Example 6, when the first reaction tank was operated at 95°C, the rubbery polymer did not undergo phase transition and remained in a continuous phase in the first reaction tank. Comparative Example 8 In which rubber particles were not generated even when treated with a particle disperser, and rubber particles were generated only after the temperature was raised to 120°C in the second reaction tank.In Example 1, the temperature of the first reaction tank was raised to 123°C. During operation, the rubber particles that had grown in the first reaction tank were large, and giant particles were observed in some parts. This reaction solution was treated in a circulation line and a line mixer in the middle of the circulation line, but the average particle size was larger than in Example 1, and a few large particles were observed. Comparative Example 9 The weight ratio of the monomers styrene/acrylonitrile in the raw material solution was set to 40/60 (29.6 parts by weight of styrene, 44.4 parts by weight of acrylonitrile), and the amount of tert-dodecyl mercabutane was set to 0.3 parts by weight. Example 1 except that
When tested in the same way as ABS resin, the gloss was slightly reduced and the fluidity deteriorated. Comparative Example 10 Same as Example 1 except that high viscosity polybutadiene (Diene 55^ manufactured by Asahi Kakai Co., Ltd., solution viscosity of 5% styrene melt at 25°C: 160 centiboise) was used as the rubbery polymer in the raw material solution. I did it. I! ! Comparative Example 11 in which the rubber particle size in the product was large and the gloss was poor In Example 1, ditertiarybutyl peroxide (10 hour half-life decomposition temperature 12
4°C) was used, and the temperature of the first reaction tank was set to 1.
The operation was carried out at 26°C. The obtained product had a large rubber particle size and low gloss. Comparative Example 12 In Example 1, the temperature of the first reaction tank was set to 130° C. without using a radical polymerization initiator, and thermal polymerization was started and operated. The resulting product had a large rubber particle size and low gloss. Comparative Example 13 In Example 1, the rubbery polymer in the raw material solution was
Parts by weight, 48.0 parts by weight of styrene, 1 part by weight of acrylonitrile
6.0 parts by weight and 20.0 parts by weight of ethylbenzene. The rubber concentration in the first reaction tank was too high, and the viscosity of the reaction solution increased and became gel-like, making it impossible to obtain a normal product. Comparative Example 14 The same operation as in Example 1 was carried out using 1.0 parts by weight of the rubbery polymer in the raw material solution, 59.3 parts by weight of styrene, 19.7 parts by weight of acrylonitrile, and 20.0 parts by weight of ethylbenzene. Rubber particles with a small average particle size and no giant particles were observed, but the rubber content in the product was low and ABS
Impact strength etc. were too low for a resin. Comparative Example 15 In Example 8, the opening in the particle disperser. The motor was operated at a rotation speed of 1.67 rpi (100 rpm). Comparative Example 16 In Example 8, a particle dispersion machine having only one stage of a two-layer concentric ring-shaped rotor and stator combination was used.
.. It was operated at 3rps (500prs+). Comparison box 17 On the day of the example, the gap between the rotor and stator (
h) using a particle disperser with a diameter of 0.01 m, 8.3r9s
(50 rpm). [Effects of the Invention] According to the present invention, under specific conditions, a reaction liquid containing a rubber component that has been granulated in a first reaction tank is dispersed into a particle dispersion having at least three or more blades or rotors that rotate at high speed inside. Rubber particles are processed in a machine to obtain rubber particles with a desired particle size, and then polymerized in a second reaction tank to stabilize the rubber particles. Excellent chemical resistance, heat resistance, and rigidity. Outside li5!
Good so-called ABS resin can be produced extremely efficiently. The present invention thus provides a method that meets the demands for manufacturing high-quality products accompanying the expansion of uses for rubber-modified impact-resistant resins, as well as the demand for low-cost production through more efficient manufacturing methods. is extremely large.

Claims (1)

【特許請求の範囲】 (1)芳香族ビニル単量体とシアン化ビニル単量体との
混合物にゴム状重合体を溶解した原料溶液とラジカル重
合開始剤とを第1反応槽へ連続的に供給して、ゴム状重
合体が分散粒子に転換するのに必要な単量体転化率以上
の該単量体の重合を行なわせながら該第1反応槽より原
料溶液とラジカル重合開始剤の供給量に相当する量の反
応液を連続的に取り出し、該反応液を内部に高速で回転
する翼あるいはローターを少なくとも3つ以上もつ粒子
分散機に送って、ゴム状重合体の分散粒子を剪断処理し
、ついで該粒子分散機で処理された反応液を第2反応槽
に連続的に供給し、重合を継続するか、あるいはさらに
必要に応じて第3反応槽以降の反応槽に供給して重合を
継続させることによりなるゴム変性耐衝撃性樹脂の連続
製造方法において、 (A)原料溶液中の芳香族ビニル単量体/シアン化ビニ
ル単量体の重量混合比が99/1ないし50/50であ
り、 (B)第1反応槽中で反応液の占める容積をV_1、粒
子分散機の容積をV_2とした時V_2/V_1<0.
2 をみたしており、 (C)該粒子分散機内のそれぞれの翼あるいはローター
の外周の線速度v(m/秒)が0.5m/秒以上であり (D)第2反応槽が撹拌槽型反応槽で該反応槽における
単量体転化率が25重量%以上に保たれている、 ことを特徴とする外観良好なゴム変性耐衝撃性樹脂の連
続的製造方法。 (2)前記原料溶液中のゴム状重合体が、その5%スチ
レン溶液の粘度が25℃において100センチポイズ以
下であり、第1反応槽に供給するラジカル重合開始剤が
、その10時間半減期分解温度が100℃以下のもので
あり、かつ該ラジカル重合開始剤の供給量が原料溶液に
対し30ppm以上である請求項1記載のゴム変性耐衝
撃性樹脂の連続的製造方法。 (3)第1反応槽出口の反応液中のゴム状重合体の割合
をX_1重量%、単量体が重合して生成した重合体の割
合をX_2重量%とした時、X_1及びX_2の値を1
<X_1≦15かつ 2.0X_1−0.05X_1^2<X_2<4.0X
_1−0.05X_1^2を満足するように維持する請
求項1、または2に記載のゴム変性耐衝撃性樹脂の連続
的製造方法。 (4)前記粒子分散機が同心リング状のローター及びス
テーターで構成され、該ローターとステーターの組みあ
わせの数が少なくとも3つ以上あり、しかもそれぞれの
該ローターとステーターとのすき間をh(m)とすると
ローターの外周の線速度v(m/秒)との間で v/h≧200 の関係を満足する請求項1、2または3に記載のゴム変
性耐衝撃性樹脂の連続的製造方法。
[Claims] (1) A raw material solution in which a rubbery polymer is dissolved in a mixture of an aromatic vinyl monomer and a vinyl cyanide monomer and a radical polymerization initiator are continuously fed into a first reaction tank. Supplying a raw material solution and a radical polymerization initiator from the first reaction tank while polymerizing the monomer at a monomer conversion rate higher than that required for converting the rubbery polymer into dispersed particles. A corresponding amount of the reaction liquid is continuously taken out, and the reaction liquid is sent to a particle dispersion machine that has at least three or more blades or rotors that rotate at high speed to shear the dispersed particles of the rubbery polymer. Then, the reaction liquid treated with the particle disperser is continuously supplied to the second reaction tank to continue polymerization, or if necessary, it is further supplied to the third reaction tank and subsequent reaction tanks for polymerization. (A) The weight mixing ratio of aromatic vinyl monomer/vinyl cyanide monomer in the raw material solution is from 99/1 to 50/50. (B) When the volume occupied by the reaction liquid in the first reaction tank is V_1 and the volume of the particle disperser is V_2, V_2/V_1<0.
(C) The linear velocity v (m/sec) of the outer periphery of each blade or rotor in the particle disperser is 0.5 m/sec or more, and (D) The second reaction tank is a stirring tank. 1. A method for continuously producing a rubber-modified impact-resistant resin with a good appearance, characterized in that a monomer conversion rate in a molded reaction tank is maintained at 25% by weight or more. (2) The viscosity of the 5% styrene solution of the rubbery polymer in the raw material solution is 100 centipoise or less at 25°C, and the radical polymerization initiator supplied to the first reaction tank decomposes within its 10-hour half-life. 2. The method for continuously producing a rubber-modified impact-resistant resin according to claim 1, wherein the temperature is 100° C. or lower, and the amount of the radical polymerization initiator supplied is 30 ppm or more based on the raw material solution. (3) When the proportion of the rubbery polymer in the reaction liquid at the outlet of the first reaction tank is X_1% by weight, and the proportion of the polymer produced by polymerization of monomers is X_2% by weight, the values of X_1 and X_2 1
<X_1≦15 and 2.0X_1-0.05X_1^2<X_2<4.0X
3. The method for continuously producing a rubber-modified impact-resistant resin according to claim 1 or 2, wherein the rubber-modified impact-resistant resin is maintained to satisfy _1-0.05X_1^2. (4) The particle disperser is composed of a concentric ring-shaped rotor and a stator, and the number of combinations of the rotor and stator is at least three, and the gap between each rotor and stator is h (m). The method for continuously producing a rubber-modified impact-resistant resin according to claim 1, 2 or 3, which satisfies the relationship v/h≧200 with the linear velocity v (m/sec) of the outer periphery of the rotor.
JP16269289A 1988-12-28 1989-06-27 Continuous production method of rubber-modified impact-resistant resin Expired - Fee Related JP2764056B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP16269289A JP2764056B2 (en) 1989-06-27 1989-06-27 Continuous production method of rubber-modified impact-resistant resin
DE68917447T DE68917447T2 (en) 1988-12-28 1989-12-25 Continuous process for the production of rubber modified impact resistant resins.
EP89123912A EP0376232B1 (en) 1988-12-28 1989-12-25 Continuous process for preparing rubber modified high impact resins
CA002006738A CA2006738C (en) 1988-12-28 1989-12-27 Continuous process for preparing rubber modified high impact resins
CN 89109826 CN1027542C (en) 1988-12-28 1989-12-28 Continuous process for preparing rubber modified high impact resins
KR1019890019938A KR900009721A (en) 1988-12-28 1989-12-28 Continuous production method of rubber modified impact resistant resin
KR1019890009940A KR930001698B1 (en) 1988-12-28 1989-12-28 Continuous process for preparing rubber modified high impact resins
US07/961,026 US5210132A (en) 1988-12-28 1992-10-14 Continuous process for preparing rubber modified high impact resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16269289A JP2764056B2 (en) 1989-06-27 1989-06-27 Continuous production method of rubber-modified impact-resistant resin

Publications (2)

Publication Number Publication Date
JPH0328211A true JPH0328211A (en) 1991-02-06
JP2764056B2 JP2764056B2 (en) 1998-06-11

Family

ID=15759486

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16269289A Expired - Fee Related JP2764056B2 (en) 1988-12-28 1989-06-27 Continuous production method of rubber-modified impact-resistant resin

Country Status (1)

Country Link
JP (1) JP2764056B2 (en)

Also Published As

Publication number Publication date
JP2764056B2 (en) 1998-06-11

Similar Documents

Publication Publication Date Title
US4952627A (en) Process for producing high impact styrene resin by continuous bulk polymerization
US3903202A (en) Continuous mass polymerization process for polyblends
US5210132A (en) Continuous process for preparing rubber modified high impact resin
CA1053837A (en) Continuous mass polymerization process for abs polymeric polyblends
EP0015752B1 (en) A continuous mass polymerization process for the production of polyblends having a dispersed rubber phase with bimodal rubber particle size
US3931356A (en) Continuous process for the preparation of ABS type polyblends
US4587294A (en) Continuous process for producing rubber modified high-impact resins
KR890000235B1 (en) Preparation of rubber modified styrene resin
JPH03162407A (en) Production of styrenic resin composition
KR930001698B1 (en) Continuous process for preparing rubber modified high impact resins
JPS635413B2 (en)
JPH0328211A (en) Continuous production of rubber-modified high impact resin
US5194491A (en) Process for producing rubber-modified styrene resin, and resin composition
JPH03199212A (en) Continuous production of impact-resistant styrene-based resin
JP2594344B2 (en) Continuous production method of rubber-modified impact-resistant resin
JP2938159B2 (en) Continuous production method of high gloss impact resistant rubber modified resin
JP2594343B2 (en) Continuous production method of rubber-modified styrenic resin
JP2764077B2 (en) Continuous production method of rubber-modified styrenic resin
JPH07173231A (en) Method and apparatus for producing high-impact styrenic resin
US5973079A (en) Large particle generation
EP0015751A2 (en) Process for the continuous production of polyblends derived from an alkenyl aromatic monomer and a diene rubber
WO1999062976A1 (en) Process for the preparation of rubber-reinforced styrene resin
EP0818481B1 (en) Large particle generation
JP3365854B2 (en) Impact resistant styrenic resin composition and continuous production method thereof
JP3087361B2 (en) Continuous bulk polymerization of impact-resistant styrenic resins

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees