JPH03281945A - System and device adopting energy - Google Patents

System and device adopting energy

Info

Publication number
JPH03281945A
JPH03281945A JP8230390A JP8230390A JPH03281945A JP H03281945 A JPH03281945 A JP H03281945A JP 8230390 A JP8230390 A JP 8230390A JP 8230390 A JP8230390 A JP 8230390A JP H03281945 A JPH03281945 A JP H03281945A
Authority
JP
Japan
Prior art keywords
gas
drying
gas turbine
air
mixing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8230390A
Other languages
Japanese (ja)
Inventor
Yasuo Yamanaka
康生 山中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Breweries Ltd
Original Assignee
Asahi Breweries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Breweries Ltd filed Critical Asahi Breweries Ltd
Priority to JP8230390A priority Critical patent/JPH03281945A/en
Publication of JPH03281945A publication Critical patent/JPH03281945A/en
Pending legal-status Critical Current

Links

Landscapes

  • Drying Of Solid Materials (AREA)

Abstract

PURPOSE:To improve energy efficiency by operating a gas turbine while burning gas for combustion at a high temperature, thereby driving a generator etc., and mixing exhaust gas in a gas turbine with atmosphere while carrying out drying step in painting, etc. CONSTITUTION:Air is boosted by an air compressor 1a and introduced into a combustion furnace. On the other hand, fuel butane (liquid) is evaporated by the steam generated from an evaporator 2, and fed to the combustion furnace 1b. The butane and the air are burnt in the combustion furnace 1b, and fed to a gas turbine 1c as a high temperature gas 1j. The rotational energy generated in the gas turbine 1c causes the rotation of a generator 1d to obtain electricity. The high temperature gas introduced into the gas turbine 1c is recovered as a hot gas 5 in the exhaust gas. Air is intaken by an air blower 3, mixed with the hot gas 5 in the exhaust gas by a mixing device 5, and fed to a drying device in the next step as a drying gas 6.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、製缶工場におけるエネルギー利用システムお
よび装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an energy utilization system and device in a can factory.

〔従来技術〕[Prior art]

従来1缶体の内面および外面に塗布した塗料の乾燥には
、都市ガス、LPG、灯軽油を乾燥装置に設置しである
専用バーナーで大量の空気と共に燃焼させ、発生した燃
焼ガスで乾燥させている。この乾燥は塗料の溶剤および
水分を取り除くためで、適度な温度を必要とし、注意深
い温度管理で行われている。
Conventionally, to dry paint applied to the inner and outer surfaces of a can, city gas, LPG, or kerosene is installed in a drying device, burned with a large amount of air in a special burner, and dried with the generated combustion gas. There is. This drying process removes solvents and moisture from the paint, and requires a moderate temperature, which is carefully controlled.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来法によれば、前記乾燥装置の乾燥用エネルギーを供
給するためには、もっばら該乾燥装置に取り付けられた
専用バーナーを用い、燃焼用ガスと大量の空気(完全燃
焼に必要な空気量に較べて大過剰の空気)を供給して燃
焼させ所定温度乾燥用ガスを製造していた。
According to the conventional method, in order to supply the drying energy for the drying device, a dedicated burner attached to the drying device is used, and combustion gas and a large amount of air (the amount of air required for complete combustion) is used. A large excess of air) was supplied and combusted to produce drying gas at a predetermined temperature.

製缶工場の缶体の乾燥、とくに缶体のプライマー塗装や
印刷の乾燥に必要な温度は約100〜200℃である。
The temperature required for drying can bodies in can factories, particularly for drying primer coating and printing on can bodies, is about 100 to 200°C.

上限の温度は、プライマーや印刷インクを形成する樹脂
の種類にもよるが、200℃以上の高温は樹脂の劣化、
変質、分解をおこすおそれがあり、好ましくない、その
ため、従来技術において、100〜200℃の乾燥ガス
をつくるのが当然であり、高エネルギーレベルのガスを
低エネルギーレベルのガスに無条件で変えることによる
エネルギーロスには全く着目されていなかった。
The upper temperature limit depends on the type of resin that forms the primer and printing ink, but high temperatures of 200°C or higher can cause resin deterioration and
This is undesirable as it may cause deterioration and decomposition.Therefore, in conventional technology, it is natural to create dry gas at a temperature of 100 to 200°C, and to unconditionally change a high energy level gas to a low energy level gas. No attention was paid to the energy loss caused by this.

〔課題を解決するための手段〕[Means to solve the problem]

そこで、本発明者は、約900〜1300℃と約200
℃以下という2つのエネルギー格差を有効利用するシス
テムを提案するものである。
Therefore, the present inventor proposed a temperature of approximately 900 to 1300°C and
This project proposes a system that effectively utilizes the two energy disparities below ℃.

すなわち1本発明の1つは、燃焼用ガスを高温燃焼させ
てガスタービンを作動させ、これにより発電機または他
の機械の駆動を行い、一方、ガスタービンの排気ガスに
大気を混合して製缶工場における缶体の内外面の水洗、
塗装等の工程における乾燥を行うことを特徴とする製缶
工場におけるエネルギー利用システムに関する。
That is, one aspect of the present invention is to burn combustion gas at high temperature to operate a gas turbine, thereby driving a generator or other machinery, and on the other hand, to mix atmospheric gas with the exhaust gas of the gas turbine. Washing the inside and outside of can bodies in can factories,
The present invention relates to an energy utilization system in a can manufacturing factory, which is characterized by drying in processes such as painting.

本発明の他の1つは、ガスタービン、ガスタービンの排
気ガスを大気との混合装置に移送する手段、前記排気ガ
スと大気との混合装置、前記混合装置で得られた乾燥用
ガスを製缶工場における缶の乾燥装置に移送する手段、
前記混合装置で得られた乾燥用ガスの温度を検知して熱
の供給量を制御する手段、前記缶の乾燥装置、ガスター
ビンの回転を発電機の回転軸に伝達する手段、および発
電機よりなることを特徴とする製缶工場の発電および乾
燥装置に関する。
Another aspect of the present invention provides a gas turbine, a means for transferring the exhaust gas of the gas turbine to a mixing device with the atmosphere, a device for mixing the exhaust gas with the atmosphere, and a drying gas obtained by the mixing device. means for transferring cans to a drying device in a can factory;
means for detecting the temperature of the drying gas obtained by the mixing device to control the amount of heat supplied; the drying device for the can; means for transmitting the rotation of the gas turbine to the rotating shaft of the generator; The present invention relates to a power generation and drying device for a can manufacturing factory.

従来、製缶工場における缶体の乾燥に使用されていた燃
料量により本発明のシステムを稼働させると、製缶工場
の乾燥に必要なエネルギーはもとより、その製缶工場で
必要とする動力等の全エネルギー源のはゾ8〜9割を供
給することができるというおどろくべき省エネルギー効
果を達成することができる。このことは従来乾燥のため
に毎時1000KWHのエネルギーを使用していた製缶
工場においては、本発明のシステムと装置を採用するこ
とによりそのエネルギー発生源として使用していたと同
量の燃料を使用して、毎時1800〜1900KWH相
当のエネルギーを得ることができるのである。
If the system of the present invention is operated using the amount of fuel conventionally used for drying can bodies in a can manufacturing factory, not only the energy required for drying the can manufacturing factory but also the power etc. required in the can manufacturing factory will be reduced. It can supply 80 to 90% of all energy sources, achieving an amazing energy saving effect. This means that can manufacturing factories that conventionally used 1000 KWH of energy per hour for drying can now use the same amount of fuel as their energy source by adopting the system and equipment of the present invention. Therefore, it is possible to obtain energy equivalent to 1,800 to 1,900 KWH per hour.

〔実施例〕〔Example〕

本発明の1つの実施態様を第1図により説明する。1a
の空気圧縮機で空気を大気圧から10atgまで昇圧し
、1bの燃焼炉へ入れる。一方、燃料ブタン(液体)は
2の蒸発器で蒸気により蒸発され、15atgのガスと
して、1bの燃焼炉へ供給される。1bの燃焼炉で、ブ
タンと空気が燃焼し、約950℃の高温ガス1jとして
1cのガスタービンへ供給する。
One embodiment of the present invention will be explained with reference to FIG. 1a
Air is pressurized from atmospheric pressure to 10atg using the air compressor 1b, and then introduced into the combustion furnace 1b. On the other hand, the fuel butane (liquid) is evaporated into steam in the evaporator 2 and supplied to the combustion furnace 1b as a 15 atg gas. Butane and air are combusted in the combustion furnace 1b, and are supplied to the gas turbine 1c as high-temperature gas 1j at about 950°C.

このガスタービンで発生した回転エネルギーで1dの発
電機を回転させ、電気を取り出す61cのガスタービン
へ入った高温ガスは5の排気中温ガスとして約500℃
で取り出される。
The rotational energy generated by this gas turbine rotates the generator 1d and extracts electricity.The high temperature gas that enters the gas turbine 61c is approximately 500°C as the middle temperature gas from the exhaust gas of 5.
It is taken out.

3の空気ブロワ−で大気を吸入して、4の混合装置でガ
スタービンの排気中温ガス5と混合して、次工程の乾燥
装置へ6として供給する。
Atmospheric air is taken in by an air blower 3, mixed with intermediate temperature gas 5 from the gas turbine exhaust by a mixing device 4, and supplied as 6 to a drying device in the next step.

この混合ガスは150℃〜200℃の温度に制御され乾
燥ガスとなる。制御方式は6の乾燥ガスの温度を測定し
、2aの燃料量を調節する。なお、制御方式はこれに限
定されるものではない。別方式の制御としては2aの燃
料量を一定にし、3aの大気量を調節して乾燥ガスをつ
くる方法等も使用できることは勿論である。この制御方
式の選択は乾燥負荷の変動幅によってきまるが、本実施
例では乾燥負荷の変動が少ない運転状態なので、前者の
方式とした。制御方式を手動にするか、自動にするかは
当然任意に選択できる。
This mixed gas is controlled at a temperature of 150°C to 200°C and becomes a dry gas. The control method measures the temperature of the dry gas at 6 and adjusts the amount of fuel at 2a. Note that the control method is not limited to this. Of course, another method of control may be used, such as keeping the amount of fuel in 2a constant and adjusting the amount of air in 3a to produce dry gas. The selection of this control method is determined by the fluctuation range of the drying load, but in this embodiment, since the operating condition is such that the fluctuation of the drying load is small, the former method is selected. Naturally, it is possible to arbitrarily select whether the control method is manual or automatic.

なお、1g、3aのような供給用大気は乾燥装置から出
る排ガスと熱交換することにより、−層エネルギー効率
を挙げることができる。
In addition, by exchanging heat with the supply atmosphere such as 1g and 3a with the exhaust gas discharged from the drying device, it is possible to improve the energy efficiency of the -layer.

〔効  果〕〔effect〕

本発明により、従来方式に較べてはゾ倍近いエネルギー
効率を達成することができた。
According to the present invention, it was possible to achieve energy efficiency nearly twice that of the conventional method.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本実施例のフローシートである。 1a:空気圧縮機     1b=燃焼炉1cニガスタ
ービン    1d:発電機1e:1aと10を結ぶ軸
 1f:1cと1dを結ぶ軸1g:空気(大気) 1h:圧縮された空気の流れ 1j:高温ガスの流れ   2:蒸発器2a:燃料ブタ
ンの流れ  2b:蒸気の流れ3:空気供給ブロアー 
  38:空気の流れ4:混合装置       5:
排気中温ガスの流れ6:乾燥ガス 第 図
FIG. 1 is a flow sheet of this embodiment. 1a: Air compressor 1b = Combustion furnace 1c Gas turbine 1d: Generator 1e: Shaft connecting 1a and 10 1f: Shaft connecting 1c and 1d 1g: Air (atmosphere) 1h: Compressed air flow 1j: High temperature Gas flow 2: Evaporator 2a: Fuel butane flow 2b: Steam flow 3: Air supply blower
38: Air flow 4: Mixing device 5:
Exhaust medium temperature gas flow 6: Dry gas diagram

Claims (1)

【特許請求の範囲】 1、燃焼用ガスを高温燃焼させてガスタービンを作動さ
せ、これにより発電機または他の機械の駆動を行い、一
方、ガスタービンの排気ガスに大気を混合して製缶工場
における缶体の内外面の乾燥を行うことを特徴とする製
缶工場におけるエネルギー利用システム。 2、ガスタービン、ガスタービンの排気ガスを大気との
混合装置に移送する手段、前記排気ガスと大気との混合
装置、前記混合装置で得られた乾燥用ガスを製缶工場に
おける缶の乾燥装置に移送する手段、前記混合装置で得
られた乾燥用ガスの温度を検知して熱の供給量を制御す
る手段、前記缶の乾燥装置、ガスタービンの回転を発電
機の回転軸に伝達する手段、および発電機よりなること
を特徴とする製缶工場の発電および乾燥装置。
[Claims] 1. Combustion gas is combusted at high temperature to operate a gas turbine, thereby driving a generator or other machinery, and on the other hand, can manufacturing by mixing the exhaust gas of the gas turbine with atmospheric air. An energy utilization system in a can manufacturing factory characterized by drying the inside and outside surfaces of can bodies in the factory. 2. A gas turbine, a means for transferring the exhaust gas of the gas turbine to a mixing device with the atmosphere, a device for mixing the exhaust gas with the atmosphere, and a device for drying cans in a can manufacturing factory using the drying gas obtained by the mixing device. a means for detecting the temperature of the drying gas obtained by the mixing device to control the amount of heat supplied; a device for drying the can; a means for transmitting the rotation of the gas turbine to the rotating shaft of the generator. , and a power generation and drying device for a can manufacturing factory.
JP8230390A 1990-03-29 1990-03-29 System and device adopting energy Pending JPH03281945A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8230390A JPH03281945A (en) 1990-03-29 1990-03-29 System and device adopting energy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8230390A JPH03281945A (en) 1990-03-29 1990-03-29 System and device adopting energy

Publications (1)

Publication Number Publication Date
JPH03281945A true JPH03281945A (en) 1991-12-12

Family

ID=13770786

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8230390A Pending JPH03281945A (en) 1990-03-29 1990-03-29 System and device adopting energy

Country Status (1)

Country Link
JP (1) JPH03281945A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6361721A (en) * 1986-09-02 1988-03-17 Takuma Co Ltd Waste heat utilizing dryer system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6361721A (en) * 1986-09-02 1988-03-17 Takuma Co Ltd Waste heat utilizing dryer system

Similar Documents

Publication Publication Date Title
CA2371453C (en) A thermodynamic apparatus
CN103527320B (en) The method and power apparatus of power apparatus of the operation with single shaft gas turbine
US20120159956A1 (en) Top cycle power generation with high radiant and emissivity exhaust
JP2009197800A (en) Power generation system including exhaust gas temperature adjusting device and system for controlling temperature of exhaust gas
GB2338750A (en) Electricity generation using fuel cells in jet engines
US4238923A (en) Method of low temperature heat utilization for atmospheric pressure coal gasification
JP6632737B2 (en) Ammonia combustion method and apparatus
RU2017136582A (en) TWO-TANK GAS TURBINE DEVICE
JPH03281945A (en) System and device adopting energy
US6138381A (en) Treatment of moist fuel
JPS595761B2 (en) A device that converts heat into work
KR860000327B1 (en) Method and an apparatus for producing moisturized hot air
JP2774751B2 (en) Ultra low calorific value gas combustion device
JP2001280604A (en) Combination oil and gas burner and exhaust gas treating device using the same
CN207648759U (en) Subcritical gas boiler and boiler system
JPH0474530B2 (en)
JP3877878B2 (en) Heat treatment furnace
US5031397A (en) Starting methods for cyclic char fuel reaction plants
JPH0323807B2 (en)
JP5609538B2 (en) VOC processing system
JPH0339171B2 (en)
JP2004308596A (en) Output control method of steam jet gas turbine
JPS6321404A (en) Starting method of powdered coal-burning boiler
JPH0339172B2 (en)
SU1129456A1 (en) Boiler unit