JPH0328052B2 - - Google Patents

Info

Publication number
JPH0328052B2
JPH0328052B2 JP56069012A JP6901281A JPH0328052B2 JP H0328052 B2 JPH0328052 B2 JP H0328052B2 JP 56069012 A JP56069012 A JP 56069012A JP 6901281 A JP6901281 A JP 6901281A JP H0328052 B2 JPH0328052 B2 JP H0328052B2
Authority
JP
Japan
Prior art keywords
charged particle
particle beam
alignment
alignment mark
mark
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56069012A
Other languages
Japanese (ja)
Other versions
JPS57184220A (en
Inventor
Yasuo Iida
Shinji Ishida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP56069012A priority Critical patent/JPS57184220A/en
Publication of JPS57184220A publication Critical patent/JPS57184220A/en
Publication of JPH0328052B2 publication Critical patent/JPH0328052B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7073Alignment marks and their environment
    • G03F9/708Mark formation
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70425Imaging strategies, e.g. for increasing throughput or resolution, printing product fields larger than the image field or compensating lithography- or non-lithography errors, e.g. proximity correction, mix-and-match, stitching or double patterning
    • G03F7/7045Hybrid exposures, i.e. multiple exposures of the same area using different types of exposure apparatus, e.g. combining projection, proximity, direct write, interferometric, UV, x-ray or particle beam
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7073Alignment marks and their environment
    • G03F9/7084Position of mark on substrate, i.e. position in (x, y, z) of mark, e.g. buried or resist covered mark, mark on rearside, at the substrate edge, in the circuit area, latent image mark, marks in plural levels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Electron Beam Exposure (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Description

【発明の詳細な説明】 本発明は、半導体デバイスの製造技術としての
荷電粒子線露光、特に直接露光における目合マー
クの保護方法に係わるものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to charged particle beam exposure as a semiconductor device manufacturing technology, particularly to a method for protecting alignment marks in direct exposure.

半導体デバイスの微細化に伴つて電子線直接露
光法等の荷電粒子露光技術が着目されているが、
本方法を実用化するためには、各製造工程を経る
たびに露光装置にある程度の誤差をもつて再挿入
されるウエハーおよびチツプの位置を正確に検出
し、既に露光したパターンとの目合せを精度よく
かつ短時間で自動化して行う必要がある。通常、
ウエハーおよびチツプの位置を検出するために
は、ウエハー上にシリコンやシリコン酸化膜の突
起や溝をあらかじめ形成しておき、それを目合マ
ークとして用い、これを荷電粒子線によつて走査
して位置検出をする方法が実施されている。
With the miniaturization of semiconductor devices, charged particle exposure technologies such as electron beam direct exposure are attracting attention.
In order to put this method into practical use, it is necessary to accurately detect the positions of wafers and chips that are re-inserted into the exposure equipment after each manufacturing process with a certain degree of error, and to align them with the patterns that have already been exposed. It is necessary to automate the process with high precision and in a short time. usually,
In order to detect the position of wafers and chips, protrusions and grooves of silicon or silicon oxide film are formed on the wafer in advance, and these are used as alignment marks and scanned with a charged particle beam. Methods for position detection have been implemented.

直接露光においては、ウエハーのそりや変形の
影響を最小にするためチツプ毎の目合せが行われ
るので、面積を節約するため、始めに形成したマ
ークを各プロセスで使用することが望ましいし、
高目合精度を得るためにも都合がよい。
In direct exposure, alignment is performed for each chip to minimize the effects of wafer warpage and deformation, so it is desirable to use the marks formed at the beginning in each process to save area.
It is also convenient for obtaining high alignment accuracy.

この場合、目合マークのエツチング・プロセス
からの保護が重要である。ネガ型レジストを用い
る場合は、目合マーク検出後、目合マークをカバ
ーするように、その周囲を露光しておけば、目合
マークはエツチング工程から保護されるので問題
ないが、ポジ型レジストを用いる場合は、マーク
走査の回数にもよるが、一般的には多数回走査を
行うため過剰露光によるネガ型反転が起こる。し
たがつてネガ型の場合のごとく、目合マークの周
囲をパターン描画と同一のドース量で露光すると
目合走査をした部分は均一にエツチングされるの
で、段差を用いた目合マークであれば、そのまま
形状は保存されるが、目合走査した部分がエツチ
ングされないため、次工程では、この部分が走査
できなくなり不都合である。これをさけるため目
合マーク走査後、その周囲をネガ型に反転するま
で過剰露光することも可能である。
In this case, protection of the alignment marks from the etching process is important. When using a negative resist, if you expose the area around the alignment mark to cover it after detecting the alignment mark, the alignment mark will be protected from the etching process, so there is no problem, but with a positive resist When using this method, negative type reversal occurs due to overexposure because scanning is generally performed many times, although it depends on the number of times the mark is scanned. Therefore, as in the case of a negative type, if the area around the alignment mark is exposed to the same dose as the pattern drawing, the area scanned for alignment will be etched uniformly, so if the alignment mark is made using a step, , the shape is preserved as it is, but since the part scanned for alignment is not etched, this part cannot be scanned in the next process, which is inconvenient. To avoid this, after scanning the alignment mark, it is also possible to overexpose the area around it until it is reversed to a negative type.

しかし、ポジ型レジストのネガ型への反転に必
要なドース量は5×10-4C/cm2以上と大きく、目
合マークカバーのための露光時間がきわめて長く
なり不都合であるし、荷電粒子線照射時のX線発
生に伴う、周囲デバイスへのダメージの増加もあ
り望ましくない。
However, the dose required for reversing a positive resist to a negative resist is as large as 5×10 -4 C/cm 2 or more, and the exposure time for covering the alignment marks is extremely long, which is inconvenient. It is also undesirable that damage to surrounding devices increases due to the generation of X-rays during radiation irradiation.

本発明は、光学露光で広く用いられ、レジスト
として必要な接着性、安定性等の改良もなされ入
手されやすいキノンアジド系化合物とフエノール
樹脂とからなるレジスト、例えばハント社の
HPR−204、シツプレー社のAZ−2400、AZ−
1350を荷電粒子線ポジ型レジストとして用いて、
直接露光を行うにあたり、露光後の目合マークの
保護を過剰露光によるポジ型レジストのネガ型反
転によらず、ポジ型露光に必要な程度の荷電粒子
線照射を目合マークをカバーするようにし、さら
にネガ型反転に必要な分だけ紫外線照射をして、
マーク走査による露光過充で反転した部分を含め
てネガ型化して目合マークを保護することによ
り、各工程で同一の目合マークを、露光時間の増
大等の問題を生ぜずに用いられるようにすること
を目的とする。
The present invention is directed to a resist consisting of a quinone azide compound and a phenol resin, which are widely used in optical exposure, have improved adhesion and stability necessary for a resist, and are easily available, such as those manufactured by Hunt Company.
HPR-204, Shippray's AZ-2400, AZ-
Using 1350 as a charged particle beam positive resist,
When performing direct exposure, the aim is to protect the alignment mark after exposure by applying charged particle beam irradiation to cover the alignment mark to the extent necessary for positive exposure, without causing negative inversion of the positive resist due to overexposure. , furthermore, irradiate with ultraviolet rays as much as necessary for negative type reversal,
By protecting the alignment mark by making it negative, including the parts reversed due to overexposure due to mark scanning, the same alignment mark can be used in each process without problems such as an increase in exposure time. The purpose is to

本発明は、半導体基板に、キノンアジド系化合
物とフエノール樹脂とからなるポジ型レジストを
塗布し乾燥する工程とチツプパターン隅にある目
合マークを荷電粒子線で走査し、目合マーク位置
を検出して所望のパターンを所望の位置に荷電粒
子線照射量、10-5C/cm2から10-4C/cm2で露光す
る工程と、目合マークとその周囲を荷電粒子線照
射量10-5C/cm2から10-4C/cm2で露光する工程と、
さらに前記目合マークとその周囲を選択的に紫外
光で60mJ/cm2から200mJ/cm2で追加露光し前
記ポジ型レジストをネガ型に反転させる工程とを
含むことを特徴とした半導体デバイスの製造にお
ける目合マークの保護方法である。
The present invention involves the process of coating a semiconductor substrate with a positive resist made of a quinone azide compound and a phenolic resin and drying it, and scanning the alignment mark at the corner of a chip pattern with a charged particle beam to detect the alignment mark position. The process of exposing the desired pattern to the desired position with a charged particle beam dose of 10 -5 C/cm 2 to 10 -4 C/cm 2 , and exposing the alignment mark and its surroundings with a charged particle beam dose of 10 -5 C/cm 2 to 10 -4 C/cm 2 . a step of exposing from 5 C/cm 2 to 10 -4 C/cm 2 ;
The semiconductor device further comprises the step of selectively additionally exposing the alignment mark and its surroundings to ultraviolet light at 60 mJ/cm 2 to 200 mJ/cm 2 to invert the positive resist into a negative resist. This is a method of protecting alignment marks during manufacturing.

以下、図面を用いて発明の内容を説明する。ま
ず、直接露光における目合方法を説明する。第1
図は直接露光での目合に必要なマークを有するシ
リコンウエハー104を示す。始めにウエハーの
4ケ所にあるウエハーレジストレーシヨンマーク
101を用いてウエハーの位置を検出しチツプ1
02の位置を予測する。
Hereinafter, the content of the invention will be explained using the drawings. First, the alignment method in direct exposure will be explained. 1st
The figure shows a silicon wafer 104 with the marks necessary for direct exposure alignment. First, the position of the wafer is detected using the wafer registration marks 101 located at four locations on the wafer, and chip 1 is detected.
Predict the location of 02.

これは、荷電粒子線露光の描画域は丁度チツプ
の大きさに対応する程度の約2〜10mmと比較的小
さいためステージ移動をしながら露光域を連ぐた
めチツプの位置を予測しておく必要があるからで
ある。この操作によりチツプレジストレーシヨン
マーク103は露光域内に入る。ついで、第2図
に示したごとく、チツプレジストレーシヨンマー
ク201を202の毎くビーム走査する。一般に
目合マークの部分は重金属を用いているためや突
起パターンであるため周囲より荷電粒子線の反射
率が高く、適当な方法でそれを検出すると第3図
に示した301の毎き信号を与える。この信号を
適当なスレツシユホールド302を越えた部分で
補促することにより目合マークの端部303,3
04を測定できる。これを繰返すことにより目合
マークの位置およびその組合からチツプの位置と
形状がわかり目合が行える。
This is because the drawing area of charged particle beam exposure is relatively small at approximately 2 to 10 mm, which corresponds to the size of the chip, so it is necessary to predict the position of the chip in order to connect the exposure areas while moving the stage. This is because there is. This operation causes the tip registration mark 103 to fall within the exposure area. Next, as shown in FIG. 2, the chip registration mark 201 is scanned with a beam 202. In general, because the alignment mark part uses heavy metal or has a protruding pattern, the reflectivity of the charged particle beam is higher than that of the surrounding area, and when it is detected using an appropriate method, a signal such as 301 shown in Figure 3 is generated. give. By supplementing this signal at the portion beyond the appropriate threshold 302, the edges 303, 3 of the alignment mark are
04 can be measured. By repeating this process, the position and shape of the tip can be determined from the position of the alignment mark and its combination, and the alignment can be performed.

例えば、第4図にチツプ部分を切出したパター
ンを示したがシリコン基板401上に、キノンア
ジド系化合物とフエノール樹脂とからなるポジ型
レジストを塗布し乾燥しておき、チツプレジスト
レーシヨンマーク403を用いて目合を行うこと
にする。404が仮想的なチツプ位置である。第
5図が目合露光の状態を示すが目合走査した部分
が501の毎く、多重回走査によりネガ型に反転
しており、チツプ部は502の毎くポジ型として
の露光がなされている。最つとも一般的なドース
量は約10-5C/cm2から約10-4C/cm2である。目合
露光後、目合マークの周囲を503の毎く、パタ
ーン露光部分と同程度ないし、その1〜2割増し
のドース量で荷電粒子線照射しておく。
For example, FIG. 4 shows a pattern in which a chip portion is cut out. A positive resist made of a quinone azide compound and a phenol resin is applied onto a silicon substrate 401 and dried, and a chip registration mark 403 is used to form a chip. I decided to take a look. 404 is a virtual chip position. Figure 5 shows the condition of eye-alignment exposure, and the area scanned at eye-level has been reversed to a negative type as shown in 501 due to multiple scanning, and the chip area has been exposed as a positive type as shown in 502. There is. The most common doses are about 10 -5 C/cm 2 to about 10 -4 C/cm 2 . After the alignment exposure, the area around the alignment mark as shown in 503 is irradiated with a charged particle beam at a dose equal to or 10 to 20 times higher than that of the pattern exposed area.

ついで第6図に示したごとく、シリコン基板6
01上のチツプレジストレーシヨンマーク603
を用いて、通常の紫外線露光用マスク、例えば、
ガラス基板605上に、不透明パターン606を
有するものを目合する。このマスクパターンは、
目合マーク603を囲む領域、即ち第5図で示し
た503の部分だけ紫外光透過になつているもの
とする。602がレジストであり604はチツプ
のパターンを荷電粒子線照射した部分である。目
合後、通常の紫外線露光、例えば高圧水銀灯を用
いて約60mJ/cm2から約20mJ/cm2の紫外線照射
を行う。その後、この型のレジストで一般に用い
られている現像液、例えば5〜20wt%のKOH水
溶液を用いて約30〜60秒現像すると第7図に示し
たごとく、荷電粒子線照射だけした部分は溶解さ
れ701のごとき所望の穴明きパターンとなる
が、目合せ走査のため多重回走査した部分を含
む、荷電粒子線とUV照射をした部分は702を
毎くネガ型として残る。したがつて、このレジス
トをマスクとして通常の蝕刻技術により所望のパ
ターンを701のごとく加工しても、目合マーク
領域702は荷電粒子線照射しない部分と同様に
保護され、目合マークは次工程以後も使えること
になる。
Next, as shown in FIG.
Chip registration mark 603 on 01
using a normal UV exposure mask, e.g.
An opaque pattern 606 is placed on a glass substrate 605 . This mask pattern is
It is assumed that only the region surrounding the alignment mark 603, that is, the portion 503 shown in FIG. 5 is made to transmit ultraviolet light. 602 is a resist, and 604 is a portion of a chip pattern irradiated with a charged particle beam. After alignment, ordinary ultraviolet exposure is performed, for example, ultraviolet irradiation of about 60 mJ/cm 2 to about 20 mJ/cm 2 using a high-pressure mercury lamp. After that, when developing for about 30 to 60 seconds using a developer commonly used for this type of resist, such as a 5 to 20 wt% KOH aqueous solution, the areas that were only irradiated with the charged particle beam will dissolve, as shown in Figure 7. A desired perforated pattern 701 is obtained, but the portions 702 that have been irradiated with the charged particle beam and UV, including the portions scanned multiple times for alignment scanning, remain as negative types. Therefore, even if a desired pattern 701 is processed by ordinary etching techniques using this resist as a mask, the alignment mark area 702 will be protected in the same way as the area that is not irradiated with the charged particle beam, and the alignment mark will be removed in the next process. You will be able to use it from now on.

なお、典型的な一例として、第8図にハント社
のポジ型レジストHPR−204の電子線感度曲線を
示したが、ポジ型曲線領域801で、紫外線の後
照射により802の毎くネガ型に反転しているこ
とがわかる。他の同様組成のレジスト、例えば
AZ系レジストでも同様結果が得られている。こ
れに対して、電子線感剰ドースによるネガ型反転
803には通常の一桁以上大きいドース量を必要
として、これで目合マークの領域503を次のエ
ツチング工程から保護することは、得策でないこ
とがわかる。第8図は荷電粒子線が電子線の場合
を例示したが、こうした傾向はポジ型レジスト一
般にあり、例えば陽電子線、陽子線、α線等の
他、イオン線についてもその本質は同様の傾向を
呈する。
As a typical example, Figure 8 shows the electron beam sensitivity curve of Hunt's positive resist HPR-204. You can see that it is reversed. Other resists of similar composition, e.g.
Similar results were obtained with AZ-based resists. On the other hand, negative inversion 803 using an electron beam-sensitive excess dose requires a dose that is more than an order of magnitude larger than the normal dose, and it is not a good idea to protect the alignment mark area 503 from the next etching process with this. I understand that. Figure 8 illustrates the case where the charged particle beam is an electron beam, but this tendency exists in general positive resists, and in addition to positron beams, proton beams, alpha rays, etc., ion beams also have essentially the same tendency. present.

本発明を用いると例えば次のような独特の効果
が得られる。
By using the present invention, for example, the following unique effects can be obtained.

第1のきわだつた効果は、ポジ型レジストのネ
ガ型反転を過剰露光によらずポジ型露光と同一程
度のドース量で行えるため、目合マークのカバー
に要する時間を最小化できレジストの選択範囲を
拡げることができることである。この特長は特に
ベクトル型露光の場合は所望部分だけを露光すれ
ばよく、穴明けパターンの全体に占める割合が少
ない場合はポジ型レジストを用いる必要があるの
で特に有効となる。
The first outstanding effect is that the negative inversion of positive resist can be done with the same dose as positive exposure without overexposure, which minimizes the time required to cover the alignment marks and allows the selection range of the resist. It is possible to expand the This feature is especially effective in the case of vector type exposure because it is only necessary to expose the desired portion, and it is necessary to use a positive type resist when the percentage of the entire hole pattern is small.

第2のきわだつた効果としては、過剰露光に伴
うレジストの焼付き、カラムへの汚染、露光時間
の増大等の問題をさけられることができることが
ある。
A second notable effect is that problems such as resist burning, column contamination, and increased exposure time caused by overexposure can be avoided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図、第3図は直接露光における目
合の方法を説明するための図面であり、第4図、
第5図、第6図、第7図は本発明の製造プロセス
を説明するための図面である。第8図はキノンア
ジド系化合物とクエノール樹脂とからなるポジ型
レジストの一例であるハント社のHPR−204の電
子線感度曲線および紫外線の後照射の効果を説明
するための図面である。 101:ウエハーレジストレーシヨンマーク、
102:チツプ領域、103:チツプレジストレ
ーシヨンマーク、104:シリコンウエハー、2
01:チツプレジストレーシヨンマーク、20
2:荷電粒子線走査部分、301:荷電粒子線反
射信号、302:スレツシユホールド、303:
マーク左端部、304:マーク右端部、401:
シリコンウエハー、402:レジスト、403:
チツプレジストレーシヨンマーク、404:チツ
プ領域、501:荷電粒子線走査部分、502:
チツプパターン、503:目合マークカバー露光
部分、601:シリコンウエハー、602:レジ
スト、603:チツプレジストレーシヨンマー
ク、604:チツプパターン荷電粒子線照射部
分、605:ガラス基板、606:遮光材部分、
701:荷電粒子線のみ照射した部分、702:
荷電粒子線と紫外光との双方を照射した部分、8
01:電子線ポジ型感度曲線、802:電子線及
び紫外光照射によるネガ型感度曲線、803:電
子線過剰照射によるネガ型感度曲線。
Figures 1, 2, and 3 are drawings for explaining the alignment method in direct exposure, and Figures 4 and 3 are diagrams for explaining the alignment method in direct exposure.
FIG. 5, FIG. 6, and FIG. 7 are drawings for explaining the manufacturing process of the present invention. FIG. 8 is a drawing for explaining the electron beam sensitivity curve and the effect of post-irradiation with ultraviolet rays of HPR-204 manufactured by Hunt, which is an example of a positive resist made of a quinone azide compound and a quenol resin. 101: Wafer registration mark,
102: Chip area, 103: Chip registration mark, 104: Silicon wafer, 2
01: Chip registration mark, 20
2: Charged particle beam scanning part, 301: Charged particle beam reflection signal, 302: Threshold, 303:
Mark left end, 304: Mark right end, 401:
Silicon wafer, 402: Resist, 403:
Chip registration mark, 404: Chip area, 501: Charged particle beam scanning portion, 502:
Chip pattern, 503: alignment mark cover exposed portion, 601: silicon wafer, 602: resist, 603: chip registration mark, 604: chip pattern charged particle beam irradiation portion, 605: glass substrate, 606: light shielding material portion,
701: Part irradiated with only charged particle beam, 702:
Part irradiated with both charged particle beam and ultraviolet light, 8
01: Electron beam positive sensitivity curve, 802: Negative sensitivity curve due to electron beam and ultraviolet light irradiation, 803: Negative sensitivity curve due to excessive electron beam irradiation.

Claims (1)

【特許請求の範囲】[Claims] 1 半導体基板にキノンアジド系化合物とフエノ
ール樹脂とからなるポジ型レジストを塗布し乾燥
する工程と、チツプパターン隅にある目合マーク
を荷電粒子線で走査し目合マーク位置を検出して
所望のパターンを所望の位置に荷電粒子線照射
量、10-5C/cm2から10-4C/cm2で露光する工程と
目合マークとその周囲を荷電粒子線照射量
10-5C/cm2から10-4C/cm2で露光する工程と、さ
らに前記目合マークとその周囲を選択的に紫外光
で60mJ/cm2から200mJ/cm2で追加露光し前記
ポジ型レジストをネガ型に反転させる工程と含む
ことを特徴とした半導体デバイスの製造における
目合マークの保護方法。
1. A process of applying and drying a positive resist made of a quinone azide compound and a phenol resin to a semiconductor substrate, and scanning the alignment mark at the corner of the chip pattern with a charged particle beam to detect the alignment mark position and forming the desired pattern. The process of exposing the target position to a charged particle beam dose of 10 -5 C/cm 2 to 10 -4 C/cm 2 and the charged particle beam dose of the eye mark and its surroundings.
10 -5 C/cm 2 to 10 -4 C/cm 2 , and then the alignment mark and its surroundings are selectively exposed to ultraviolet light at 60 mJ/cm 2 to 200 mJ/cm 2 . A method for protecting alignment marks in the manufacture of semiconductor devices, the method comprising the step of inverting a positive resist into a negative resist.
JP56069012A 1981-05-08 1981-05-08 Protective method for conforming mark with eye in manufacture of semiconductor device Granted JPS57184220A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56069012A JPS57184220A (en) 1981-05-08 1981-05-08 Protective method for conforming mark with eye in manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56069012A JPS57184220A (en) 1981-05-08 1981-05-08 Protective method for conforming mark with eye in manufacture of semiconductor device

Publications (2)

Publication Number Publication Date
JPS57184220A JPS57184220A (en) 1982-11-12
JPH0328052B2 true JPH0328052B2 (en) 1991-04-17

Family

ID=13390244

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56069012A Granted JPS57184220A (en) 1981-05-08 1981-05-08 Protective method for conforming mark with eye in manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS57184220A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6083129B2 (en) * 2012-04-27 2017-02-22 富士電機株式会社 Semiconductor device manufacturing method and manufacturing apparatus

Also Published As

Publication number Publication date
JPS57184220A (en) 1982-11-12

Similar Documents

Publication Publication Date Title
US4751169A (en) Method for repairing lithographic transmission masks
US20040005516A1 (en) Lithography method for preventing lithographic exposure of peripheral region of semiconductor wafer
EP0037708B1 (en) Method of forming patterns
US6406818B1 (en) Method of manufacturing photomasks by plasma etching with resist stripped
JPH05127369A (en) Resist material
JPH0122728B2 (en)
US4610948A (en) Electron beam peripheral patterning of integrated circuits
JP2910157B2 (en) How to optimize photoresist contrast
JP2546690B2 (en) Electron beam proximity effect compensation method
JPH0328052B2 (en)
JPH0219970B2 (en)
US6492094B1 (en) Lithography for fast processing of large areas utilizing electron beam exposure
JPS6358829A (en) Pattern formation method using electron beam
JPS59141230A (en) Formation of pattern
JPH06110214A (en) Method of forming resist pattern
JPH0290170A (en) Pattern formation method
KR100496815B1 (en) Method of fabricating semiconductor device using chemically swelling process
JP2506637B2 (en) Pattern forming method
JPS62241338A (en) Pattern formation
JPH0954438A (en) Photoresist pattern and method of forming the same
JPS63182817A (en) Development processing method
JPH064576Y2 (en) Wafer edge exposure system
JPS588131B2 (en) Manufacturing method of semiconductor device
JPH069487Y2 (en) Wafer edge exposure equipment
JPH0385722A (en) Pattern formation method