JPH03280958A - Calcium phosphate compound molded object and its manufacture - Google Patents

Calcium phosphate compound molded object and its manufacture

Info

Publication number
JPH03280958A
JPH03280958A JP2081793A JP8179390A JPH03280958A JP H03280958 A JPH03280958 A JP H03280958A JP 2081793 A JP2081793 A JP 2081793A JP 8179390 A JP8179390 A JP 8179390A JP H03280958 A JPH03280958 A JP H03280958A
Authority
JP
Japan
Prior art keywords
calcium phosphate
phosphate compound
molded
surface area
molded object
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2081793A
Other languages
Japanese (ja)
Other versions
JP2892092B2 (en
Inventor
Takao Kawai
隆夫 川井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2081793A priority Critical patent/JP2892092B2/en
Publication of JPH03280958A publication Critical patent/JPH03280958A/en
Application granted granted Critical
Publication of JP2892092B2 publication Critical patent/JP2892092B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Materials For Medical Uses (AREA)
  • Dental Preparations (AREA)

Abstract

PURPOSE:To further promote growth of a newborn bone by enveloping an osteoblast infiltration hole of specific opening bore to form a specific surface area and preparing a molded object with a calcium phosphate compound having hole porosity within a specific range in the substrate part. CONSTITUTION:After a primary grain of 30 to 200mum mean grain size is pelletized from calcium phosphate compound powder of 5mum grain size or less and a binder fluid, a secondary grain is pelletized from this primary grain, the binder fluid and the calcium phosphate compound powder. Next, this secondary grain, left as it is or after baked, is molded by applying a binder, and then a molded object, left as it is or after baked, is impregnated with calcium phosphate compound-containing slurry and baked. The obtained molded object has a surface area of 10 times or more the molded object surface area by enveloping an osteoblast infiltration hole having a 30 to 500mum opening bore.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は骨欠損部あるいは空隙部充填用材料として好適
な性能を有する燐酸カルシウム化合物成形体およびその
製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a calcium phosphate compound molded article having properties suitable as a material for filling bone defects or voids, and a method for producing the same.

[従来の技術] 事故や疾病あるいは抜歯等により骨損傷を来した場合、
骨欠損部あるいは空隙部の充填が必要となる。
[Conventional technology] When bone damage occurs due to an accident, illness, tooth extraction, etc.
Filling of bone defects or voids is required.

生体の硬組織代替物としては5US316等のステンレ
ス鋼、Ti及びTi合金、バイタリウム、プラスチック
等各種の金属ならびに有機物が用いられているが、これ
らは生体に対する親和性が良好でなく、また骨との結合
性も全くなく、しかも使用中溶解や劣化等を伴ない溶解
物が毒性を有するものなどもあフた。
Various metals such as stainless steel such as 5US316, Ti and Ti alloys, Vitalium, and plastics, as well as organic materials, are used as hard tissue substitutes for living organisms, but these do not have good affinity for living organisms and are not compatible with bones. There were also cases where there was no binding property at all, and there were also cases where the dissolved material was toxic due to dissolution or deterioration during use.

そこで、生体組織に対して無害であることはいうまでも
なく親和性や結合性に優れた材料が要求されるに至り、
これらを満足するものとしてセラミックス系材料が注目
されている。中でも燐酸カルシウム系セラミックスは、
骨と同じ成分であること、骨と高い親和性を示すこと、
しかも骨との間に化学的結合を形成すること等から注目
されるようになってきた。
Therefore, there is a need for materials that are not only harmless to living tissues but also have excellent affinity and binding properties.
Ceramic materials are attracting attention as materials that satisfy these requirements. Among them, calcium phosphate ceramics are
It has the same components as bone and shows high affinity with bone.
Moreover, it has been attracting attention because it forms a chemical bond with bones.

燐酸カルシウム系セラミックスとしては、アパタイト類
特にヒドロキシアパタイト[Ca6(PO4)10(O
H)2]およびβ−TCP [β−Ca s(P 04
)2 ]が近年特に注目されている。しかしこれらは実
際の臨床適用における初期の骨形成性が必ずしも良好で
なく、場合によっては組繊細胞がこれらの表面を取り巻
いて、骨との結合を阻害する状況が認められ、この欠点
を改善する必要がある。
Calcium phosphate ceramics include apatites, especially hydroxyapatite [Ca6(PO4)10(O
H)2] and β-TCP [β-Ca s(P 04
)2] has received particular attention in recent years. However, in actual clinical applications, the initial osteogenicity of these drugs is not necessarily good, and in some cases, tissue cells surround their surfaces, inhibiting their bonding with bone, and this drawback can be improved. There is a need.

この点の解決策の一つとして、骨芽細胞の侵入を促し、
結合力を高めるために孔径が10〜30μmの連続気孔
を設けた成形体が提案されている。例えば特開昭60−
21763号、特開昭62−158175号公報にはヒ
ドロキシアパタイト(以下HAPという)原料粉に有機
物を混合し、焼成時に有機物を焼失せしめて多孔体とす
る方法、あるいは特開昭62−1.2680号公報には
成形体をいったん粉砕して表面粗度の高い顆粒状物を作
製し、これを再混合焼成して多孔体とする方法が開示さ
れている。
One solution to this problem is to encourage the invasion of osteoblasts,
A molded article having continuous pores with a pore diameter of 10 to 30 μm has been proposed in order to increase the bonding strength. For example, JP-A-60-
No. 21763 and JP-A No. 62-158175 disclose a method of mixing organic matter into hydroxyapatite (hereinafter referred to as HAP) raw material powder and burning off the organic matter during firing to form a porous body, or JP-A No. 62-1.2680. The publication discloses a method in which a molded body is once pulverized to produce granules with a high surface roughness, and the granules are remixed and fired to form a porous body.

ところが前者のHAPi料粉と有機物を単に混合して焼
成する方法においては、混合を十分に行なわないと気孔
分布がかたより、連続気孔とならずに所期の目的である
骨芽細胞の侵入に“むら”が生じて死花となってしまう
こと、期待されるほどの機械的強度が得られないこと等
の欠点がある。また後者の粉砕により粗表面を形成した
後混合焼成して多孔体とする方法では、製造工程が複雑
となるだけでなく、粉砕時の粒度分布制御の困難性を伴
なうため気孔率を制御することが難しいこと、また気孔
分布にばらつきを生じ易いこと、さらには粉砕粒が鋭利
な角を有するために生体細胞がとり付籾難いこと等の問
題があった。
However, in the former method, in which HAPi powder and organic matter are simply mixed and fired, if the mixing is not done sufficiently, the pore distribution will be uneven, and the pores will not be continuous, making it difficult to achieve the desired goal of osteoblast invasion. There are drawbacks such as "unevenness" resulting in dead flowers and failure to obtain the expected mechanical strength. In addition, the latter method, in which a rough surface is formed by pulverization and then mixed and fired to form a porous body, not only complicates the manufacturing process but also makes it difficult to control the particle size distribution during pulverization, making it difficult to control the porosity. There have been problems such as difficulty in cleaning the rice, the tendency to cause variations in pore distribution, and the fact that the crushed grains have sharp corners, making it difficult for living cells to attach to the rice.

[発明が解決しようとする課題] そこで本発明者らは骨芽細胞の侵入性が良好で、且つ溶
解吸収により新生骨との置換がすみやかにおこなわれる
燐酸カルシウム化合物成形体を開発して先に出願を済ま
せた(特願昭63−263279)、該燐酸カルシウム
化合物成形体とは、30〜500μmの開口径を有する
骨芽細胞侵入孔を内包することによって成形体表面積の
10倍以上の表面積を有するとともに、前記骨芽細胞侵
入孔を除いた基質部における気孔の気孔率が30%以下
であることを特徴とするものであり、成形体表面に連続
開気孔を設けて表面積を上げることにより骨芽細胞の侵
入を促すと共にCaの持続的溶出という作用効果を発揮
させて、新生骨の成長期間中を通じてCaを供給できる
こととなり、骨誘導機能が向上して新生骨の成長を更に
促進することが可能となった。
[Problems to be Solved by the Invention] Therefore, the present inventors have developed a calcium phosphate compound molded body that has good osteoblast penetration and can be quickly replaced with new bone through dissolution and absorption. The calcium phosphate compound molded body, for which the application has been filed (Japanese Patent Application No. 63-263279), has a surface area that is more than 10 times the surface area of the molded body by encapsulating osteoblast penetration holes with an opening diameter of 30 to 500 μm. It is characterized in that the porosity of the pores in the matrix excluding the osteoblast infiltration pores is 30% or less, and by providing continuous open pores on the surface of the molded body and increasing the surface area, bone By promoting the invasion of blast cells and exerting the effect of continuous elution of Ca, Ca can be supplied throughout the growth period of new bone, improving the osteoinductive function and further promoting the growth of new bone. It has become possible.

尚先願発明において成形体の実質的な表面積を理論表面
積の10倍以上としたのは、10倍未満では骨芽細胞の
侵入とCaの溶出速度が小さくて骨誘導性が芳しくない
からであり、成形体の理論表面積を10倍以上とするた
めに骨芽細胞侵入孔の開口径を30〜500μmとした
ものである。
The reason why the substantial surface area of the molded body in the prior invention is set to be 10 times or more of the theoretical surface area is that if it is less than 10 times, the invasion of osteoblasts and the elution rate of Ca will be low and the osteoinductivity will be poor. In order to increase the theoretical surface area of the molded body by 10 times or more, the opening diameter of the osteoblast cell penetration hole is set to 30 to 500 μm.

但し上記の様な骨芽細胞侵入孔を設ζづると強度を低下
させるという不都合な面もあるので、強度低下を防ぐた
めに骨芽細胞侵入孔を除いた基質部における気孔の気孔
率を30%以下と定めた。
However, creating osteoblast entry holes as described above has the disadvantage of reducing the strength, so in order to prevent the strength from decreasing, the porosity of the pores in the matrix excluding the osteoblast entry holes was reduced to 30%. It was determined as follows.

また上記先願発明の成形体は、粒径5μm以下の燐酸カ
ルシウム化合物粉末およびバインダ液から平均粒径30
〜200μmの1次粒子を造粒し、次いで該1次粒子、
前記バインダ液と同一又は異なったバインダ液および前
記燐酸カルシウム化合物と同一又は異なった燐酸カルシ
ウム化合物粉末から2次粒子を造粒した後、該2次粒子
をそのままあるいは焼成した後、前記バインダ液と同一
又は異なったバインダ液を加えて成形し焼成することに
よって得られる。
Further, the molded body of the above-mentioned prior invention can be obtained from calcium phosphate compound powder with a particle size of 5 μm or less and a binder liquid with an average particle size of 30 μm.
~200 μm primary particles are granulated, then the primary particles,
After granulating secondary particles from a binder liquid that is the same as or different from the binder liquid and a calcium phosphate compound powder that is the same or different from the calcium phosphate compound, the secondary particles are granulated as they are or after being fired, and then Alternatively, it can be obtained by adding different binder liquids, molding and firing.

しかしながら上記先願発明に係る燐酸カルシウム化合物
成形体であっても骨欠損部に埋入する際に該成形体の一
部が脱落しやすいことが見比され、該成形体の強度をさ
らに向上させる技術が要望されている。
However, it has been found that even with the calcium phosphate compound molded article according to the prior invention, a part of the molded article tends to fall off when it is implanted into a bone defect, and it is difficult to further improve the strength of the molded article. technology is required.

[課題を解決するための手段] 本発明は上記事情に着目してなされたものであって、3
0〜500μmの間口径を有する骨芽細胞侵入孔を内包
することによって成形体表面積の10倍以上の表面積を
有するとともに、前記骨芽細胞侵入孔を除いた基質部に
おける気孔の気孔率が30%以下である燐酸カルシウム
化合物成形体であって、上記基質部における気孔に前記
燐酸カルシウムと同一又は異なった燐酸カルシウム化合
物の微粒子を侵入せしめてなることを要旨とするもので
ある。
[Means for Solving the Problems] The present invention has been made focusing on the above circumstances, and includes the following three points:
It has a surface area that is 10 times or more than the surface area of the molded product by including osteoblast penetration holes having a diameter between 0 and 500 μm, and the porosity of the pores in the matrix excluding the osteoblast penetration holes is 30%. The gist of the following calcium phosphate compound molded article is that fine particles of a calcium phosphate compound that is the same as or different from the calcium phosphate are infiltrated into the pores of the substrate.

また上記燐酸カルシウム化合物を製造するにあたっては
、粒径5μm以下の燐酸カルシウム化合物粉末およびバ
インダ液から平均粒径30〜200μmの1次粒子を造
粒し、次いで該1次粒子、前記バインダ液と同一又は異
なったバインダ液および前記燐酸カルシウム化合物と同
一又は異なった燐酸カルシウム化合物粉末から2次粒子
を造粒した後、該2次粒子をそのままあるいは焼成した
後、前記バインダ液と同一又は異なったバインダ液を加
えて成形し、得られた成形体をそのままあるいは焼成し
た後、前記燐酸カルシウム化合物と同一又は異なった燐
酸カルシウム化合物を含有するスラリーを含浸して焼成
する方法を用いればよい。
In addition, in producing the above calcium phosphate compound, primary particles with an average particle size of 30 to 200 μm are granulated from a calcium phosphate compound powder with a particle size of 5 μm or less and a binder solution, and then the primary particles are made in the same manner as the binder solution. Or, after granulating secondary particles from a different binder liquid and a calcium phosphate compound powder that is the same as or different from the above-mentioned calcium phosphate compound, the secondary particles are granulated as they are or after being fired, and then a binder liquid that is the same as or different from the above-mentioned binder liquid is granulated. A method may be used in which the resulting molded body is either used as it is or after being fired, impregnated with a slurry containing a calcium phosphate compound that is the same as or different from the calcium phosphate compound, and then fired.

[作用] 本発明に係る燐酸カルシウム化合物成形体は、焼成体の
粒子間の接合を強化する目的で、1μm以下、望ましく
は0.5μm以下のアパタイト微粒子を含有するスラリ
ーに成形体を含浸させ、毛細管の原理に従って該スラリ
ーを成形体の開気孔を通して内部深くまで含浸させた後
乾燥焼成を行なうことにより得られるので成形体の強度
向上が可能である。
[Function] The calcium phosphate compound molded body according to the present invention is obtained by impregnating the molded body with a slurry containing apatite fine particles of 1 μm or less, preferably 0.5 μm or less, for the purpose of strengthening the bond between the particles of the fired body. The strength of the molded product can be improved because it is obtained by deeply impregnating the slurry into the molded product through the open pores of the molded product according to the capillary principle, followed by drying and firing.

また上記スラリーに含浸し、乾燥焼成する工程を繰り返
すことによって成形体の強度をさらに高めることができ
る。
Further, by repeating the steps of impregnating the slurry and drying and firing, the strength of the molded body can be further increased.

尚本発明に係るバインダとしては、ポリビニルアルコー
ル溶液、ヒドロキシプロピルセルロース溶液およびその
他通常用いられている有機バインダを用いることができ
る。
As the binder according to the present invention, polyvinyl alcohol solution, hydroxypropyl cellulose solution, and other commonly used organic binders can be used.

また無機バインダとしては燐酸カルシウムのスラリー、
例えばHAPの懸濁液やβ−TCPの懸濁液等を用いる
ことができる。さらにカルシウムアルコキシドと燐の酸
素酸のアルキルエステルとの非水溶媒中における反応生
成物である燐酸カルシウムゾル等も無機バインダとして
用いることができる(有機成分も含んでいるが、有機成
分は乾燥時あるいは焼成の初期に揮発してしまうので無
機バインダの範嗜に入れることができる)。上記燐酸カ
ルシウムゾルとしてはHAPゾルやβ−TCPゾルが好
ましいものとして挙げられる。そして乾燥時および焼成
時においてバインダ成分中の揮発成分や熱分解成分が除
去されてこの部分が骨芽細胞侵入孔および基質部の気孔
となる。
In addition, as an inorganic binder, slurry of calcium phosphate,
For example, a suspension of HAP or a suspension of β-TCP can be used. Furthermore, calcium phosphate sol, which is a reaction product of calcium alkoxide and phosphorus oxygen acid alkyl ester in a non-aqueous solvent, can also be used as an inorganic binder (it also contains an organic component, but the organic component is removed when dry or Since it volatilizes in the early stage of firing, it can be classified as an inorganic binder). Preferred examples of the calcium phosphate sol include HAP sol and β-TCP sol. Then, during drying and firing, volatile components and thermally decomposed components in the binder component are removed, and these portions become osteoblast entry holes and pores in the matrix portion.

また本発明に用いる燐酸カルシウム系スラリーとじては
前記無機バインダとして挙げたものを用いることができ
る。
Further, as the calcium phosphate slurry used in the present invention, those mentioned above as the inorganic binder can be used.

また本発明は焼成温度によって限定されるものではない
が、焼成温度が1300℃を超えるとアパタイトが溶解
性及び為害性の高いαTCPに転心するので、焼成温度
は1300℃以下とするのが好ましい。
Further, the present invention is not limited by the firing temperature, but if the firing temperature exceeds 1300°C, apatite will convert to αTCP, which is highly soluble and harmful, so it is preferable that the firing temperature is 1300°C or lower. .

さらに成形体の基質部の密度を高めたい場合には、焼成
前の成形体をHIP(静水圧高圧プレス法)条件下で9
00℃以上にて熱処理すれば良い。また成形体表面を水
蒸気雰囲気下に養生してやればHAPのひずみが解消で
きる。
Furthermore, if you want to increase the density of the matrix part of the molded body, the molded body before firing can be heated to 90°C under HIP (hydrostatic high pressure pressing method) conditions.
Heat treatment may be performed at 00°C or higher. Furthermore, by curing the surface of the molded product in a steam atmosphere, the distortion of the HAP can be eliminated.

[実施例] 実験例1 直径360mmのパン型転勤造粒機に粒径5μm以下の
HAP粉末500gを装入し、5%ポリビニルアルコー
ル(PVA)液480m1を20分間にわたってスプレ
ー圧1 kg/cm2以下で噴霧しながら粒径50〜1
00μmになるように造粒し、ついでこれに903のH
AP粉末を加えて調湿し1次粒子とした。さらにこの1
次粒子に10%PVA液300m1を前記と同条件で2
0分間にわたって噴霧しながらHAP粉末120gを徐
々に加え2次粒子を造粒した。該2次粒子に10%PV
A液51を加えて成形体とし、該成形体を1250℃で
焼成したものを比較例1の試験片とした。
[Example] Experimental Example 1 500 g of HAP powder with a particle size of 5 μm or less was charged into a pan-type transfer granulator with a diameter of 360 mm, and 480 ml of 5% polyvinyl alcohol (PVA) liquid was sprayed for 20 minutes at a pressure of 1 kg/cm2 or less. While spraying with a particle size of 50-1
Granulated to a size of 00 μm, then 903 H
AP powder was added to adjust the humidity to obtain primary particles. Furthermore, this one
Add 300ml of 10% PVA solution to the next particle under the same conditions as above.
120 g of HAP powder was gradually added while spraying for 0 minutes to granulate secondary particles. 10% PV in the secondary particles
A test piece of Comparative Example 1 was prepared by adding Liquid A 51 to form a molded body, and firing the molded body at 1250°C.

焼成前の上記成形体と比較例1の成形体に、平均粒径0
.5μmのHAPを0.5%含有する懸濁液を含浸した
後、1250℃で焼成して得た成形体を、夫々本発明例
1及び本発明例2の試験片とした。上記3種の試験片に
ついて理論表面積、実表面積、骨芽細胞侵入孔径(平均
)及び破壊試験による強度を測定した。結果は第1表に
示す。
The above molded body before firing and the molded body of Comparative Example 1 had an average particle size of 0.
.. The molded bodies obtained by impregnating a suspension containing 0.5% of 5 μm HAP and then firing at 1250° C. were used as test pieces of Inventive Example 1 and Inventive Example 2, respectively. Theoretical surface area, actual surface area, osteoblast penetration pore diameter (average), and strength by destructive test were measured for the above three types of test pieces. The results are shown in Table 1.

尚上記3種の試験片は、いずれも粒径5μm以下の燐酸
カルシウム化合物粉末およびバインダ液から平均粒径3
0〜200μmの1次粒子を造粒し、次いで該1次粒子
、バインダ液及び前記燐酸カルシウム化合物粉末から2
次粒子を造粒した後、該2次粒子に上記バインダ液を加
えて成形し焼成したものであるが、上記試験片を用いて
動物試験を行なったところいずれも2週間で非常に良好
な骨誘導能を示したことから、上記試験片は骨芽細胞の
侵入性が良く、適度なCaの溶出により新生骨の形成が
すみやかに行なわれたことがわかる。
The above three types of test pieces were all made from calcium phosphate compound powder with a particle size of 5 μm or less and a binder liquid with an average particle size of 3 μm.
Primary particles with a size of 0 to 200 μm are granulated, and then 2
After granulating the secondary particles, the above-mentioned binder liquid was added to the secondary particles, which was then molded and fired. When animal tests were conducted using the above-mentioned test pieces, all cases showed very good bone formation within 2 weeks. From the fact that it showed induction ability, it can be seen that the above-mentioned test piece had good osteoblast invasiveness and that new bone was formed quickly due to appropriate elution of Ca.

実験例2 実験例1と同様にして造粒した2次粒子を、乾燥後12
00℃で焼成し、粒径600〜1000μm(平均70
0μm)の多孔質顆粒体を得た。
Experimental Example 2 Secondary particles granulated in the same manner as Experimental Example 1 were dried for 12
Calcined at 00℃, particle size 600-1000μm (average 70μm)
Porous granules with a diameter of 0 μm) were obtained.

該顆粒体に10%PVA液10m1を加えて成形体とし
、該成形体を1250℃で焼成したものを比較例2の試
験片とした。
A test piece of Comparative Example 2 was prepared by adding 10 ml of 10% PVA liquid to the granules to form a molded body, and firing the molded body at 1250°C.

焼成前の上記成形体と比較例2の成形体に、平均粒径0
.5μmのHAPを5%含有するスラリーを含浸させた
後、1250℃で焼成して得た成形体を、夫々本発明例
3及び本発明例4の試験片とした。
The above molded body before firing and the molded body of Comparative Example 2 had an average particle size of 0.
.. The molded bodies obtained by impregnating a slurry containing 5% of 5 μm HAP and then firing at 1250° C. were used as test pieces of Inventive Example 3 and Inventive Example 4, respectively.

次に比較例2の成形体を用いて、平均粒径0.5μmの
HAPを5%含有するスラリーを含浸させて乾燥させる
工程を5回繰り返した後、1250℃で焼成して得た成
形体を本発明例5の試験片とした。
Next, using the molded body of Comparative Example 2, the process of impregnating it with a slurry containing 5% HAP with an average particle size of 0.5 μm and drying it was repeated five times, and then firing it at 1250°C. was used as the test piece of Example 5 of the present invention.

上記4種の試験片について理論表面積、実表面積、骨芽
細胞侵入孔径(平均)及び破壊試験による強度を測定し
た。結果は第1表に併記する。
Theoretical surface area, actual surface area, osteoblast penetration pore diameter (average), and strength by destructive test were measured for the above four types of test pieces. The results are also listed in Table 1.

尚上記試験片を用いて動物試験を行なったところ、いず
れも2週間で非常に良好な骨屈導能を示した。
In addition, when animal tests were conducted using the above test pieces, all showed very good bone flexion conductivity within 2 weeks.

実験例3 カルシウムエトキシド260g、亜燐酸トリエチル20
0gを、エチレングリコール1.3 fとエチルアルコ
ール21の混合液に溶解した後、純水10m1を注意深
く加えアパタイトゾルを得た。
Experimental example 3 Calcium ethoxide 260g, triethyl phosphite 20
0 g was dissolved in a mixed solution of 1.3 f of ethylene glycol and 21 g of ethyl alcohol, and then 10 ml of pure water was carefully added to obtain an apatite sol.

他方直径360ma+のパン転勤造粒機にHAP粉末5
00gを装入し、前記の様にして得たアパタイトゾル5
00m1を20分間にわたってスプレー圧1 kg/c
m2以下で噴霧しなから粒径50〜100μmになるよ
う造粒し、ついでこれに90gのHAP粉末を加えて調
湿し1次粒子とした。さらにこの1次粒子に上記アパタ
イトゾルを300m1、前記条件と同条件で20分間噴
霧しながら、HAP粉末120gを徐々に加え2次粒子
を造粒した。該2次粒子を乾燥後1200℃で焼成して
粒径600〜1000μm(平均700μm)の多孔質
顆粒体を得た。該顆粒体に前記アパタイトゾル5mlを
加えて成形し、1250℃で焼成して得た成形体を比較
例3の試験片とした。
On the other hand, HAP powder 5 is placed in a pan transfer granulator with a diameter of 360 ma+.
Apatite sol 5 obtained as described above by charging 00g of
00ml for 20 minutes at a spray pressure of 1 kg/c
After spraying at a volume of less than m2, the particles were granulated to a particle size of 50 to 100 μm, and then 90 g of HAP powder was added thereto to control the humidity to obtain primary particles. Furthermore, 120 g of HAP powder was gradually added to the primary particles while spraying 300 ml of the apatite sol for 20 minutes under the same conditions as above to granulate secondary particles. The secondary particles were dried and then fired at 1200°C to obtain porous granules with a particle size of 600 to 1000 μm (average 700 μm). 5 ml of the apatite sol was added to the granules, molded, and fired at 1250° C. The molded product obtained was used as a test piece of Comparative Example 3.

次に比較例3の得た成形体に前記アパタイトゾル5ml
を含浸して1250℃で焼成して得た成形体を本発明例
6の試験片とした。
Next, 5 ml of the apatite sol was added to the molded body obtained in Comparative Example 3.
A molded body obtained by impregnating the sample with the following and firing at 1250°C was used as a test piece of Example 6 of the present invention.

上記2種の試験片について理論表面積、実表面積、骨芽
細胞侵入孔径(平均)及び破壊試験による強度を測定し
た。結果は′s1表に併記する。
The theoretical surface area, actual surface area, osteoblast penetration pore diameter (average), and strength by destructive test were measured for the above two types of test pieces. The results are also listed in the 's1 table.

尚上記試験片を用いて動物試験を行なったところ、 いずれも2週間で非常に良好な骨誘導能を示した。In addition, when an animal test was conducted using the above test piece, All showed very good osteoinductive ability within 2 weeks.

果 表 本発明に係る燐酸カルシウム化合物成形体は、燐酸カル
シウム化合物を含有するスラリーを含浸した後焼成して
得られたものであるので、比較例に比べて強度が向上し
ていることがわかるヶまた上記スラリーの含浸・乾燥工
程を5回繰り返した本発明例6は特に強度が高いことが
わかる。
Fruit surface The calcium phosphate compound molded product according to the present invention is obtained by impregnating a slurry containing a calcium phosphate compound and then firing it, so it can be seen that the strength is improved compared to the comparative example. Furthermore, it can be seen that Example 6 of the present invention, in which the above slurry impregnation and drying steps were repeated five times, had particularly high strength.

[発明の効果] 本発明は以上のように構成されているので、骨芽細胞の
侵入性が良く、適度なCaの溶出により新生骨の形成が
すみやかに行なわれると共に、骨欠損部充填材として優
れた機械的強度を有する燐酸カルシウム化合物成形体お
よびその製造方法が提供できることとなりた。
[Effects of the Invention] Since the present invention is configured as described above, osteoblasts have good invasiveness, new bone is formed quickly due to appropriate elution of Ca, and it can be used as a filling material for bone defects. A calcium phosphate compound molded article having excellent mechanical strength and a method for producing the same can now be provided.

Claims (2)

【特許請求の範囲】[Claims] (1)30〜500μmの開口径を有する骨芽細胞侵入
孔を内包することによって成形体表面積の10倍以上の
表面積を有するとともに、前記骨芽細胞侵入孔を除いた
基質部における気孔の気孔率が30%以下である燐酸カ
ルシウム化合物成形体であって、上記基質部における気
孔に前記燐酸カルシウムと同一又は異なった燐酸カルシ
ウム化合物の微粒子を侵入せしめてなることを特徴とす
る燐酸カルシウム化合物成形体。
(1) It has a surface area that is more than 10 times the surface area of the molded product by including osteoblast entry holes with an opening diameter of 30 to 500 μm, and the porosity of the pores in the matrix excluding the osteoblast entry holes. 30% or less, the calcium phosphate compound molded product being characterized in that fine particles of a calcium phosphate compound that is the same as or different from the calcium phosphate are infiltrated into the pores in the substrate portion.
(2)請求項(1)記載の燐酸カルシウム化合物成形体
を製造する方法であって、粒径5μm以下の燐酸カルシ
ウム化合物粉末およびバインダ液から平均粒径30〜2
00μmの1次粒子を造粒し、次いで該1次粒子、前記
バインダ液と同一又は異なったバインダ液および前記燐
酸カルシウム化合物と同一又は異なった燐酸カルシウム
化合物粉末から2次粒子を造粒した後、該2次粒子をそ
のままあるいは焼成した後、前記バインダ液と同一又は
異なったバインダ液を加えて成形し、得られた成形体を
そのままあるいは焼成した後、前記燐酸カルシウム化合
物と同一又は異なった燐酸カルシウム化合物を含有する
スラリーを含浸して焼成することを特徴とする燐酸カル
シウム化合物成形体の製造方法。
(2) A method for producing a calcium phosphate compound molded article according to claim (1), wherein the calcium phosphate compound powder having a particle size of 5 μm or less and a binder liquid are used to produce an average particle size of 30 to 2 μm.
After granulating primary particles of 00 μm, and then granulating secondary particles from the primary particles, a binder liquid that is the same as or different from the binder liquid, and a calcium phosphate compound powder that is the same or different from the calcium phosphate compound, The secondary particles are molded as they are or after being fired, a binder liquid the same as or different from the binder liquid is added thereto, and the obtained molded body is molded as is or after being fired, a calcium phosphate compound which is the same as or different from the calcium phosphate compound is added. 1. A method for producing a calcium phosphate compound molded article, which comprises impregnating a slurry containing the compound and firing the resulting product.
JP2081793A 1990-03-28 1990-03-28 Calcium phosphate compound molded article and method for producing the same Expired - Lifetime JP2892092B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2081793A JP2892092B2 (en) 1990-03-28 1990-03-28 Calcium phosphate compound molded article and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2081793A JP2892092B2 (en) 1990-03-28 1990-03-28 Calcium phosphate compound molded article and method for producing the same

Publications (2)

Publication Number Publication Date
JPH03280958A true JPH03280958A (en) 1991-12-11
JP2892092B2 JP2892092B2 (en) 1999-05-17

Family

ID=13756369

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2081793A Expired - Lifetime JP2892092B2 (en) 1990-03-28 1990-03-28 Calcium phosphate compound molded article and method for producing the same

Country Status (1)

Country Link
JP (1) JP2892092B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100515404B1 (en) * 2002-02-01 2005-09-16 한국화학연구원 A method for the preparation of bone filler with rugged surface

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100515404B1 (en) * 2002-02-01 2005-09-16 한국화학연구원 A method for the preparation of bone filler with rugged surface

Also Published As

Publication number Publication date
JP2892092B2 (en) 1999-05-17

Similar Documents

Publication Publication Date Title
JP3679570B2 (en) Bone prosthetic material and manufacturing method thereof
JP3362267B2 (en) Bioimplant material and method for producing the same
US5034352A (en) Calcium phosphate materials
US4693986A (en) Ceramic process and products
US6235225B1 (en) Process for producing biocompatible implant material
GB2348872A (en) Calcium phosphate porous sintered body and production thereof
JP2001224679A (en) Porous ceramic body
Lee et al. Selective laser sintering of bioceramic materials for implants
EP0313090B1 (en) Porous ceramic material
CA2611380A1 (en) Shaped article
JP3940770B2 (en) Method for producing porous ceramic implant material and porous ceramic implant material produced by the method
WO1987004110A1 (en) Ceramic processing and products
JPH03280958A (en) Calcium phosphate compound molded object and its manufacture
JP6005046B2 (en) Porous body and method for producing porous body
JP4866765B2 (en) Calcium phosphate sintered porous body and calcium phosphate sintered porous granule
JPH0415062A (en) Living body material with multiphase structure and its manufacture
JP2783565B2 (en) Calcium phosphate compound granules and method for producing the same
JPH06296676A (en) Bioimplant material and its production
JP5783864B2 (en) Bioabsorbable implant and method for producing the same
JP2539501B2 (en) Calcium phosphate-based compound molded body and method for producing the same
JPH0848583A (en) Production of porous ceramics and green compact used for the same
KR950010812B1 (en) Process for the preparation of sintering apatite ceramics
JP2004115297A (en) Method for manufacturing hydroxyapatite porous sintered material
JP2506826B2 (en) Granular inorganic molded body and method for producing the same
JPH026375A (en) Production of porous ceramic material and green compact for use in said production