JPH0328059A - Control device for load sensing valve - Google Patents

Control device for load sensing valve

Info

Publication number
JPH0328059A
JPH0328059A JP16252789A JP16252789A JPH0328059A JP H0328059 A JPH0328059 A JP H0328059A JP 16252789 A JP16252789 A JP 16252789A JP 16252789 A JP16252789 A JP 16252789A JP H0328059 A JPH0328059 A JP H0328059A
Authority
JP
Japan
Prior art keywords
hydraulic pressure
liquid pressure
master cylinder
value
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16252789A
Other languages
Japanese (ja)
Inventor
Katsuya Miyake
勝也 三宅
Yoshiaki Hirobe
広部 義昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Akebono Brake Industry Co Ltd
Original Assignee
Akebono Brake Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Akebono Brake Industry Co Ltd filed Critical Akebono Brake Industry Co Ltd
Priority to JP16252789A priority Critical patent/JPH0328059A/en
Publication of JPH0328059A publication Critical patent/JPH0328059A/en
Pending legal-status Critical Current

Links

Landscapes

  • Hydraulic Control Valves For Brake Systems (AREA)

Abstract

PURPOSE:To give a proper fold point liquid pressure and establish the ideal characteristic with four-wheel simultaneous lock by putting a solenoid valve in communication or shutting it off under control on the basis of the result from comparison of the valve given by a master cylinder liquid pressure sensing means with the corrected fold point liquid pressure value. CONSTITUTION:A control device for a load sensing valve according to the present invention includes a master cylinder liquid pressure sensing means 15, brake switch SW, load calculating means 22, fundamental fold point liquid pressure setting means 18, memory device 23, and car body deceleration sensing means 16. The fold point liquid pressure correction amount (e) is calculated by a fold point liquid pressure correction amount calculating means 19 from the value P given by the mentioned master cylinder liquid pressure sensing means 15 and the valve (g) given by the car body deceleration sensing means 16, while the fundamental fold point liquid pressure value (a) of the memory device 23 is corrected with the fold point liquid pressure correction amount (e), and a corrected fold point liquid pressure value A is determined by a correcting means 20. This corrected fold point liquid pressure value A is compared with the value P given by the master cylinder liquid pressure sensing means 15, and on the basis of the result from this comparison a solenoid valve 12 is put in communication or shut off by a comparing means 21.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、車両用ブレーキにおけるロードセンシング
バルブの制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a control device for a load sensing valve in a vehicle brake.

〔従来の技術〕[Conventional technology]

ロードセンシングバルブは、マスターシリンダとりャホ
イールシリンダとの間のブレーキ液圧回路中に設けられ
、トラック、バス等の積載荷重に大きな変動を生ずる車
両において、積載状態に応じて液圧制御開始圧力(折点
)を変化させるブロボーショニングバルブであり、積載
荷重減少時の後輪の早期ロックを防止する機能がある。
The load sensing valve is installed in the brake fluid pressure circuit between the master cylinder and the wheel cylinder, and is used to adjust the fluid pressure control start pressure ( This is a blow-off valve that changes the turning point) and has the function of preventing early locking of the rear wheels when the load is reduced.

そして、従来のロードセンシングバルブの制御装置とし
て、例えば特開昭58〜105862号公報に開示され
るものがある.このロードセンシングバルブの制御装置
にあっては、車両の積載荷重を検出し、該積載荷重を表
す荷重信号を出力する荷重センサと、車両の減速度を検
出し、該減速度を表す減速度信号を出力する減速度セン
サと、後輪ブレーキに供給される制動液圧の抑制を開始
すべき折点滅速度と車両の積載荷重との予め定められた
一定の関係に基づいて、前記荷重信号が表すMi戦荷重
に対応した折点滅速度を決定し、前記減速度信号が表す
車両の減速度がその上昇に伴って該折点滅速度を上回っ
たとき抑制信号を出力する制IIl装置と、マスタシリ
ンダと後輪ブレーキとを接続する流体回路中に介挿され
、前記抑制信号に従って該マスタシリンダから後輪ブレ
ーキに供給される制動液圧を抑制する液圧制御弁とを含
む。
As a conventional load sensing valve control device, there is one disclosed in, for example, Japanese Patent Laid-Open No. 105862/1983. This load sensing valve control device includes a load sensor that detects the live load of the vehicle and outputs a load signal representing the live load, and a deceleration signal that detects the deceleration of the vehicle and represents the deceleration. The load signal is determined based on a predetermined constant relationship between the deceleration sensor that outputs the deceleration sensor, the flashing speed at which the brake fluid pressure supplied to the rear wheel brakes should start to be suppressed, and the vehicle's carrying load. a master cylinder; The hydraulic pressure control valve is inserted into a fluid circuit connecting the rear wheel brake, and suppresses the brake hydraulic pressure supplied from the master cylinder to the rear wheel brake in accordance with the suppression signal.

〔発明が解決しようとする諜B] しかしながら、この種の従来のロードセンシングバルブの制御装置にあっては、積載荷重に対応した折点滅速度を求め、車両の減速度が折点滅速度を上回ったときにマスタシリンダから後輪ブレーキに供給される制動液圧を抑制するようになっていたため、減速度と制動液圧とを良好に対応させることができないという不具合がある.例えばライニング又はパッドの摩擦係数が高い状態で走行し、ブレーキペダルを踏込み、所定の減速度つまり折点滅速度を生した際、抑制信号を出力すると、ブレーキペダルの踏込み力が大きい場合には、後輪ブレーキに供給される制動液圧が既に上昇してしまい、折点液圧が高めに設定され、逆にブレーキペダルの踏込み力が小さい場合には、後輪ブレーキに供給される制動液圧が低めに設定される。加えて、車両の積載荷重を検出する荷重センサとして、車両のばね上・ばね下間の変位量から積載荷重を求めるものを使用すると、制動時には、ばね上・ばね下間の変位量が一定せず、正確なm載荷重を求めることができず、その結果、不適性な制動液圧を与えてしまい、四輪同時ロックの理想的な特性を与えることができなかった.〔課題を解決するための手段〕[Intelligence B that the invention attempts to solve] However, in this type of conventional load sensing valve control device, the turn-off speed corresponding to the load is determined, and when the deceleration of the vehicle exceeds the turn-off speed, the master cylinder supplies the signal to the rear wheel brake. Since the system was designed to suppress the brake fluid pressure that is applied to the vehicle, there is a problem in that deceleration and brake fluid pressure cannot be made to correspond well. For example, when driving with a high friction coefficient of the lining or pad and depressing the brake pedal to produce a predetermined deceleration, that is, a flashing speed, if a suppression signal is output, if the brake pedal depression force is large, the If the brake fluid pressure supplied to the rear wheel brakes has already increased and the corner fluid pressure is set high, and conversely the brake pedal depression force is small, the brake fluid pressure supplied to the rear wheel brakes will increase. It is set low. In addition, if a load sensor that detects the vehicle's live load is one that calculates the live load from the amount of displacement between the sprung mass and unsprung mass of the vehicle, the amount of displacement between the sprung mass and unsprung mass will be constant during braking. First, it was not possible to determine the accurate m load, and as a result, inappropriate braking fluid pressure was applied, making it impossible to provide the ideal characteristics of four-wheel simultaneous locking. [Means to solve the problem]

この発明は、このような従来の技術的課題に鑑みてなさ
れたものであり、その構成は、制動作動時に圧液を発生
するマスタシリンダと、該マスタシリンダの液室に連通
される流入ポートと、後輪ホイールシリンダに連通され
る流出ポートとを有するシリンダ体と、該シリンダ体の
内部空間に摺動自在に嵌挿され、該流入ポートに連通ず
る第1液室と、該流出ポートに運通ずる第2液室とを区
画すると共に、その受圧面積差に作用する液圧によって
前記両液室間に設けたバルブを開閉するビストンと、該
バルブを解放するように、ブロボーショニングスプリン
グを介して該ピストンを付勢するパワーピストンと、該
パワーピストンを付勢するブレーキ液が供給される封じ
込め室と、該封じ込め室にブレーキ液を供給する通液路
に介在し、該通液路を連通又は遮断する電磁弁とを備え
るロードセンシングバルブの制御装置であって、マスタ
ーシリンダ液圧検出手段と、制動作動状態又は非制動作
動状態を検出するブレーキ検出手段と、非制動作動状態
にて、車両のばね上・ばね下間の変位量から積載荷重を
求める積載荷重演算手段と、該積載荷重演算手段の設定
値に応して、基本折点液圧値を求める基本折点液圧設定
手段と、該基本折点液圧値を記憶する記憶装置と、制動
作動状態にて、車体減速度を検出する車体減速度検出手
段と、マスターシリンダ液圧検出手段の検出値と、該車
体減速度検出手段の検出値とから、折点液圧補正量を演
算する折点液圧補正量演算手段と、該折点液圧補正量に
て前記記憶装置の基本折点液圧値を補正し、補正折点液
圧値を求める補正手段と、該補正折点液圧値と該マスタ
ーシリンダ液圧検出手段の検出値とを比較し、この比較
結果に基づいて、前記電磁弁を連通又は遮断制御する比
較手段とを備えるロードセンシングバルブの制御装置で
ある. 〔作用〕 しかして、ロードセンシングバルブは、ブレーキペダル
の踏み込みにより、マスタシリンダの液室のブレーキ液
が、シリンダ体の流入ポートから第1液室に流入し、解
放状態のバルブ及び第2液室を経て、後輪ホイールシリ
ンダに供給され、制動力を生ずる.液圧が上昇して折点
に達したなら、ピストンがその受圧面積差に作用する液
圧によって摺動し、第l液室と第2液室とをバルブによ
って遮断し、その後所定の比率にて減圧されたブレーキ
液を後輪ホイールシリンダに供給し、後輪の早期ロツク
を防止する.この折点を生戒する後輪ホイールシリンダ
の液圧は、封じ込め室に供給された液圧に依存するもの
であり、ブレーキ液を供給する配管に介在させた電磁弁
の連通・遮断により、変更することができる。
The present invention was made in view of such conventional technical problems, and consists of a master cylinder that generates pressurized fluid during braking operation, and an inflow port that communicates with the fluid chamber of the master cylinder. , a cylinder body having an outflow port communicating with the rear wheel cylinder; a first liquid chamber slidably inserted into the internal space of the cylinder body and communicating with the inflow port; A piston that opens and closes a valve provided between the two liquid chambers according to the liquid pressure acting on the difference in pressure receiving area, and a blown-off spring that opens and opens the valve. A power piston that biases the piston, a containment chamber that is supplied with brake fluid that biases the power piston, and a fluid passageway that supplies brake fluid to the containment chamber, and communicates with the fluid passageway. or a control device for a load sensing valve comprising a solenoid valve that shuts off, a master cylinder hydraulic pressure detection means, a brake detection means for detecting a braking operating state or a non-braking operating state, a live load calculation means for calculating a live load from the amount of displacement between the sprung and unsprung parts; and a basic corner point hydraulic pressure setting means for calculating a basic corner point hydraulic pressure value according to a set value of the live load calculation means. , a storage device for storing the basic corner point hydraulic pressure value, a vehicle deceleration detection means for detecting vehicle deceleration in a braking operation state, a detected value of the master cylinder hydraulic pressure detection means, and the vehicle deceleration detection. a corner point hydraulic pressure correction amount calculation means for calculating a corner point hydraulic pressure correction amount from the detection value of the means; A correction means for determining a corner point hydraulic pressure value compares the corrected corner point hydraulic pressure value with a detection value of the master cylinder hydraulic pressure detection means, and controls the solenoid valve to open or shut off based on the comparison result. This is a load sensing valve control device equipped with a comparison means. [Operation] Accordingly, in the load sensing valve, when the brake pedal is depressed, the brake fluid in the fluid chamber of the master cylinder flows into the first fluid chamber from the inflow port of the cylinder body, and the valve in the open state and the second fluid chamber It is then supplied to the rear wheel cylinder to generate braking force. When the hydraulic pressure rises and reaches a turning point, the piston slides due to the hydraulic pressure acting on the difference in the pressure receiving area, and the first liquid chamber and the second liquid chamber are shut off by a valve, and then a predetermined ratio is reached. The system supplies reduced pressure brake fluid to the rear wheel cylinders to prevent the rear wheels from locking up early. The hydraulic pressure in the rear wheel cylinders that takes care of this turning point depends on the hydraulic pressure supplied to the containment chamber, and can be changed by connecting or shutting off the solenoid valve interposed in the piping that supplies the brake fluid. can do.

このようなロードセンシングバルブを用いた本制御装置
では、ブレーキ検出手段にて制動作動状態か否かを検出
し、非制動作動状態にて、ばね上・下間の変位量を用い
て積載荷重演算手段にて積載荷重を求める。この積載荷
重演算手段の設定値は、基本折点液圧設定手段に供給し
、積載荷重に応した標準的な基本折点液圧値を求める。
In this control device using such a load sensing valve, the brake detecting means detects whether braking is in operation or not, and when the brake is not in operation, the load is calculated using the displacement between the upper and lower parts of the spring. Determine the live load by means. The set value of the live load calculating means is supplied to the basic corner point hydraulic pressure setting means to obtain a standard basic corner point hydraulic pressure value corresponding to the live load.

この基本折点液圧値は、記憶装置に一旦記憶させる。This basic corner point hydraulic pressure value is temporarily stored in the storage device.

ブレーキ検出手段にて制動作動状態が検出され、かつ、
電磁弁が連通状態の場合に、車体減速度検出手段の検出
値及びマスターシリンダ液圧検出手段の検出値を用いて
、折点液圧補正量演算手段にて折点液圧補正量を演算す
る。更に、記憶装置に記憶させた基本折点戒圧値を用い
て、補正手段において、前記基本折点液圧値を補正し、
補正折点液圧値を求める。
The braking operation state is detected by the brake detection means, and
When the solenoid valve is in communication, the corner point hydraulic pressure correction amount is calculated by the corner point hydraulic pressure correction amount calculation means using the detected value of the vehicle body deceleration detection means and the detected value of the master cylinder hydraulic pressure detection means. . Further, the correction means corrects the basic turning point hydraulic pressure value using the basic turning point command pressure value stored in the storage device,
Find the corrected corner fluid pressure value.

次に、この補正後の補正折点液圧値とマスターシリンダ
液圧検出手段の検出値とを、比較手段にて比較すると共
に、マスターシリンダ液圧検出手段の検出値の方が補正
折点液圧値よりも大きくなった場合、電磁弁を遮断して
封じ込め室に理想的な補正折点液圧値に該当するブレー
キ液を封じ込める. 一方、既に電磁弁が遮断制御されてはいるが、マスター
シリンダ液圧検出手段の検出値が補正折点液圧値よりも
小さい場合には、封じ込め室のブレーキ液圧を制御する
必要がないため、電磁弁を連通させる.このようにして
、封じ込め室の圧力が車両の積載荷重に応した適正な折
点液圧に設定されるので、ロードセンシングバルブに適
正な折点が生戒される. 〔実施例3 以下、この発明の実施例について図面を参照して説明す
る. 第1図は、この発明の構成要素の配置を示し、第2図は
、この発明のl実施例の構成要素の配置を示す。
Next, the corrected corner hydraulic pressure value after the correction and the detected value of the master cylinder hydraulic pressure detection means are compared by the comparison means, and the detected value of the master cylinder hydraulic pressure detection means is higher than the corrected corner hydraulic pressure value. If the pressure exceeds this value, the solenoid valve is shut off and the brake fluid corresponding to the ideal corrected corner fluid pressure value is contained in the containment chamber. On the other hand, if the solenoid valve has already been controlled to shut off, but the detected value of the master cylinder hydraulic pressure detection means is smaller than the corrected corner hydraulic pressure value, there is no need to control the brake hydraulic pressure in the containment chamber. , connect the solenoid valve. In this way, the pressure in the containment chamber is set to the appropriate turning point fluid pressure according to the vehicle's carrying load, so the load sensing valve is alerted to the appropriate turning point. [Embodiment 3] Hereinafter, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 shows the arrangement of the components of the present invention, and FIG. 2 shows the arrangement of the components of an embodiment of the invention.

第2図において、符号1はタンデム型のマスターシリン
ダであり、ブレーキペダル2の踏み込みにより、前輪側
液室1aの圧液が図外の一対の前輪の各前輪ホイールシ
リンダに配管29を介して供給され、また後輪側液室1
bの圧液が後輪3の一対の後輪ホイールシリンダ4に配
管28を介して供給され、それぞれ制動力を生ずる。こ
こに、後輪ホイールシリンダ4は、ドラムブレーキのホ
イールシリンダ又はディスクブレーキのシリンダである
In FIG. 2, reference numeral 1 designates a tandem-type master cylinder, and when the brake pedal 2 is depressed, pressurized fluid in the front wheel side fluid chamber 1a is supplied to each front wheel cylinder of a pair of front wheels (not shown) via piping 29. Also, the rear wheel side liquid chamber 1
The pressure fluid b is supplied to the pair of rear wheel cylinders 4 of the rear wheels 3 via piping 28, and each generates a braking force. Here, the rear wheel cylinder 4 is a drum brake wheel cylinder or a disc brake cylinder.

この後輪ホイールシリンダ4に接続する配管28に、液
圧変調器l2に電磁弁l3が組込まれたロードセンシン
グバルブ1lが介在される.液圧変調器l2は、配管2
8の後輪側液室lb側に接続される流入ポート31と後
輪ホイールシリング4側に接続される流出ポート32と
がシリンダ体3日に形成され、シリンダ体38の内部空
間にピストン30が摺動自在に嵌挿されている.このシ
リンダ体38及びピストン3oには、両ポート31,3
2を連通する第1液室33及び第2液室34と、両液室
33,34間のバルブ35(弁座35Bと、弁座35a
に着座して両液室33.34を遮断するようにピストン
30に形威したバルブ体35b)とが備えられる。45
はスプリングである。またシリンダ体38には、戻しス
プリング39とピストン30を付勢するプロボーショニ
ングスプリング40とで付勢されてシリンダ体38に摺
動自在に嵌合するパワーピストン41と、封じ込め室4
2とが備えられ、流入ポート3lは、第1 ?&室33
、後記するバルブ体13cを収容するバルブ体収容空間
43を中間に備える通液路36を介して封じ込め室42
に接続されて、封じ込め室42にマスターシリンダ1の
後輪側液室1bと同圧のブレーキ液が供給されるように
なっている. バルブ体収容空間43に配設される電磁弁13は、ソレ
ノイド13aとスプリング13bとを有する開閉弁であ
り、スプリング13bにて付勢された一方の常態位置で
バルブ体13cがバルブ体収容空間43の弁座13dへ
の着座を解放され、封じ込め室42にブレーキ液を供給
し、またソレノイド13aにて付勢された他方の位置で
バルブ体13cが弁座13dに着座し、封じ込め室42
にブレーキ液を封じ込める. しかして、ロードセンシングバルブ11は、ブレーキヘ
タル2の踏み込みにより、マスタシリンダ1の後輪側液
室1bのブレーキ液が、シリンダ体38の流入ポート3
1から第1液室33に流入し、解放状態のバルブ35及
び第2液室34を経て、後輪ホイールシリンダ4に供給
され、制動力を生ずる.液圧が上昇して折点液圧に達し
たなら、ピストン30がその受圧面積差に作用する液圧
によって摺動し、第1液室33と第2液室34とをバル
ブ35によって遮断し、その後所定の比率にて減圧され
たブレーキ液を後輪ホイールシリンダ4に供給し、後輪
の早期ロツクを防止する.この折点を生成する後輪ホイ
ールシリンダ4の液圧は、封じ込め室42に供給された
液圧に依存するものであり、ブレーキ液を供給する通液
路36に介在させた電磁弁l3の連通・遮断により、変
更することができる. 44はマイクロコンピュータであり、インクフエース、
マイクロプロセッサ及びメモリを有し、第l図に示す基
本折点液圧設定手段1日、折点液圧補正量演算千段l9
、補正千段20、比較千段21、積載荷重演算手段22
及び記憶装置23として機能する.このマイクロコンピ
ュータ44のインタフェースには、第2図に示すように
、電磁弁13のソレノイド13a,ブレーキベダル2の
踏み込みの有無つまり制動作動状態又は非制動作動状態
を検出するブレーキ検出手段であるブレーキスイッチS
W1マスタシリンダ1の後輪側液室lbの圧力Pを検出
するマスターシリンダ液圧検出千段15、車両の車体2
6に装備された車体減速度検出手段16及び車両のばね
上・ばね下間の変位量を求める変位計24が接続される
.変位計24は、車両のサスペンションのばね25より
も上位置となる車体26と、ばね25よりも下位置とな
る車軸管27との間の相対変位量を、ブレーキペダル2
が踏み込み作動されていない非制動作動状態にて求める
もので、例えば電気マイクロメータである.この変位計
24のアナログ信号としての検出値は、図外のA/D変
換器にてデジタル信号化してマイクロコンピュータ44
に供給され、第1図に示すように、積載荷重演算千段2
2にて現在(非制動作動状態、できれば非走行状態)の
積載荷重が求められる.次いで、この積載荷重演算手段
22の設定値を基本折点液圧設定手段l8に供給し、ラ
イニング又はパッドが標準的な摩擦係数を有する状態で
の積載荷重に応した折点液圧値に相当する基本折点液圧
値aを求める.この基本折点液圧値aは、記憶装置23
に一旦記憶させる. そして、車両が走行し、ブレーキペダル2が踏み込み作
動され、ブレーキスイッチSWがON作動したなら、車
体減速度検出手段l6にて車体減速度gを検出する。次
いで、この車体減速度検出手段の検出値gとマスターシ
リンダ液圧検出千段l5の検出値Pとを用い、折点液圧
補正量演算千段19にて折点液圧補正量eを演算する。
A load sensing valve 1l in which a solenoid valve 13 is incorporated into a hydraulic pressure modulator 12 is interposed in a pipe 28 connected to the rear wheel cylinder 4. The hydraulic pressure modulator l2 is connected to the piping 2
An inflow port 31 connected to the rear wheel liquid chamber lb side of the cylinder body 8 and an outflow port 32 connected to the rear wheel cylinder 4 side are formed on the third cylinder body, and the piston 30 is inserted into the internal space of the cylinder body 38. It is slidably inserted. This cylinder body 38 and piston 3o have both ports 31, 3
A first liquid chamber 33 and a second liquid chamber 34 communicate with each other, and a valve 35 (valve seat 35B and valve seat 35a) between both liquid chambers 33 and
A valve body 35b) mounted on the piston 30 is provided so as to sit on the piston 30 and shut off both liquid chambers 33 and 34. 45
is a spring. The cylinder body 38 also includes a power piston 41 that is biased by a return spring 39 and a provisioning spring 40 that biases the piston 30 and is slidably fitted into the cylinder body 38, and a containment chamber 4.
2 and the inflow port 3l is the first ? & room 33
, a containment chamber 42 via a liquid passage 36 having a valve body housing space 43 in the middle for housing a valve body 13c to be described later.
The brake fluid having the same pressure as the rear wheel side fluid chamber 1b of the master cylinder 1 is supplied to the containment chamber 42. The electromagnetic valve 13 disposed in the valve body housing space 43 is an on-off valve having a solenoid 13a and a spring 13b, and the valve body 13c is in one normal position biased by the spring 13b in the valve body housing space 43. The valve body 13c is released from seating on the valve seat 13d, and brake fluid is supplied to the containment chamber 42, and the valve body 13c is seated on the valve seat 13d in the other position where it is energized by the solenoid 13a.
Contains brake fluid. Thus, when the brake pedal 2 is depressed, the load sensing valve 11 causes the brake fluid in the rear wheel side fluid chamber 1b of the master cylinder 1 to flow into the inflow port 3 of the cylinder body 38.
1 flows into the first liquid chamber 33, passes through the open valve 35 and the second liquid chamber 34, and is supplied to the rear wheel cylinder 4 to generate braking force. When the fluid pressure rises and reaches the corner fluid pressure, the piston 30 slides due to the fluid pressure acting on the difference in pressure receiving area, and the first fluid chamber 33 and the second fluid chamber 34 are shut off by the valve 35. Then, brake fluid whose pressure has been reduced at a predetermined ratio is supplied to the rear wheel cylinder 4 to prevent the rear wheels from locking up early. The hydraulic pressure in the rear wheel cylinder 4 that generates this turning point depends on the hydraulic pressure supplied to the containment chamber 42, and the hydraulic pressure in the rear wheel cylinder 4 that generates this turning point depends on the hydraulic pressure supplied to the containment chamber 42.・Can be changed by blocking. 44 is a microcomputer, an ink face,
It has a microprocessor and a memory, and has a basic corner point hydraulic pressure setting means as shown in FIG.
, correction 1,000 steps 20, comparison 1,000 steps 21, live load calculation means 22
and functions as a storage device 23. As shown in FIG. 2, the interface of this microcomputer 44 includes a solenoid 13a of the electromagnetic valve 13, and a brake switch which is a brake detection means for detecting whether or not the brake pedal 2 is depressed, that is, whether braking is activated or not. S
W1 Master cylinder hydraulic pressure detection stage 15 for detecting the pressure P of the rear wheel side liquid chamber lb of the master cylinder 1, the vehicle body 2
6 is connected to a vehicle deceleration detecting means 16 and a displacement meter 24 for determining the amount of displacement between the sprung and unsprung portions of the vehicle. The displacement meter 24 measures the amount of relative displacement between the vehicle body 26, which is located above the spring 25 of the vehicle suspension, and the axle tube 27, which is located below the spring 25, based on the brake pedal 2.
This is determined in a non-braking state where the brake pedal is not pressed, such as an electric micrometer. The detected value as an analog signal of this displacement meter 24 is converted into a digital signal by an A/D converter (not shown) and sent to a microcomputer 44.
As shown in Figure 1, the live load calculation stage 2
In step 2, the current (non-braking operating state, preferably non-travelling state) live load is determined. Next, the setting value of the live load calculating means 22 is supplied to the basic corner hydraulic pressure setting means 18, and the set value corresponds to the corner hydraulic pressure value corresponding to the carrying load in a state where the lining or pad has a standard friction coefficient. Find the basic corner point liquid pressure value a. This basic corner point liquid pressure value a is stored in the storage device 23.
Let it be memorized once. When the vehicle is running and the brake pedal 2 is depressed and the brake switch SW is turned on, the vehicle deceleration detecting means 16 detects the vehicle deceleration g. Next, using the detected value g of the vehicle body deceleration detection means and the detected value P of the master cylinder hydraulic pressure detection stage 15, the corner point hydraulic pressure correction amount e is calculated in the corner point hydraulic pressure correction amount calculation stage 19. do.

この折点液圧補正i1eを用いて、補正手段20におい
て、前記記憶装置23に記憶させた標準的な基本折点液
圧値aを補正し、補正折点液圧値Aを求める。この補正
後の補正折点液圧値Aとマスターシリンダ液圧検出千段
15の検出値Pとを比較し、この比較結果に基づいて、
前記電磁弁13を連通又は遮断制御する電気信号を比較
千段2lから送出する。但し、この電磁弁l3にあって
は、常態にてスプリング13bにて付勢されて連通状態
にあり、電気的欠陥を発生した際には、後輪ホイールシ
リンダ4に無制御のブレーキ液が供給されるため、フエ
イルセーフとなっている.また、車体減速度検出手段l
6は、車体減速度を検出するGセンサー等からなり、マ
スターシリンダ液圧検出手段15は、圧力センサー等か
らなる。この車体減速度検出千段l6及びマスターシリ
ンダ液圧検出千段l5のアナログ信号としての検出値も
、図外のA/D変換器にてデジタル信号化される。
Using this corner point hydraulic pressure correction i1e, the standard basic corner point hydraulic pressure value a stored in the storage device 23 is corrected in the correction means 20 to obtain a corrected corner point hydraulic pressure value A. This corrected corner point hydraulic pressure value A after correction is compared with the detection value P of the master cylinder hydraulic pressure detection stage 15, and based on the comparison result,
An electric signal for controlling communication or disconnection of the electromagnetic valve 13 is sent from the comparison stage 2l. However, this solenoid valve l3 is normally biased by the spring 13b and in a communicating state, and when an electrical fault occurs, uncontrolled brake fluid is supplied to the rear wheel cylinder 4. This makes it fail-safe. In addition, vehicle body deceleration detection means l
Reference numeral 6 includes a G sensor or the like for detecting vehicle deceleration, and master cylinder hydraulic pressure detection means 15 includes a pressure sensor or the like. The detected values as analog signals of the 1,000-stage vehicle deceleration detection l6 and the 1,000-stage master cylinder hydraulic pressure detection l5 are also converted into digital signals by an A/D converter (not shown).

このようなロードセンシングバルブ1lの制御装置は、
第3図に示すフローチャートに従って、次のように制御
される。先ず当初段階として、ステップ■にてブレーキ
ペダル2が踏み込み状態か否かすなわちブレーキスイッ
チSWがONされたか否かを判断し、ブレーキスイッチ
SWがOFFの状態つまり非制動時望ましくは車両の停
止時に、ばね上・下間の変位量を変位計24によって検
出し(ステップ■)、この検出値をマイクロコンピュー
タ44に供給し、積載荷重演算千段22にて!載荷重を
求める(ステップ■)。この積載荷重演算千段22の演
算値に基づいて、マイクロコンピュータ44のROMに
予め記憶させた種々の折点液圧値から積載荷重に応した
標準的な基本折点液圧(aaを求め(ステップ■)、こ
の基本折点液圧{1aは、ステップ■にてマイクロコン
ピュータ44の記憶装置23に一旦記憶させる。この基
本折点液圧値aは、ライニング又はパッドの摩擦係数が
標準値を示す場合の値であり、第4図に示すようにばね
上・下間の変位量が大きいつまり積載荷重が大きくなる
に従って、基本折点液圧値aも次第に大きくなる特性を
有する。
The control device for such a load sensing valve 1l is as follows:
According to the flowchart shown in FIG. 3, control is performed as follows. First, as an initial step, it is determined in step (2) whether the brake pedal 2 is depressed or not, that is, whether the brake switch SW is turned on. The amount of displacement between the upper and lower parts of the spring is detected by the displacement meter 24 (step ■), this detected value is supplied to the microcomputer 44, and the live load calculation stage 22 is operated! Find the loading load (step ■). Based on the calculated value of the live load calculation stage 22, the standard basic corner fluid pressure (aa) corresponding to the live load is determined from various corner fluid pressure values stored in advance in the ROM of the microcomputer 44. Step (2), this basic corner point hydraulic pressure {1a is temporarily stored in the storage device 23 of the microcomputer 44 in step (2). As shown in FIG. 4, as the amount of displacement between the upper and lower parts of the spring increases, that is, the load increases, the basic corner point hydraulic pressure value a also gradually increases.

次に、ブレーキスイッチSWがONされたなら、ステッ
プ■に移り、電磁弁13のソレノイド13aがONか否
かを判断し、ソレノイド13aがOFFの場合には、ス
テップ■に進んで車体減速度検出手段l6の検出値を読
込み、更にステップ■にてマスターシリンダ液圧検出手
段15の検出値Pを読込む。その後、ステップ■に移り
、車体減速度検出手段l6の検出値gとマスターシリン
ダ液圧検出千段15の検出値Pとを用いて、折点液圧補
正量演算手段l9にて折点液圧補正量eを演算する.こ
の折点液圧補正51eは、ライニング又はパッドの摩擦
係数の大小に依存して変化する値であり、第5図に示す
減速度g/マスターシリンダ液圧Pの値が大きくなるに
従って、ライニング又はパッドの摩擦係数が大きくなる
。ライニング又はパッドの摩擦係数が大きく、基本折点
液圧値aよりも低いマスターシリンダ液圧Pによって大
きな減速度gが得られる場合には、折点液圧補正i1e
を次第に小さくし、負数にする。
Next, when the brake switch SW is turned on, the process moves to step 2, and it is determined whether the solenoid 13a of the solenoid valve 13 is on. If the solenoid 13a is OFF, the process proceeds to step 2, and the vehicle body deceleration is detected. The detected value of the means 16 is read, and further the detected value P of the master cylinder hydraulic pressure detecting means 15 is read in step (3). Thereafter, the process moves to step (2), and using the detection value g of the vehicle body deceleration detection means 16 and the detection value P of the master cylinder hydraulic pressure detection stage 15, the corner point hydraulic pressure is determined by the corner point hydraulic pressure correction amount calculation means 19. Calculate the correction amount e. This corner hydraulic pressure correction 51e is a value that changes depending on the magnitude of the friction coefficient of the lining or pad, and as the value of deceleration g/master cylinder hydraulic pressure P shown in FIG. The coefficient of friction of the pad increases. If the friction coefficient of the lining or pad is large and a large deceleration g can be obtained with the master cylinder hydraulic pressure P lower than the basic corner hydraulic pressure value a, the corner hydraulic pressure correction i1e
Gradually make it smaller and make it a negative number.

ステップ[相]では、前記ステップ■にて記憶装置23
に記憶させた基本折点液圧a−t−読出し、折点液圧補
正i1eを用いて、補正千段20において、基本折点液
圧値aを補正し、補正折点液圧値Aを求める(ステップ
0).次に、ステップ@に移り、この補正後の補正折点
液圧値Aとマスターシリンダ液圧検出手段15の検出値
Pとを、比較千段21にて比較すると共に、マスターシ
リンダ液圧検出千段15の検出値Pの方が補正折点液圧
値A以上になった場合、ソレノイド13aをON作動さ
せ(ステップ0)、封じ込め室42に所定圧のブレーキ
液を封じ込め、ロードセンシングハルブl1に折点を生
威し、マスターシリンダ液圧検出手段l5の検出値Pが
補正折点液圧値A未満の場合には、ソレノイド13aを
制御することなく当初段階にリターンする。
In step [phase], the storage device 23 is
Using the readout of the basic corner hydraulic pressure a-t- stored in and the corner hydraulic pressure correction i1e, the basic corner hydraulic pressure value a is corrected in the correction stage 20, and the corrected corner hydraulic pressure value A is Find (Step 0). Next, the process moves to step @, where the corrected corner hydraulic pressure value A after the correction and the detection value P of the master cylinder hydraulic pressure detection means 15 are compared at the comparison stage 21, and the master cylinder hydraulic pressure detection unit When the detected value P of the stage 15 is equal to or higher than the corrected corner fluid pressure value A, the solenoid 13a is turned on (step 0), the brake fluid at a predetermined pressure is confined in the containment chamber 42, and the brake fluid is transferred to the load sensing hub l1. When the break point is detected and the detected value P of the master cylinder hydraulic pressure detection means 15 is less than the corrected break point hydraulic pressure value A, the process returns to the initial stage without controlling the solenoid 13a.

一方、ステップ■において、電[弁13のソレノイド1
3aが既にONの場合には、ステップ[相]に移り、マ
スターシリンダ液圧検出千段l5の検出値Pが補正折点
液圧値A未満か否かを判断し、YESの場合には、封じ
込め室42のブレーキ液圧を制御する必要がないため、
ステップ■にてソレノイド13aをOFF作動させ、当
初段階にリターンし、NOの場合には、封じ込め室42
のブレーキ液圧の制御状態を持続させるため、リターン
する. 〔発明の効果] 以上の説明によって理解されるように、この発明によれ
ば、直接に制動力に関与するマスターシリンダ液圧と補
正折点液圧とを比較して、電磁弁の制御がなされ、この
補正折点液圧が車体減速度とマスタシリンダ液圧とを用
いて求められているため、ライニング又はパッドの摩擦
係数の如何に応じた後輪のホイールシリンダ液圧が高精
度に得られ、その結果、四輪同時ロックの理想的な制御
を与えることができる。加えて、車両の積載荷重を、積
載荷重演算手段にて、非制動作動状態での車両のばね上
・ばね下間の変位量から求めるようにしたため、正i1
な積載荷重を求めることができ、その結果、適性な折点
液圧を与えることができ、四輪同時ロックの理想的な特
性を与えることができる。
On the other hand, in step (2), the solenoid 1 of the electric valve 13
If 3a is already ON, proceed to step [phase], and judge whether the detected value P of the master cylinder hydraulic pressure detection stage 15 is less than the corrected corner hydraulic pressure value A. If YES, Since there is no need to control the brake fluid pressure in the containment chamber 42,
In step (2), the solenoid 13a is turned OFF and the process returns to the initial stage. If NO, the containment chamber 42
Return to maintain the brake fluid pressure control state. [Effects of the Invention] As understood from the above explanation, according to the present invention, the solenoid valve is controlled by comparing the master cylinder hydraulic pressure, which is directly involved in braking force, and the corrected corner hydraulic pressure. Since this corrected corner hydraulic pressure is determined using the vehicle body deceleration and the master cylinder hydraulic pressure, the rear wheel wheel cylinder hydraulic pressure can be obtained with high accuracy depending on the friction coefficient of the lining or pad. , As a result, ideal control of four-wheel simultaneous locking can be provided. In addition, since the live load of the vehicle is determined by the live load calculation means from the amount of displacement between the sprung mass and unsprung mass of the vehicle in the non-braking operating state, the positive i1
As a result, an appropriate turning point hydraulic pressure can be provided, and ideal characteristics for four-wheel simultaneous locking can be provided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の構或要素の配置図、第2図はこの発
明のl実施例を示す構戒要素の配置図、第3図はフロー
チャートを示す図、第4図はばね上・下間の変位量一基
本折点液圧値の特性を示す線図、第5図は折点液圧補正
量一減速度/マスタシリンダ液圧の特性を示す線図であ
る.1:マスタシリンダ.1b=後輪側液室(液室),
2:ブレーキペダル.3:後輪,4:後輪ホイールシリ
ンダ,l1:ロードセンシングバルブ13:電磁弁,1
3a:ソレノイド,13c:バルブ体,l5:マスター
シリンダ液圧検出手段l6:車体減速度検出手段,l8
二基本折点液圧設定手段,l9:折点液圧補正量演算手
段,20:補正手段,21:比較手段.22:積載荷重
演算手段,23:記憶装置,24:変位計,25:ばね
,26:車体.30:ピストン,3l:流入ボーロ 3
2:流出ボー},33:第1液室,34:第2液室.3
5:バルブ,38:シリンダ体,40:ブロボーショニ
ングスプリング,41:パワーピストン,42:封じ込
め室,43:バルブ体収容空間,SW:ブレーキスイッ
チ(ブレーキ検出手段)。
Fig. 1 is a layout diagram of structural elements of this invention, Fig. 2 is a layout diagram of structural elements showing an embodiment of this invention, Fig. 3 is a flowchart, and Fig. 4 is a sprung upper and lower part. Fig. 5 is a diagram showing the characteristics of the displacement amount in between and the basic corner point hydraulic pressure value, and Fig. 5 is a diagram showing the characteristics of the corner point hydraulic pressure correction amount and deceleration/master cylinder hydraulic pressure. 1: Master cylinder. 1b = Rear wheel side liquid chamber (liquid chamber),
2: Brake pedal. 3: Rear wheel, 4: Rear wheel cylinder, l1: Load sensing valve 13: Solenoid valve, 1
3a: Solenoid, 13c: Valve body, l5: Master cylinder hydraulic pressure detection means l6: Vehicle deceleration detection means, l8
Two basic corner point hydraulic pressure setting means, 19: corner point hydraulic pressure correction amount calculation means, 20: correction means, 21: comparison means. 22: Live load calculation means, 23: Storage device, 24: Displacement meter, 25: Spring, 26: Vehicle body. 30: Piston, 3l: Inflow ball 3
2: Outflow bow}, 33: First liquid chamber, 34: Second liquid chamber. 3
5: Valve, 38: Cylinder body, 40: Blowing spring, 41: Power piston, 42: Containment chamber, 43: Valve body housing space, SW: Brake switch (brake detection means).

Claims (1)

【特許請求の範囲】[Claims] (1)、制動作動時に圧液を発生するマスタシリンダと
、該マスタシリンダの液室に連通される流入ポートと、
後輪ホィールシリンダに連通される流出ポートとを有す
るシリンダ体と、該シリンダ体の内部空間に摺動自在に
嵌挿され、該流入ポートに連通する第1液室と、該流出
ポートに連通する第2液室とを区画すると共に、その受
圧面積差に作用する液圧によつて前記両液室間に設けた
バルブを開閉するピストンと、該バルブを解放するよう
に、プロポーショニングスプリングを介して該ピストン
を付勢するパワーピストンと、該パワーピストンを付勢
するブレーキ液が供給される封じ込め室と、該封じ込め
室にブレーキ液を供給する通液路に介在し、該通液路を
連通又は遮断する電磁弁とを備えるロードセンシングバ
ルブの制御装置であつて、マスターシリンダ液圧検出手
段と、制動作動状態又は非制動作動状態を検出するブレ
ーキ検出手段と、非制動作動状態にて、車両のばね上・
ばね下間の変位量から積載荷重を求める積載荷重演算手
段と、該積載荷重演算手段の設定値に応じて、基本折点
液圧値を求める基本折点液圧設定手段と、該基本折点液
圧値を記憶する記憶装置と、制動作動状態にて、車体減
速度を検出する車体減速度検出手段と、マスターシリン
ダ液圧検出手段の検出値と、該車体減速度検出手段の検
出値とから、折点液圧補正量を演算する折点液圧補正量
演算手段と、該折点液圧補正量にて前記記憶装置の基本
折点液圧値を補正し、補正折点液圧値を求める補正手段
と、該補正折点液圧値と該マスターシリンダ液圧検出手
段の検出値とを比較し、この比較結果に基づいて、前記
電磁弁を連通又は遮断制御する比較手段とを備えること
を特徴とするロードセンシングバルブの制御装置。
(1) a master cylinder that generates pressure fluid during braking operation; an inflow port that communicates with the fluid chamber of the master cylinder;
a cylinder body having an outflow port that communicates with the rear wheel cylinder; a first liquid chamber that is slidably inserted into the internal space of the cylinder body and communicates with the inflow port; and a first liquid chamber that communicates with the outflow port. A piston that partitions the second liquid chamber and opens and closes a valve provided between the two liquid chambers by the liquid pressure acting on the difference in pressure receiving area, and a proportioning spring that opens the valve. A power piston that biases the piston, a containment chamber that is supplied with brake fluid that biases the power piston, and a fluid passageway that supplies brake fluid to the containment chamber, and communicates with the fluid passageway. or a control device for a load sensing valve comprising a solenoid valve that shuts off, a master cylinder hydraulic pressure detection means, a brake detection means for detecting a braking operating state or a non-braking operating state, sprung mass
A live load calculating means for calculating a live load from the amount of displacement between the unsprung parts; a basic corner hydraulic pressure setting means for calculating a basic corner hydraulic pressure value according to a setting value of the live load calculating means; A storage device for storing a hydraulic pressure value, a vehicle deceleration detecting means for detecting vehicle deceleration in a braking operation state, a detected value of the master cylinder hydraulic pressure detecting means, and a detected value of the vehicle deceleration detecting means. a corner point hydraulic pressure correction amount calculating means for calculating a corner point hydraulic pressure correction amount; and a comparison means that compares the corrected corner point hydraulic pressure value with a detected value of the master cylinder hydraulic pressure detection means and controls the solenoid valve to open or shut off based on the comparison result. A load sensing valve control device characterized by:
JP16252789A 1989-06-27 1989-06-27 Control device for load sensing valve Pending JPH0328059A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16252789A JPH0328059A (en) 1989-06-27 1989-06-27 Control device for load sensing valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16252789A JPH0328059A (en) 1989-06-27 1989-06-27 Control device for load sensing valve

Publications (1)

Publication Number Publication Date
JPH0328059A true JPH0328059A (en) 1991-02-06

Family

ID=15756310

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16252789A Pending JPH0328059A (en) 1989-06-27 1989-06-27 Control device for load sensing valve

Country Status (1)

Country Link
JP (1) JPH0328059A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6037619A (en) * 1997-03-11 2000-03-14 Kabushiki Kaisha Toshiba Field effect transistor and high-frequency power amplifier having same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58105863A (en) * 1981-12-18 1983-06-23 Toyota Motor Corp Controller for hydraulic pressure of rear wheel brake
JPS59130771A (en) * 1983-01-18 1984-07-27 Aisin Seiki Co Ltd Proportional controller for brake
JPS60191857A (en) * 1984-03-12 1985-09-30 Rizumu Jidosha Buhin Seizo Kk Fluid pressure control unit

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58105863A (en) * 1981-12-18 1983-06-23 Toyota Motor Corp Controller for hydraulic pressure of rear wheel brake
JPS59130771A (en) * 1983-01-18 1984-07-27 Aisin Seiki Co Ltd Proportional controller for brake
JPS60191857A (en) * 1984-03-12 1985-09-30 Rizumu Jidosha Buhin Seizo Kk Fluid pressure control unit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6037619A (en) * 1997-03-11 2000-03-14 Kabushiki Kaisha Toshiba Field effect transistor and high-frequency power amplifier having same

Similar Documents

Publication Publication Date Title
US5333944A (en) Electrically controlled vehicle brake system having means for controlling braking based on detected actual braking effect and determined target value
US5620237A (en) Brake device for motorcycle
US4848852A (en) Braking system for automotive vehicle
JPH03109156A (en) Trailer brake control device for tractor with electronic brake control unit
JPH03276855A (en) Turning motion controller for vehicle
JPH036019B2 (en)
KR930009841A (en) Rear wheel braking force control method and device
JP2001260851A (en) Brake control device for vehicle
JPH04345568A (en) Pressure source for pressure device
JPH0328059A (en) Control device for load sensing valve
JP2000177553A (en) Braking device of vehicle
JP4432237B2 (en) Brake control device for vehicle
JP3933722B2 (en) Brake control device
JPH0471953A (en) Brake system for vehicle
JPS62275870A (en) Vehicle skid control device
JPH04151357A (en) Brake device for vehicle
JP2725427B2 (en) Vehicle turning behavior control device
JP2627786B2 (en) Control device for load sensing valve
JP4004583B2 (en) Brake control device
JPH03246152A (en) Turning action controlling device for vehicle
JP3886265B2 (en) Brake device for triaxial vehicle
JPH04151358A (en) Brake device for vehicle
JPH07228229A (en) Rear wheel braking force control device for vehicle
JPH065926Y2 (en) Anti-skid brake device
JPH08324416A (en) Braking force control method