JPS635413B2 - - Google Patents

Info

Publication number
JPS635413B2
JPS635413B2 JP20098383A JP20098383A JPS635413B2 JP S635413 B2 JPS635413 B2 JP S635413B2 JP 20098383 A JP20098383 A JP 20098383A JP 20098383 A JP20098383 A JP 20098383A JP S635413 B2 JPS635413 B2 JP S635413B2
Authority
JP
Japan
Prior art keywords
reaction tank
polymerization
reaction
rubber
monomer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP20098383A
Other languages
Japanese (ja)
Other versions
JPS6094414A (en
Inventor
Tetsuyuki Matsubara
Noribumi Ito
So Iwamoto
Toshihiko Ando
Susumu Fukawa
Tetsuo Maeda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP20098383A priority Critical patent/JPS6094414A/en
Publication of JPS6094414A publication Critical patent/JPS6094414A/en
Publication of JPS635413B2 publication Critical patent/JPS635413B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、得られる成形物の表面が艶消しされ
た状態となるゴム変性耐衝撃性樹脂の連続的製造
方法に関する。 さらに詳しくは、芳香族ビニル単量体と、シア
ン化ビニル単量体と、場合によつてはさらにこれ
らの単量体と共重合可能な単量体との単量体混合
物にゴム成分を溶解した原料溶液を、特定の条件
下で連続的に塊状または溶液重合させることによ
つて、耐薬品性、耐熱性、耐衝撃性、剛性に優
れ、しかも得られる成形物の表面が艶消しされた
状態となるゴム変性耐衝撃性樹脂を製造する方法
に関する。 ハイインパクトポリスチレン樹脂(以下、HI
―PS樹脂と略称する)は、ゴム成分の存在下に
スチレンを重合させて得られるポリスチレン樹脂
の耐衝撃性を改良した樹脂で、幅広い用途に使用
されている。このHI―PS樹脂は、塊状―懸濁法
等のバツチ重合でも製造されているが、最近の傾
向として連続塊状重合で多く製造されている。 一方、ゴム成分の存在下にスチレンおよびアク
リロニトリルを重合させて得られるABS樹脂は、
優れた耐衝撃性、耐薬品性、耐熱性、剛性、表面
光沢の良さ等の理由で多くの用途を得ている。こ
のABS樹脂は、一般にゴム成分を含むラテツク
スにスチレンおよびアクリロニトリルモノマーを
添加して重合する、いわゆる乳化重合法で製造さ
れている。乳化重合法においては、重合体の数倍
の量のラテツクスを使用するため、重合設備が大
型になること、乳化工程、凝固工程、乾燥工程な
どの諸工程を必要とし工程管理が複雑になるこ
と、乳化剤、凝固剤などの添加剤を使用するた
め、重合体へ不純物が混入すること等の問題があ
る。乳化重合方法の改良方法として、特公昭49―
35354号、同35355号のように、ゴムラテツクス中
のゴム成分をそのままスチレン及びアクリロニト
リルモノマーで抽出した後、連続塊状重合に移行
させてABS樹脂を製造する方法が提案されてい
る。しかし、この方法においても通常の乳化重合
法に比べ工程が簡単になつているものの、繁雑な
抽出工程が残されている。 このような乳化重合法で得られるABS樹脂は、
一般に得られる成形物の表面の艶がよく、通常の
用途には適しているが、車の内装品、コンピユー
ターのハウジング、OA機器等、艶のないものが
望まれる用途には適さず、種々の加工等を施すこ
とによつて用いられている。従来知られている艶
消し法には、例えば金型表面又はロール表面にシ
ボ加工を施す方法があるが、これでは艶消しの効
果は不充分である。また、チタン、マグネシウ
ム、カルシウムの酸化物を添加したり、成形物表
面に艶消し塗料を塗つたりする方法等もあるが、
これらの方法は、成形物の機械的強度、特に耐衝
撃強度を低下させたり、あるいは加工に手間がか
かつたりするので好ましい方法とはいえない。 ABSの乳化重合法以外の製造方法として、連
続塊状または溶液重合法が一部提案されている。
これには、例えば特公昭45―20303号、特開昭47
―9144号、特開昭55―36201号等の方法があり、
重合工程及び後処理工程が簡単で公害となる廃棄
物質が少ない等のメリツトがある。通常、ABS
の塊状または溶液重合では、最初均一溶液として
存在したゴム成分が、ある単量体の重合率以上で
は相分離し分散粒子の形をとる。これが相転移と
呼ばれる現象であり、この相転移で生成した分散
粒子がほぼそのまま最終製品中の分散粒子となる
のでこの相転移の調節操作が最終製品の物性に大
きな影響を与えることになり、特にゴム成分の分
散粒子の大きさは、衝撃強度、光沢等に影響を与
え、ゴム変性耐衝撃性樹脂の製造においては重要
な位置を占める。既にHI―PS樹脂の連続的塊状
又は溶液重合法においては、この相転移でゴム成
分の分散粒子の大きさを調節する方法は広く知ら
れており、また工業化されている。しかし、
ABS樹脂の連続的塊状または溶液重合法では、
この相転移そのもの、あるいはこの相転移による
ゴム成分の分散粒子の大きさの調節が難しく、こ
れがABS樹脂の製造が一般的には連続的塊状ま
たは溶液重合で行なわれていない一つの理由であ
る。今日までに提案されている各種ABSの連続
塊状または溶液重合法においては、特殊な装置を
必要としたり、あるいは、乳化重合によるABS
樹脂のように表面光沢のあるABS樹脂を製造す
る方法が主に開示されており、ゴム成分粒子の大
きさを適当な大きさに調節するよう相転移を操作
し、該樹脂によつて得られる成形物が艶消し用で
あるようなABS樹脂の製造方法については、特
殊な例を除いては開示されていない。 本発明者らは、鋭意研究を重ねた結果、HI―
PS樹脂の連続塊状または溶液重合で用いるよう
な一般的な装置を用いて、特定の限定された条件
のもとに、きわめて効率的に上記製造方法の簡略
化と、二次加工の不要化という二つの課題を一挙
に達成する方法を見い出した。 本発明の目的は、特殊な装置を必要とせずに、
ABS樹脂の耐薬品性、耐熱性、耐衝撃性、剛性
等の特性は保持しながら、それによつて得られる
成形物の表面が艶消しされているゴム変性耐衝撃
性樹脂を製造する方法を提供することにある。 本発明の他の目的は、艶消し表面の成形物を与
えるが、巨大ゴム成分粒子を含まない製品を製造
することのできるゴム変性耐衝撃性樹脂を製造す
る方法を提供することにある。 本発明のもう一つの目的は、ゴム成分を含む重
合体が、反応槽内壁への付着するのを極めて有効
に防止することができるゴム変性耐衝撃性樹脂を
製造する方法を提供することにある。 すなわち本発明の艶消しされたゴム変性耐衝撃
樹脂の連続的製造方法は、芳香族ビニル単量体と
シアン化ビニル単量体と、場合によつてはさらに
これらの単量体と共重合可能な単量体との単量体
混合物にゴム成分を溶解した減量溶液を、第1反
応槽へ連続的に供給し、撹拌剪断力下にゴム成分
相が分散粒子に転換するのに必要に重合率まで重
合させ、該反応槽より原料溶液の供給量に相当す
る量の反応液を連続的に取り出し、この反応液を
さらに第2反応槽以降の反応槽に供給して重合を
継続させることによりなるゴム変性耐衝撃性樹脂
の連続的塊状または溶液重合法において、 (A) 単量体混合物中のシアン化ビニル単量体が5
〜50重量%であり、 (B) 原料ゴム成分が、30℃でのその5%スチレン
溶液が150センチストーク以下の粘度を呈する
ものであり、 (C) 原料溶液中のゴム成分の濃度が3〜15重量%
であり、 (D) 第1反応槽に、連鎖移動剤として1種又は2
種以上のメルカプタン類を原料溶液に対して、
100〜5000ppm連続的に供給し、 (E) 第1反応槽が、ドラフトチユーブ付スクリユ
ー型撹拌翼を備え、かつ原料溶液の供給部分で
ある反応槽底部に補助撹拌翼を内蔵するもので
あり、該反応槽におけるスクリユー型撹拌翼の
回転数N(rps)とスクリユー型撹拌翼径φ(m)
の関係が 0.15<N2・φ<10 を満足する様維持され、 (F) 第1反応槽での単量体の重合率が10〜35重量
%になる様、制御され、かつ、 (G) 得られるゴム変性耐衝撃性樹脂のゴム成分の
分散粒子が、体積平均粒径で1.5〜10μmになる
よう調整される、 ことを特徴とする。 本発明の目的の達成のためには、上記(A),(B),
(C),(D),(E),(F)および(G)のすべてが満足されなけ
ればならない。(A)〜(G)のうちいずれの一つが欠け
ても本発明の効果は得られない。 本発明で用いられる芳香族ビニル単量体として
は、スチレン、α―メチルスチレン、ベンゼン環
がハロゲン化されたスチレン、例えばo―,m―
若しくはp―メチルスチレン、o,m―若しくは
p―ターシヤリブチルスチレン、ベンゼン環がハ
ロゲン化されたスチレン、例えばo―,m―、若
しくはp―クロルまたはブロムスチレン等の一種
以上を用いることができる。シアン化ビニル単量
体としては、アクリロニトリル、メタクリロニト
リル等の1種以上を用いることができる。また、
これらの単量体と共重合可能な単量体にはメチル
メタクリレートのようなアクリル酸エステル、無
水マレイン酸等があり、これらの共重合可能な単
量体を必要に応じて加えてもよい。 単量体混合物中、シアン化ビニル単量体の量は
5〜50重量%である。シアン化ビニル単量体が5
重量%未満では、得られる樹脂の耐薬品性、剛性
及び耐熱性が劣り、また50重量%を超えると得ら
れる樹脂の流動性が悪くなるので好ましくなく、
相転移の操作もきわめて難しくなる。 本発明の方法においてはゴム成分としては、こ
れらの単量体に溶解できるものであれば通常用い
られる何れのものでもよく、例えばブタジエンゴ
ム、スチレン―ブタジエン共重合体ゴム、アクリ
ロニトリル―ブタジエン共重合体ゴム、エチレン
―プロピレン―ジエン共重合体ゴムなどがある。
これらのゴム成分としては、その5%スチレン溶
液の30℃での粘度が150センチストークス以下で
あるものが適当である。ゴム成分の上記の粘度が
150センチストークスを超える場合には、第1反
応槽においてゴム成分が相転移をする際に巨大粒
子が生成したり、場合によつては相転移を起こさ
ずゲル化をおこし、ゴム成分を含む重合体が反応
槽内壁に付着したりするので好ましくない。これ
らのゴム成分としては、原料溶液中の濃度が3〜
15重量%、好ましくは4〜12重量%がよい、原料
溶液中のゴム成分の濃度が3重量%未満の場合に
は、得られる樹脂中のゴム成分の濃度が低くな
り、そのため耐衝撃樹脂として衝撃強度が低くな
り好ましくない。また、原料溶液中のゴム成分の
濃度が15重量%を超えると、第1反応槽において
反応液の粘度が高くなり、ゴム成分の相転移の際
巨大粒子が生成したり、場合によつては相転移を
起こさず、ゲル化をおこし反応槽内壁にゴム成分
を含む重合体が付着したりするので好ましくな
い。 本発明の方法においては、第1反応槽に連鎖移
動剤として1種又は2種以上のメルカプタン類を
原料溶液に対して、100〜5000ppmの濃度で連続
的に供給することが重要である。 メルカプタン類としては、n―ブチルメルカプ
タン、i―ブチルメルカプタン、tert―ブチルメ
ルカプタン、n―ヘキシルメルカプタン、n―オ
クチルメルカプタン、2―エチルヘキシルメルカ
プタン、n―ドデシルメルカプタン、tert―ドデ
シルメルカプタン等、通常、炭素原子数が4〜20
個のアルキルメルカプタン類が用いられ、特に好
ましいものとしては、n―ブチルメルカプタン、
tert―ブチルメルカプタン、n―ドデシルメルカ
プタン、tert―ドデシルメルカプタン等をあげる
ことができる。 これら連鎖移動剤は、場合によつては原料溶液
に直接溶解してもかまわない。一般にABS樹脂
の製造には、樹脂の流動性を改良するために連鎖
移動剤を使用することは知られているが、本発明
においては、重合の初期から連鎖移動剤を用いる
ことによつて、ゴム成分の分散粒子を本発明に規
定する大きさに調節することができる。連鎖移動
剤の使用量は、用いるメルカプタンの種類及び反
応条件によつても異なるが、100ppm未満では、
粒子径の調節には役立たず、むしろ理由ははつき
りしないが、得られる樹脂の衝撃強度が低くなり
好ましくない。一方、5000ppmを超えると、相転
移を起こさない場合があると同時に、得られる樹
脂の分子量が低くなりすぎ、強度が保てなくなる
ので好ましくない。 本発明において用いる第1反応槽は、原料溶液
の供給口を反応槽底部に有し、ドラフトチユーブ
付スクリユー型撹拌翼を内蔵し、かつ原料溶液の
供給口の近傍である反応槽底部に補助撹拌翼を備
えるものである。このような反応槽は一般に広く
使用されているものでよく、例えば特公昭48―
29628号に記載されているようなものも使用可能
である。補助撹拌翼の型式としては、例えばター
ビン型、フアンタービン型、プロペラ型等があ
る。補助撹拌翼は、スクリユー型撹拌翼と同軸に
接合してもよいし、またそれとは別の動力源によ
り、別の軸にとりつけて駆動してもよい。かかる
補助撹拌翼は、ゴム成分の巨大粒子を含まない製
品を製造する上で重要である。 上記の反応槽を用いる場合、スクリユー型撹拌
翼の回転数N(rps)とスクリユー型撹拌翼径φ
(m)の関係が 0.15<N2・φ<10 を満足するよう維持されることが望ましい。
N2・φ≦0.15の場合には、ゴム成分が相転移す
る際に巨大粒子が生成したり、反応槽内部に滞留
部分が生じたり、長時間の運転の間に重合体の付
着に起因する反応容積の減少や伝熱係数の低下が
生じ、安定運転が阻害される。一方、N2・φが
10を超えてもそれ以下の値の場合と撹拌効率は変
わらず、撹拌の動力を浪費するだけとなる。ゴム
成分の粒子径は、N2・φの値によりある程度コ
ントロールすることができ、N2・φが0.15〜10
の範囲内であれば、所望の粒子径範囲に調節する
ことができる。 本発明においては、第1反応槽での単量体の重
合率を10〜35重量%の範囲内にコントロールする
ことが適当である。第1反応槽での単量体の重合
率が10重量%未満の場合は、単量体の転化率が低
すぎて相転移を起さないか、相転移しても生成し
た分散粒子は不安定で凝縮して巨大粒子となるの
で好ましくない。また第1反応槽での単量体の重
合率が35重量%を超える場合は、相転移をする際
巨大粒子が多く発生したり、場合によつては相転
移を起こさずゲル化が生じ、好ましくない。 本発明の方法においては、得られるゴム変性耐
衝撃性樹脂のゴム成分の分散粒子が体積平均粒径
で1.5〜10μmになるよう調節して製造されなけれ
ばならない。ゴム成分の体積平均粒径が1.5μm未
満では、得られた製品の成形物に表面光沢があ
り、艶消しの用途には何らかの加工をして使用す
る必要があり、本発明の目的には適合しない。ま
た、ゴム成分の体積平均粒径が10μmを超える場
合には、その中に巨大粒子が多く含まれ、得られ
る樹脂の外観も悪く、衝撃強度も低下するので好
ましくない。 なお、本発明にいうゴム成分の分散粒子の体積
平均粒径は、次にようにして測定される。すなわ
ち、樹脂の超薄切片法による電子顕微鏡写真を撮
影し、この写真中のゴム成分の分散粒子100〜200
個の粒子径を測定し次式により平均したものであ
る。 体積平均粒径=〓nD4/〓nD3 (但し、nは粒子径Dのゴム成分の分散粒子の
個数である。) ゴム成分の分散粒子の粒径の調節は(A)〜(F)の条
件を満足させながら、それらの最適の組み合せを
選択することによつて達成し得る。特に(D)〜(F)の
条件を前記範囲内で最適に選ぶことにより、容易
に粒径の調節を行うことができる。 このようにして芳香族ビニル単量体とシアン化
ビニル単量体の混合物にゴム成分を溶解した原料
溶液と連鎖移動剤を連続的に第1反応槽に供給
し、第1反応槽で所望の粒子径の分散ゴム分子粒
子を得るような撹拌剪断力下で単量体を重合させ
て得られた反応液は、上記反応槽より全供給量に
相当する量だけ連続的に抜き出され、第2槽以降
の反応槽に供給され、重合が継続される。ここで
用いる第2槽以降の反応槽については、特に制限
はなく、一般に塊状または溶液重合に使用されて
いる反応槽を用いることができるが、好ましくは
完全混合槽型の反応槽、ピストンフロー型管式ま
たは塔式反応槽、あるいはそれらの組みあわせが
よい。また、第2槽以降の反応槽の個数として
は、通常1〜5個程度が適当である。これらの第
2槽以降の反応槽において単量体の重合を継続
し、最終反応槽から目的の重合率まで重合を行な
つた反応液を連続的に抜き出す方法が通常採用さ
れる。最終反応槽より得られた反応液は、従来公
知の脱揮発分装置において、未反応モノマーおよ
び溶剤を除去した後、ポリマーを回収し、樹脂製
品とする。 本発明に用いる原料溶液としては、単量体混合
物およびゴム成分だけでもよいが、必要に応じて
芳香族炭化水素、脂肪族炭化水素、脂環族炭化水
素、ハロゲン化炭化水素、ケトン類のような溶剤
を40重量%以下の範囲で用いてもよい。溶剤の量
が40重量%を超えると溶媒による連鎖移動の効果
がみられ、ゴム成分の分散粒子の径のコントロー
ルができないことがある。また生産効率も低下す
るので好ましい。 さらに必要に応じて、アルキル化フエノールの
ような酸化防止剤、ブチルステアレート、亜鉛ス
テアレート、ミネラル油等の可塑剤または滑剤を
原料溶液に、あるいは重合の途中若しくは重合の
終了した時点で添加してもよい。 また、本発明においては重合触媒を用いなくて
も十分重合させることは可能ではあるが、必要に
応じてベンゾイルパーオキサイドのようなラジカ
ル重合開始剤を触媒として用いて重合を行つても
よい。 本発明の方法によれば、従来の乳化重合法のよ
うな複雑な重合方法によることなく、広く行なわ
れているHI―PSを連続的塊状あるいは溶液重合
で製造するのに用いる装置を使用して、二次加工
することなく成形品にしたときに艶消しされた製
品となるABS樹脂が得られる。また、得られた
ABS樹脂の物性は、艶消しされていることを除
き、従来の高光沢ABS樹脂と同様の耐衝撃性、
引張強度等を呈する良好なものであり、更に、従
来の光沢のない樹脂にみられる巨大ゴム粒子もな
い。また、本発明の方法においては、反応槽内壁
へのゴム成分を含む重合体の付着もほぼ完全に防
止できる。 このように、本発明の方法はABS樹脂の用途
拡大に伴ない、今まで手間をかけて製造されてい
た艶消しの製品が要求されていた分野に対し、二
次加工させずにそのまま用いることのできる
ABS樹脂を提供し、重合過程も従来の方法に比
べ効率よいので、その工業的価値はきわめて大き
い。 以下、実施例により本発明を説明する。なお、
以下における%、部はそれぞれ重量%、重量部を
示す。 実施例 1 7.0部のポリブタジエン、「アサプレン700A」
(商品名、旭化成(株)製)を、54.7部のスチレン、
18.3部のアクリロニトリル(単量体のアクリロニ
トリルの量、25.1%)および20.0部のエチルベン
ゼン混合液に溶解して原料溶液とした。アサプレ
ン700Aの5%スチレン溶液の30℃での溶液粘度
は45センチストークスである。この原料溶液にタ
ーシヤリドデシルメルカプタンを0.15部、抗酸化
剤として2,6―ジターシヤリーブチルフエノー
ル0.20部を添加後、ドラフトチユーブ付スクリユ
ー型撹拌翼を備えかつこの撹拌翼の底部に補助撹
拌翼を内蔵した第1反応槽へその底部にある供給
口から連続的に15.0/hrの速度で供給した。第
1反応槽の容積は18.0、スクリユー型撹拌翼の
外径は0.18mである。第1反応槽では撹拌翼の回
転数2rps、温度130℃で重合を行なつてゴム成分
を相転移させ、ゴム粒子を生成させた。 第1反応槽で重合させて得られた反応液は連続
的に抜き出し、第2反応槽に供給して重合を継続
した。第1反応槽での単量体の重合率は23%であ
つた。第2反応槽は、第1反応槽と同じドラフト
チユーブ付スクリユー型撹拌翼を備えているが、
底部の補助撹拌翼のない完全混合槽の反応槽を用
いた。さらに第2反応槽で重合した反応液は連続
的に抜き出し、第3、第4、第5の反応槽に逐次
供給して、第5反応槽での単量体の重合率が70%
になるように重合を継続した。第3、第4、第5
の反応槽も第2反応槽と同じタイプのものを用い
た。第5反応槽から連続的に得られた反応液は、
脱揮発分装置を用いて高温高真空下で未反応モノ
マー及び溶剤を除去した後、押出機を用いてペレ
ツト化しABS樹脂の製品を得た。得られた製品
のゴム成分の分散粒子の体積平均粒径は2.6μmに
調節されていた。また、得られた製品を4オンス
の射出成形機を用いて試験片に成形し物性を評価
した。評価結果を第1表に示した(以下の実施例
についても評価結果を第1表にまとめた)。 なお、光沢については成型試験片につき、JIS
―Z―8751に従い入射角60゜で測定した。測定値
が30%以下の値を示すときは艶消しの製品として
好ましいものであり、また、20%以下の値を示す
ときは極めて優れていると判定される。 実施例 2 原料溶液のゴム成分としてスチレン―ブタジエ
ン共重合体「タフデン2000A」(商品名、旭化成
(株)製、5%スチレン溶液の30℃での粘度50センチ
ストークス)を用いた以外は、実施例1と同様に
して重合を実施した。 実施例 3 原料溶液のゴム成分としてポリブタジエン
「NF35A」(商品名、旭化成(株)製、5%スチレン
溶液の30℃での粘度85センチストークス)を用い
た以外は実施例と同様にして重合を実施した。 実施例 4 原料溶液単量体中のアクリロニトリルの重量比
を41%(スチレン43.1部、アクリロニトリル29.9
部)にし、第1反応槽の重合温度を128℃にした
以外は実施例1と同様にして重合を実施した。た
だし、第2〜第5反応槽の各反応槽入口での未反
応のスチレン/アクリロニトリルの組成を59/41
重量比に調節するため、それぞれの反応槽入口か
らスチレンを連続的に添加した。 実施例 5 原料溶液中のゴム成分の量を、9.0部、スチレ
ンを53.2部、アクリロニトリルを17.8部、エチル
ベンゼンを20.0部に各々変更し、第1反応槽の重
合温度を128℃にし、撹拌翼の回転数を3rpsにし
た以外は、実施例1と同様にして重合を実施し
た。第1反応槽での単量体の重合率は20%であつ
た。 実施例 6 第1反応槽での撹拌翼の回転数を3rpsに変更し
た以外は、実施例1と同様にして重合を実施し
た。得られた成形物の光沢は実施例1のものに比
べわずかに高く、20%であつた。 実施例 7 第2〜第5反応槽を四つの一般に用いられてい
るピストンフロー型塔式反応槽に換えた以外は実
施例1と同様にして重合を実施した。得られた製
品は、実施例1のものとほぼ同等であつた。 比較例 1 実施例1と同じ装置を用いて、原料溶液として
7.0部のポリブタジエン「アサプレン700A」をス
チレン78.0部、エチルベンゼン15.0部に溶解し、
抗酸化剤として2,6―ジターシヤリーブチルフ
エノール0.20部を添加し、第1の反応槽に12.0
/hrの速度で供給し、145℃で重合を行なつた。
第1槽での単量体の重合率は22重量%であつた。
第2反応槽以降の重合は、第5反応槽での単量体
の重合率が73重量%になるよう行なつた。得られ
た製品の耐衝撃性、剛性、耐熱性等は、実施例1
で得られたABS樹脂に比べ劣つた。評価結果を
第2表に示す。以下の比較例についての評価結果
も第2表にまとめた。成形条件等は全て実施例1
と同じである。 比較例 2 原料溶液単量体中のアクリロニトリルの量を60
%(スチレン29.2部、アクリロニトリル43.8部)
に、ターシヤリドデシルメルカプタンを0.30部
に、また第1反応槽の重合温度を125℃に変更し
た以外は実施例4と同様にして重合を実施した。
その結果、耐熱性、剛性は上昇したものの、流動
性、耐衝撃値が低く、また、黄味の強いものが得
られた。 比較例 3 原料溶液中のゴム成分として、ポリブタジエン
「ジエンNF55A」を用い、第1反応槽の撹拌翼の
回転数を6rpsにした以外は実施例1と同様にして
重合を実施した。その結果、第1反応槽で相転移
が起こる前に反応液は粘度が上昇してゲル状とな
り、正常な製品は得られなかつた。 比較例 4 原料溶液のゴム量を16.0部、スチレン48.0部、
アクリロニトリル16.0部、エチルベンゼン20.0部
に変更し、第1反応槽の撹拌翼の回転数を6rpsに
した以外は実施例1と同様にして重合を実施し
た。その結果、第1反応槽で相転移が起こる前に
反応液は粘度が上昇しゲル状となり、正常な製品
は得られなかつた。 比較例 5 原料溶液中へのタージヤリドデシルメルカプタ
ンの添加をやめ、第2反応槽へのみタージヤリド
デシルメルカプタンを連続的に添加することによ
つて分子量の調節を行つた以外は実施例1と同様
にして重合を実施した。その結果、得られた成形
物は光沢が上昇したと同様に、耐衝撃強度が低下
した。 比較例 6 第1反応槽での撹拌翼の回転数を0.5rpsに変更
した以外は実施例1と同様にして重合を実施し
た。第1反応槽で相転移したゴム粒子は大きいも
のが得られたが、中に巨大粒子が含まれており、
また、反応槽内部に滞留部分が生じたため、長時
間運転の間に、第1反応槽の重合率が徐々に低下
し、安定運転ができなかつた。 比較例 7 第1反応槽の重合温度を110℃にした以外は実
施例1と同様にして重合を実施した。第1反応槽
での単量体の重合率は9%であり、そこでの反応
液は相転移を起していなかつた。 比較例 8 第1反応槽の重合温度を150℃にし第1反応槽
の撹拌翼の回転数を6rpsにした以外は実施例1と
同様にして重合を実施した。その結果、第1反応
槽で相転移が起こる前に反応液の粘度が上昇して
ゲル状となり、正常な製品は得られなかつた。第
1反応槽の反応液の重合率を測定したところ、40
%であつた。 比較例 9 原料溶液へのターシヤドデシルメルカプタンの
添加を0.05部、第1反応槽での撹拌翼の回転数を
6rpsに変更した以外は実施例1と同様にして重合
を実施した。得られた製品の粒径は1.0μmで、成
形物の光沢は61%と上昇した。
The present invention relates to a continuous method for producing a rubber-modified impact-resistant resin, which results in a matte surface of the resulting molded product. More specifically, the rubber component is dissolved in a monomer mixture of an aromatic vinyl monomer, a vinyl cyanide monomer, and optionally a monomer copolymerizable with these monomers. By continuously polymerizing the raw material solution in bulk or solution under specific conditions, the resulting molded product has excellent chemical resistance, heat resistance, impact resistance, and rigidity, and the surface of the resulting molded product is matte. The present invention relates to a method for producing a rubber-modified impact-resistant resin. High impact polystyrene resin (hereinafter referred to as HI)
-PS resin) is a resin with improved impact resistance of polystyrene resin obtained by polymerizing styrene in the presence of a rubber component, and is used in a wide range of applications. This HI-PS resin is also produced by batch polymerization such as the bulk-suspension method, but as a recent trend, it is often produced by continuous bulk polymerization. On the other hand, ABS resin obtained by polymerizing styrene and acrylonitrile in the presence of a rubber component is
It has many uses due to its excellent impact resistance, chemical resistance, heat resistance, rigidity, and good surface gloss. This ABS resin is generally manufactured by the so-called emulsion polymerization method, in which styrene and acrylonitrile monomers are added to latex containing a rubber component and polymerized. In the emulsion polymerization method, the amount of latex that is several times the amount of polymer is used, so the polymerization equipment becomes large and various processes such as emulsification, coagulation, and drying are required, making process control complicated. Since additives such as emulsifiers and coagulants are used, there are problems such as impurities being mixed into the polymer. As a method for improving the emulsion polymerization method,
As in No. 35354 and No. 35355, a method has been proposed in which the rubber component in rubber latex is directly extracted with styrene and acrylonitrile monomers, and then transferred to continuous bulk polymerization to produce ABS resin. However, although this method is simpler than the usual emulsion polymerization method, it still requires a complicated extraction step. ABS resin obtained by such emulsion polymerization method is
The surface of the molded product that is obtained generally has a good gloss and is suitable for ordinary uses, but it is not suitable for applications where a matte surface is desired, such as car interior parts, computer housings, office automation equipment, etc., and it is used for various purposes. It is used after being processed. Conventionally known matting methods include, for example, a method in which the surface of a mold or roll is textured, but this method does not provide a sufficient matting effect. There are also methods such as adding titanium, magnesium, and calcium oxides, and applying matte paint to the surface of the molded product.
These methods are not preferred because they reduce the mechanical strength, particularly the impact strength, of the molded product or require time and effort to process. Continuous bulk or solution polymerization methods have been partially proposed as production methods other than emulsion polymerization for ABS.
For example, Japanese Patent Publication No. 45-20303, Japanese Patent Publication No. 47
There are methods such as No. 9144 and JP-A-55-36201.
The polymerization process and post-treatment process are simple, and there are few waste materials that cause pollution. Usually ABS
In bulk or solution polymerization, the rubber component, which initially exists as a homogeneous solution, undergoes phase separation and takes the form of dispersed particles when the polymerization rate of the monomer exceeds a certain level. This is a phenomenon called phase transition, and the dispersed particles generated by this phase transition become the dispersed particles in the final product almost as is, so the adjustment of this phase transition has a great influence on the physical properties of the final product, especially The size of the dispersed particles of the rubber component affects impact strength, gloss, etc., and occupies an important position in the production of rubber-modified impact-resistant resins. In the continuous bulk or solution polymerization method of HI-PS resin, the method of controlling the size of dispersed particles of the rubber component by this phase transition is already widely known and has been industrialized. but,
In the continuous bulk or solution polymerization method of ABS resin,
It is difficult to control this phase transition itself or the size of dispersed particles of the rubber component through this phase transition, which is one reason why ABS resins are generally not produced by continuous bulk or solution polymerization. The various continuous bulk or solution polymerization methods for ABS that have been proposed to date require special equipment, or emulsion polymerization of ABS.
It mainly discloses a method for producing ABS resin with a glossy surface like that of resin, in which phase transition is manipulated to adjust the size of rubber component particles to an appropriate size, and the method of producing ABS resin with a glossy surface like resin is disclosed. A method for producing ABS resin in which the molded product is matte is not disclosed, except in special cases. As a result of extensive research, the inventors have discovered that HI-
Using common equipment such as those used in continuous bulk or solution polymerization of PS resin, under certain limited conditions, it is possible to simplify the above manufacturing method and eliminate the need for secondary processing. We found a way to accomplish two tasks at once. The purpose of the present invention is to
Provided is a method for producing a rubber-modified impact-resistant resin that maintains the properties of ABS resin such as chemical resistance, heat resistance, impact resistance, and rigidity, while the surface of the resulting molded product is matte. It's about doing. Another object of the present invention is to provide a method for producing rubber-modified impact resistant resins which can produce molded articles with matte surfaces but which do not contain large rubber component particles. Another object of the present invention is to provide a method for producing a rubber-modified impact-resistant resin that can extremely effectively prevent a polymer containing a rubber component from adhering to the inner wall of a reaction tank. . In other words, the continuous method for producing a matte rubber-modified impact resin of the present invention is capable of copolymerizing with an aromatic vinyl monomer and a vinyl cyanide monomer, and optionally with these monomers. A weight loss solution in which a rubber component is dissolved in a monomer mixture with a monomer is continuously supplied to the first reaction tank, and polymerization is carried out as necessary to convert the rubber component phase into dispersed particles under stirring shear force. by continuously taking out an amount of reaction liquid corresponding to the supply amount of the raw material solution from the reaction tank, and further supplying this reaction liquid to the second reaction tank and subsequent reaction tanks to continue the polymerization. In the continuous bulk or solution polymerization method of rubber-modified impact-resistant resin, (A) the vinyl cyanide monomer in the monomer mixture is
(B) the raw rubber component is one whose 5% styrene solution at 30°C exhibits a viscosity of 150 centistokes or less; (C) the concentration of the rubber component in the raw material solution is 3. ~15% by weight
(D) One or two chain transfer agents are added to the first reaction tank.
mercaptans or more to the raw material solution,
100 to 5000 ppm is continuously supplied, (E) the first reaction tank is equipped with a screw-type stirring blade with a draft tube, and an auxiliary stirring blade is built in the bottom of the reaction tank, which is the supply part of the raw material solution, The rotational speed N (rps) of the screw type stirring blade in the reaction tank and the diameter φ (m) of the screw type stirring blade
(F) The polymerization rate of the monomer in the first reaction tank is controlled to be 10 to 35% by weight, and (G ) The rubber-modified impact-resistant resin obtained is characterized in that the dispersed particles of the rubber component are adjusted to have a volume average particle diameter of 1.5 to 10 μm. In order to achieve the purpose of the present invention, the above (A), (B),
All of (C), (D), (E), (F) and (G) must be satisfied. Even if any one of (A) to (G) is missing, the effects of the present invention cannot be obtained. Examples of the aromatic vinyl monomer used in the present invention include styrene, α-methylstyrene, styrene in which the benzene ring is halogenated, such as o-, m-
Alternatively, one or more of p-methylstyrene, o, m-, or p-tert-butylstyrene, styrene in which the benzene ring is halogenated, such as o-, m-, or p-chloro, or bromustyrene, etc. can be used. . As the vinyl cyanide monomer, one or more of acrylonitrile, methacrylonitrile, etc. can be used. Also,
Monomers that can be copolymerized with these monomers include acrylic esters such as methyl methacrylate, maleic anhydride, and the like, and these monomers that can be copolymerized may be added as necessary. In the monomer mixture, the amount of vinyl cyanide monomer is from 5 to 50% by weight. Vinyl cyanide monomer is 5
If it is less than 50% by weight, the chemical resistance, rigidity and heat resistance of the resulting resin will be poor, and if it exceeds 50% by weight, the fluidity of the resin obtained will be poor, which is not preferable.
Manipulating phase transitions also becomes extremely difficult. In the method of the present invention, the rubber component may be any commonly used rubber component as long as it can be dissolved in these monomers, such as butadiene rubber, styrene-butadiene copolymer rubber, acrylonitrile-butadiene copolymer rubber, etc. rubber, ethylene-propylene-diene copolymer rubber, etc.
Suitable rubber components are those whose 5% styrene solution has a viscosity of 150 centistokes or less at 30°C. If the above viscosity of the rubber component is
If it exceeds 150 centistokes, giant particles may be generated when the rubber component undergoes a phase transition in the first reaction tank, or in some cases gelation may occur without phase transition, resulting in heavy particles containing the rubber component. This is not preferable because the coalescence may adhere to the inner wall of the reaction tank. These rubber components have a concentration in the raw material solution of 3 to 3.
If the concentration of the rubber component in the raw material solution is less than 3% by weight, the concentration of the rubber component in the resulting resin will be low, and therefore it will not be suitable as an impact-resistant resin. This is not preferable because the impact strength becomes low. Additionally, if the concentration of the rubber component in the raw material solution exceeds 15% by weight, the viscosity of the reaction solution in the first reaction tank will increase, and giant particles may be generated during phase transition of the rubber component, or in some cases, This is not preferable because it does not cause a phase transition and causes gelation, which causes the polymer containing the rubber component to adhere to the inner wall of the reaction tank. In the method of the present invention, it is important to continuously supply one or more mercaptans as a chain transfer agent to the raw material solution at a concentration of 100 to 5000 ppm to the first reaction tank. Examples of mercaptans include n-butyl mercaptan, i-butyl mercaptan, tert-butyl mercaptan, n-hexyl mercaptan, n-octyl mercaptan, 2-ethylhexyl mercaptan, n-dodecyl mercaptan, tert-dodecyl mercaptan, etc., which usually contain carbon atoms. number 4-20
Among these alkyl mercaptans, particularly preferred are n-butyl mercaptan, n-butyl mercaptan,
Examples include tert-butyl mercaptan, n-dodecyl mercaptan, and tert-dodecyl mercaptan. These chain transfer agents may be directly dissolved in the raw material solution in some cases. It is generally known that a chain transfer agent is used in the production of ABS resin to improve the fluidity of the resin, but in the present invention, by using a chain transfer agent from the early stage of polymerization, The size of the dispersed particles of the rubber component can be adjusted as defined in the present invention. The amount of chain transfer agent used varies depending on the type of mercaptan used and reaction conditions, but if it is less than 100 ppm,
It is not useful for controlling the particle size, and for reasons that are not clear, the impact strength of the resin obtained is undesirable. On the other hand, if it exceeds 5000 ppm, phase transition may not occur, and at the same time, the molecular weight of the obtained resin becomes too low, making it impossible to maintain strength, which is not preferable. The first reaction tank used in the present invention has a supply port for the raw material solution at the bottom of the reaction tank, has a built-in screw type stirring blade with a draft tube, and has an auxiliary stirring at the bottom of the reaction tank near the supply port for the raw material solution. It is equipped with wings. Such a reaction tank may be one that is generally widely used, for example, the
Those described in No. 29628 can also be used. Examples of the types of auxiliary stirring blades include a turbine type, a fan turbine type, and a propeller type. The auxiliary stirring blade may be coaxially joined to the screw-type stirring blade, or may be driven by being attached to a separate shaft using a separate power source. Such auxiliary stirring blades are important in producing products free of large particles of rubber components. When using the above reaction tank, the rotation speed N (rps) of the screw type stirring blade and the screw type stirring blade diameter φ
It is desirable that the relationship (m) be maintained to satisfy 0.15<N 2・φ<10.
If N2・φ≦0.15, giant particles may be generated during phase transition of the rubber component, stagnation may occur inside the reaction tank, or polymers may adhere during long-term operation. This causes a decrease in reaction volume and a decrease in heat transfer coefficient, which impairs stable operation. On the other hand, N 2・φ
Even if it exceeds 10, the stirring efficiency remains the same as when the value is lower than 10, and the stirring power is simply wasted. The particle size of the rubber component can be controlled to some extent by the value of N 2 φ, and when N 2 φ is 0.15 to 10
Within this range, the particle size can be adjusted to a desired range. In the present invention, it is appropriate to control the polymerization rate of the monomer in the first reaction tank within the range of 10 to 35% by weight. If the polymerization rate of the monomer in the first reaction tank is less than 10% by weight, the conversion rate of the monomer is too low to cause a phase transition, or even if the phase transition occurs, the generated dispersed particles will not be produced. It is undesirable because it is stable and condenses into giant particles. In addition, if the polymerization rate of the monomer in the first reaction tank exceeds 35% by weight, many large particles may be generated during phase transition, or in some cases, gelation may occur without phase transition. Undesirable. In the method of the present invention, the rubber-modified impact-resistant resin to be produced must be manufactured so that the volume average particle diameter of the dispersed particles of the rubber component is 1.5 to 10 μm. If the volume average particle size of the rubber component is less than 1.5 μm, the resulting molded product will have a glossy surface and must be processed in some way for matte purposes, which is not suitable for the purpose of the present invention. do not. Furthermore, if the volume average particle diameter of the rubber component exceeds 10 μm, it is not preferable because it contains many giant particles, resulting in a poor appearance of the resulting resin and a decrease in impact strength. Incidentally, the volume average particle diameter of the dispersed particles of the rubber component referred to in the present invention is measured as follows. That is, an electron micrograph is taken of the resin using an ultra-thin section method, and 100 to 200 dispersed particles of the rubber component in this photograph are
The particle diameters of each particle were measured and averaged using the following formula. Volume average particle size = 〓nD 4 /〓nD 3 (However, n is the number of dispersed particles of the rubber component with a particle size D.) Adjustment of the particle size of the dispersed particles of the rubber component is performed using (A) to (F). This can be achieved by selecting the optimal combination while satisfying the following conditions. In particular, by optimally selecting the conditions (D) to (F) within the above range, the particle size can be easily adjusted. In this way, a raw material solution in which a rubber component is dissolved in a mixture of an aromatic vinyl monomer and a vinyl cyanide monomer and a chain transfer agent are continuously supplied to the first reaction tank, and the desired amount is obtained in the first reaction tank. The reaction solution obtained by polymerizing the monomer under stirring shear force to obtain dispersed rubber molecular particles with a particle size is continuously extracted from the reaction tank in an amount equivalent to the total supply amount, and then It is supplied to the second and subsequent reaction vessels, and polymerization is continued. There are no particular restrictions on the second and subsequent reaction tanks used here, and reaction tanks generally used for bulk or solution polymerization can be used, but preferably a complete mixing tank type reaction tank or a piston flow type reaction tank. A tubular or tower reactor, or a combination thereof, is preferred. Moreover, the number of reaction tanks after the second tank is usually about 1 to 5. Usually, a method is adopted in which monomer polymerization is continued in the second and subsequent reaction vessels, and the reaction liquid that has been polymerized to a desired polymerization rate is continuously extracted from the final reaction vessel. The reaction solution obtained from the final reaction tank is used in a conventionally known devolatilization device to remove unreacted monomers and solvent, and then the polymer is recovered to form a resin product. The raw material solution used in the present invention may be only a monomer mixture and a rubber component, but if necessary, it may contain aromatic hydrocarbons, aliphatic hydrocarbons, alicyclic hydrocarbons, halogenated hydrocarbons, ketones, etc. A solvent may be used in an amount of 40% by weight or less. When the amount of the solvent exceeds 40% by weight, the effect of chain transfer due to the solvent is observed, and the diameter of the dispersed particles of the rubber component may not be able to be controlled. This is also preferable since production efficiency also decreases. Furthermore, if necessary, antioxidants such as alkylated phenols, plasticizers or lubricants such as butyl stearate, zinc stearate, and mineral oil may be added to the raw material solution, or during or at the end of polymerization. It's okay. Further, in the present invention, it is possible to carry out sufficient polymerization without using a polymerization catalyst, but if necessary, a radical polymerization initiator such as benzoyl peroxide may be used as a catalyst to carry out the polymerization. According to the method of the present invention, the equipment used to produce HI-PS by continuous bulk or solution polymerization, which is widely used, can be used without using complicated polymerization methods such as conventional emulsion polymerization methods. , it is possible to obtain ABS resin that becomes a matte product when molded into a molded product without any secondary processing. Also, obtained
The physical properties of ABS resin are similar to conventional high-gloss ABS resin, except that it is matte.
It exhibits good tensile strength, etc., and furthermore, there are no large rubber particles found in conventional dull resins. Furthermore, in the method of the present invention, it is possible to almost completely prevent the polymer containing the rubber component from adhering to the inner wall of the reaction tank. As described above, the method of the present invention can be used as is without secondary processing in fields where matte products, which have traditionally required time and effort, have been required as the use of ABS resin expands. can do
Since it provides ABS resin and the polymerization process is more efficient than conventional methods, its industrial value is extremely large. The present invention will be explained below with reference to Examples. In addition,
In the following, % and parts indicate weight % and parts by weight, respectively. Example 1 7.0 parts of polybutadiene, "Asaprene 700A"
(trade name, manufactured by Asahi Kasei Corporation), 54.7 parts of styrene,
A raw material solution was prepared by dissolving in a mixed solution of 18.3 parts of acrylonitrile (amount of monomeric acrylonitrile, 25.1%) and 20.0 parts of ethylbenzene. The solution viscosity of a 5% styrene solution of Asaprene 700A at 30°C is 45 centistokes. After adding 0.15 parts of tertiary dodecyl mercaptan and 0.20 parts of 2,6-di-tert-butylphenol as an antioxidant to this raw material solution, a screw-type stirring blade with a draft tube was installed and an auxiliary stirring blade was attached to the bottom of the stirring blade. was continuously supplied from the supply port at the bottom to the first reaction tank containing the reactor at a rate of 15.0/hr. The volume of the first reaction tank is 18.0, and the outer diameter of the screw type stirring blade is 0.18 m. In the first reaction tank, polymerization was carried out at a stirring blade rotation speed of 2 rps and a temperature of 130° C. to cause a phase transition of the rubber component and generate rubber particles. The reaction solution obtained by polymerization in the first reaction tank was continuously extracted and supplied to the second reaction tank to continue polymerization. The polymerization rate of the monomer in the first reaction tank was 23%. The second reaction tank is equipped with the same screw-type stirring blade with a draft tube as the first reaction tank, but
A complete mixing reactor without an auxiliary stirring blade at the bottom was used. Furthermore, the reaction liquid polymerized in the second reaction tank is continuously extracted and sequentially supplied to the third, fourth, and fifth reaction tanks, so that the polymerization rate of the monomer in the fifth reaction tank is 70%.
Polymerization was continued so that 3rd, 4th, 5th
The same type of reaction tank as the second reaction tank was also used. The reaction liquid continuously obtained from the fifth reaction tank is
After removing unreacted monomers and solvent under high temperature and high vacuum using a devolatilization device, the product was pelletized using an extruder to obtain an ABS resin product. The volume average particle diameter of the dispersed particles of the rubber component in the obtained product was adjusted to 2.6 μm. In addition, the obtained product was molded into a test piece using a 4-ounce injection molding machine, and its physical properties were evaluated. The evaluation results are shown in Table 1 (the evaluation results for the following examples are also summarized in Table 1). Regarding gloss, JIS
- Measured at an incident angle of 60° according to Z-8751. When the measured value shows a value of 30% or less, it is preferable as a matte product, and when the measured value shows a value of 20% or less, it is judged to be extremely excellent. Example 2 Styrene-butadiene copolymer “Tufden 2000A” (trade name, Asahi Kasei Co., Ltd.) was used as the rubber component of the raw material solution.
Polymerization was carried out in the same manner as in Example 1, except that a 5% styrene solution (viscosity at 30°C of 50 centistokes manufactured by Co., Ltd.) was used. Example 3 Polymerization was carried out in the same manner as in Example except that polybutadiene "NF35A" (trade name, manufactured by Asahi Kasei Corporation, viscosity of 5% styrene solution at 30°C: 85 centistokes) was used as the rubber component of the raw material solution. carried out. Example 4 The weight ratio of acrylonitrile in the raw material solution monomer was 41% (styrene 43.1 parts, acrylonitrile 29.9 parts).
Polymerization was carried out in the same manner as in Example 1, except that the polymerization temperature in the first reaction tank was 128°C. However, the composition of unreacted styrene/acrylonitrile at the inlet of each of the second to fifth reaction tanks is 59/41.
In order to adjust the weight ratio, styrene was continuously added from the inlet of each reaction tank. Example 5 The amounts of rubber components in the raw material solution were changed to 9.0 parts, styrene to 53.2 parts, acrylonitrile to 17.8 parts, and ethylbenzene to 20.0 parts, the polymerization temperature in the first reaction tank to 128°C, and the stirring blade Polymerization was carried out in the same manner as in Example 1, except that the rotation speed was 3 rps. The polymerization rate of the monomer in the first reaction tank was 20%. Example 6 Polymerization was carried out in the same manner as in Example 1, except that the rotation speed of the stirring blade in the first reaction tank was changed to 3 rps. The gloss of the molded product obtained was slightly higher than that of Example 1, at 20%. Example 7 Polymerization was carried out in the same manner as in Example 1, except that the second to fifth reaction vessels were replaced with four commonly used piston flow type column reaction vessels. The product obtained was almost equivalent to that of Example 1. Comparative Example 1 Using the same equipment as in Example 1, as a raw material solution
Dissolve 7.0 parts of polybutadiene "Asaprene 700A" in 78.0 parts of styrene and 15.0 parts of ethylbenzene,
Add 0.20 parts of 2,6-ditertiarybutylphenol as an antioxidant, and add 12.0 parts of 2,6-ditertiarybutylphenol to the first reaction tank.
/hr, and polymerization was carried out at 145°C.
The polymerization rate of the monomer in the first tank was 22% by weight.
Polymerization in the second and subsequent reactors was carried out so that the polymerization rate of the monomer in the fifth reactor was 73% by weight. The impact resistance, rigidity, heat resistance, etc. of the obtained product were as shown in Example 1.
It was inferior to the ABS resin obtained in The evaluation results are shown in Table 2. Evaluation results for the following comparative examples are also summarized in Table 2. All molding conditions etc. are the same as Example 1.
is the same as Comparative Example 2 The amount of acrylonitrile in the raw material solution monomer was 60
% (styrene 29.2 parts, acrylonitrile 43.8 parts)
Next, polymerization was carried out in the same manner as in Example 4, except that the amount of tertiary dodecyl mercaptan was changed to 0.30 parts and the polymerization temperature of the first reaction tank was changed to 125°C.
As a result, although heat resistance and rigidity increased, fluidity and impact resistance were low, and a product with a strong yellow tinge was obtained. Comparative Example 3 Polymerization was carried out in the same manner as in Example 1, except that polybutadiene "Diene NF55A" was used as the rubber component in the raw material solution, and the rotation speed of the stirring blade in the first reaction tank was set to 6 rps. As a result, the viscosity of the reaction solution increased and became gel-like before the phase transition occurred in the first reaction tank, and a normal product could not be obtained. Comparative Example 4 The amount of rubber in the raw material solution was 16.0 parts, 48.0 parts of styrene,
Polymerization was carried out in the same manner as in Example 1, except that 16.0 parts of acrylonitrile and 20.0 parts of ethylbenzene were used, and the rotation speed of the stirring blade in the first reaction tank was changed to 6 rps. As a result, the viscosity of the reaction solution increased and became gel-like before the phase transition occurred in the first reaction tank, and a normal product could not be obtained. Comparative Example 5 Same as Example 1 except that the molecular weight was adjusted by stopping the addition of tertiary dodecyl mercaptan to the raw material solution and continuously adding tertiary dodecyl mercaptan only to the second reaction tank. Polymerization was carried out using As a result, the resulting molded product showed an increase in gloss and a decrease in impact strength. Comparative Example 6 Polymerization was carried out in the same manner as in Example 1, except that the rotation speed of the stirring blade in the first reaction tank was changed to 0.5 rps. Although large rubber particles were obtained through phase transition in the first reaction tank, they contained giant particles.
Further, since a stagnation portion was generated inside the reaction tank, the polymerization rate of the first reaction tank gradually decreased during long-term operation, making stable operation impossible. Comparative Example 7 Polymerization was carried out in the same manner as in Example 1 except that the polymerization temperature in the first reaction tank was 110°C. The polymerization rate of the monomer in the first reaction tank was 9%, and the reaction solution there did not undergo any phase transition. Comparative Example 8 Polymerization was carried out in the same manner as in Example 1, except that the polymerization temperature in the first reaction tank was 150° C. and the rotation speed of the stirring blade in the first reaction tank was 6 rps. As a result, the viscosity of the reaction solution increased and became gel-like before the phase transition occurred in the first reaction tank, and a normal product could not be obtained. When the polymerization rate of the reaction solution in the first reaction tank was measured, it was found to be 40
It was %. Comparative Example 9 Addition of 0.05 parts of tertiary dodecyl mercaptan to the raw material solution, and the rotation speed of the stirring blade in the first reaction tank
Polymerization was carried out in the same manner as in Example 1 except that the speed was changed to 6rps. The particle size of the obtained product was 1.0 μm, and the gloss of the molded product increased by 61%.

【表】【table】

【表】【table】

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】 1 芳香族ビニル単量体と、シアン化ビニル単量
体と、場合によつてはさらにこれらの単量体と共
重合可能な単量体との単量体混合物にゴム成分を
溶解した原料溶液を、第1反応槽へ連続的に供給
し、撹拌剪断力下にゴム成分相が分散粒子に転換
するのに必要な重合率まで重合させ、該反応槽よ
り原料溶液の供給量に相当する量の反応液を連続
的に取り出し、この反応液をさらに第2反応槽以
降の反応槽に供給して重合を継続させることによ
りなるゴム変性耐衝撃性樹脂の連続的塊状または
溶液重合法において、 (A) 単量体混合物中のシアン化ビニル単量体が5
〜50重量%であり、 (B) 原料ゴム成分が、30℃でのその5%スチレン
溶液が150センチストークス以下の粘度を呈す
るものであり、 (C) 原料溶液中のゴム成分の濃度が3〜15重量%
であり、 (D) 第1反応槽に、連鎖移動剤として1種又は2
種以上のメルカプタン類を原料溶液に対して、
100〜5000ppm連続的に供給し、 (E) 第1反応槽が、ドラフトチユーブ付スクリユ
ー型撹拌翼を備え、かつ原料溶液の供給部分で
ある反応槽底部に補助撹拌翼を内蔵するもので
あり、該反応槽におけるスクリユー型撹拌翼の
回転数N(rps)とスクリユー型撹拌翼径φ(m)
の関係が 0.15<N2・φ<10 を満足する様維持され、 (F) 第1反応槽での単量体の重合率が10〜35重量
%になる様、制御され、かつ、 (G) 得られるゴム変性耐衝撃性樹脂のゴム成分の
分散粒子が、体積平均粒径で1.5〜10μmになる
よう調整される、 ことを特徴とする艶消しされたゴム変性耐衝撃性
樹脂の連続的製造方法。 2 第2槽以降の反応槽において、その反応槽が
一つないし五つの完全混合槽型の反応槽、一つな
いし五つのピストンフロー型管式もしくは増式反
応槽、またこれらの組みあわせである特許請求の
範囲第1項記載の製造方法。
[Claims] 1. Rubber is added to a monomer mixture of an aromatic vinyl monomer, a vinyl cyanide monomer, and optionally a monomer copolymerizable with these monomers. The raw material solution in which the components are dissolved is continuously supplied to the first reaction tank, and polymerized under stirring shear force to a polymerization rate necessary for converting the rubber component phase into dispersed particles. Continuous lumps of rubber-modified impact resistant resin are produced by continuously taking out an amount of reaction liquid corresponding to the amount supplied and further supplying this reaction liquid to the second reaction tank and subsequent reaction tanks to continue polymerization. In the solution polymerization method, (A) vinyl cyanide monomer in the monomer mixture is
(B) the raw rubber component is one whose 5% styrene solution at 30°C exhibits a viscosity of 150 centistokes or less; (C) the concentration of the rubber component in the raw material solution is 3. ~15% by weight
(D) One or two chain transfer agents are added to the first reaction tank.
Adding more than 1 species of mercaptans to the raw material solution,
100 to 5000 ppm is continuously supplied, (E) the first reaction tank is equipped with a screw-type stirring blade with a draft tube, and an auxiliary stirring blade is built in the bottom of the reaction tank, which is the supply part of the raw material solution, The rotational speed N (rps) of the screw type stirring blade in the reaction tank and the diameter φ (m) of the screw type stirring blade
(F) The polymerization rate of the monomer in the first reaction tank is controlled to be 10 to 35% by weight, and (G ) A continuous process of matte rubber-modified impact-resistant resin characterized in that the dispersed particles of the rubber component of the rubber-modified impact-resistant resin obtained are adjusted so that the volume average particle size is 1.5 to 10 μm. Production method. 2 The reaction tanks after the second tank are one to five complete mixing tank type reaction tanks, one to five piston flow type tubular or expansion reaction tanks, or a combination thereof. A manufacturing method according to claim 1.
JP20098383A 1983-10-28 1983-10-28 Continuous manufacture of rubber-modified impact- resistant resin Granted JPS6094414A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20098383A JPS6094414A (en) 1983-10-28 1983-10-28 Continuous manufacture of rubber-modified impact- resistant resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20098383A JPS6094414A (en) 1983-10-28 1983-10-28 Continuous manufacture of rubber-modified impact- resistant resin

Publications (2)

Publication Number Publication Date
JPS6094414A JPS6094414A (en) 1985-05-27
JPS635413B2 true JPS635413B2 (en) 1988-02-03

Family

ID=16433555

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20098383A Granted JPS6094414A (en) 1983-10-28 1983-10-28 Continuous manufacture of rubber-modified impact- resistant resin

Country Status (1)

Country Link
JP (1) JPS6094414A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023063557A1 (en) * 2021-10-12 2023-04-20 주식회사 엘지화학 Method for preparing polymer

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0633347B2 (en) * 1989-03-22 1994-05-02 旭化成工業株式会社 Molding thermoplastic resin composition
JPH0735425B2 (en) * 1989-10-27 1995-04-19 出光石油化学株式会社 Styrene resin composition
JP2640547B2 (en) * 1990-02-15 1997-08-13 電気化学工業株式会社 ABS resin composition and method for producing the same
US5061760A (en) * 1990-03-09 1991-10-29 Hoechst Celanese Corporation Vinylidene cyanide alternating copolymers exhibiting nonlinear optical and piezoelectric properties
US5057588A (en) * 1990-03-09 1991-10-15 Hoechst Celanese Corp. Vinylidene cyanide alternating copolymers
KR100368043B1 (en) * 1997-12-26 2003-03-31 제일모직주식회사 Styrene-based resin composition excellent in stretching property and formability
KR100409074B1 (en) * 2000-12-01 2003-12-11 주식회사 엘지화학 Method for preparing rubber-modified styrene transparent resin having superior fluidity
JP2002167492A (en) * 2000-12-01 2002-06-11 Nippon A & L Kk Master batch for delustering and thermoplastic resin composition for delustering using the same
ES2388702T3 (en) * 2005-10-12 2012-10-17 Styron Europe Gmbh Improved composition of aromatic copolymer of monivinylidene modified with mass polymerized rubber

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023063557A1 (en) * 2021-10-12 2023-04-20 주식회사 엘지화학 Method for preparing polymer

Also Published As

Publication number Publication date
JPS6094414A (en) 1985-05-27

Similar Documents

Publication Publication Date Title
US4774287A (en) Heat-resistant copolymer of alpha-methylstyrene and acrylonitrile, process for preparing the same, and thermoplastic resin composition containing the same
US4587294A (en) Continuous process for producing rubber modified high-impact resins
JPS635413B2 (en)
US4421895A (en) Process for the manufacture of ABS polymers and use thereof in preparation of molded parts
KR950001284B1 (en) Process for the production of styrene-based resin composition
JPH04234414A (en) Continuous manufacture of impact-resistant polystyrene-acrylonitrile copolymer
GB2088884A (en) Rubber modified styrene resins
JP2853987B2 (en) Method for producing styrenic resin
JPH08259777A (en) Rubber latex with increased particle size and abs resin composition obtained therefrom
JPH03199212A (en) Continuous production of impact-resistant styrene-based resin
KR100188526B1 (en) The preparation process for impact thermoplastic resin composition
US5973079A (en) Large particle generation
AU614374B2 (en) Oxidation of halogenated polymers and anticaking halogenated polymers
JPH0131779B2 (en)
CN115279807B (en) Method for preparing vinyl cyanide compound-conjugated diene rubber-aromatic vinyl compound graft copolymer and method for preparing thermoplastic resin composition comprising the same
JP3325401B2 (en) Method for producing transparent rubber-modified styrenic resin
JP2594344B2 (en) Continuous production method of rubber-modified impact-resistant resin
JPH0613635B2 (en) Method for producing polycarbonate resin composition
JP3238491B2 (en) Method for producing thermoplastic resin and resin composition
KR950011451B1 (en) Process for producing thermoplastic resins having a good impact resistance
WO2019189243A1 (en) Method for manufacturing rubber-reinforced styrene resin powder, and rubber-reinforced styrene resin powder
JPH1030047A (en) Rubber-modified styrene resin composition
KR100243752B1 (en) Process for preparing thermoplastic resin composition
JPS60231750A (en) Thermoplastic resin composition
JP2764056B2 (en) Continuous production method of rubber-modified impact-resistant resin