JPH03280304A - Nickel powder and conductive paste containing the powder - Google Patents

Nickel powder and conductive paste containing the powder

Info

Publication number
JPH03280304A
JPH03280304A JP2077100A JP7710090A JPH03280304A JP H03280304 A JPH03280304 A JP H03280304A JP 2077100 A JP2077100 A JP 2077100A JP 7710090 A JP7710090 A JP 7710090A JP H03280304 A JPH03280304 A JP H03280304A
Authority
JP
Japan
Prior art keywords
powder
less
electrode
conductive paste
paste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2077100A
Other languages
Japanese (ja)
Inventor
Hiroyuki Ishikawa
博之 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP2077100A priority Critical patent/JPH03280304A/en
Publication of JPH03280304A publication Critical patent/JPH03280304A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To achieve thickness and low resistance of an inner electrode layer by manufacturing such conductive paste as having Ni content of not less than 99.5wt.% and also as containing Ni powder of given properties, and using the paste. CONSTITUTION:The Ni content of Ni powder is set to not less than 99.5wt.%, and the area mean diameter thereof is set to the diameter of a globular body having a diameter of not less than 0.05 micrometer and of less than 1 micrometer. High reliability required for an electronic-part material can not be achieved sufficiently because Ni powder having Ni content of less than 99.5wt.% has bad effects upon the low resistance of an electrode or upon the properties of a dielectric. Also a grain having a area mean diameter of less than 0.05 micrometer is undesirable because it is easily condensed. And because of being in a globular shape, the desirable grains can take the form of a construction near their closest packing when an inner electrode is printed, and therefore a low resistance electrode having equal density and having few voids caused therein can be obtained after they are baked. A kind of electrode having its thinned inner-electrode layer, low resistance, and also reduction in the frequency of delamination, cracks and of the like all caused when conductive paste is baked can be obtained by manufacturing the conductive paste through the process of adding 2.5 pts.wt. of ethyl cellulose and 10 pts.wt. of terpineol respectively as a binder and a solvent to 100 pts.wt. of such globular powder like this and kneading the resultant material, and using the paste.

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野1 本発明は、電子部品等に用いられる、高純度・超微粉状
・球状ニッケル粉末、及びそれを含有する導電ペースト
に関するものである。
[Industrial Field of Application 1] The present invention relates to a highly purified, ultrafine, spherical nickel powder used in electronic components and the like, and a conductive paste containing the same.

【従来の技術] 積層セラミックスコンデンサは、セラミックス誘電体と
内部電極とを交互に層状に重ねて圧着しこれを焼成して
一体化させたもので電子部品として急速に成長してきて
いる。 しかし、従来のセラミックス誘電体材料は、低酸素分圧
又は還元性雰囲気で焼成すると分解あるいは還元され半
導体化する。そのため内部電極の材質として誘電体セラ
ミックスが焼結する温度で溶融せず、かつ誘電体セラミ
ックスを分解あるいは還元しない高い酸素分圧の雰囲気
で焼成しても酸化されないPt、Pdなど高価な貴金属
を用いる必要があり、したがって製造されるコンデンサ
の大容量化及び低価格化の妨げになっていた。 ところが近年、卑金属を内部電極に用いるべ(、低酸素
分圧あるいは還元雰囲気で焼成しても半導体化せず、コ
ンデンサ用の誘電体としても十分な比抵抗と優れた誘電
特性を有するセラミックスが開発されてきた。特開昭6
0−178611号公報にニッケルを内部電極に用いた
積層セラミックスの製造方法等が、また、ニッケルを導
電フィラーとした磁器コンデンサ用電極ペーストが特開
昭64−80007号公報に示されている。 しかし、近年の部品の小型・大容量化のため積層膜の薄
層化及び多層化がますます進んでおり、内部電極の薄層
化・低抵抗化が望まれている。 内部電極の厚みは用いるペースト中のフィラーの粒径に
制限される。すなわち、粒径より薄くすることはできな
い、したかつて、粒径の小さなフィラー粉末を使用すれ
ばよいが1面積平均径がIμmより小さな粉末でも、内
部電極ペースト印刷時のフィラーの充填が十分でな(密
度が低いため焼成後ボイドが多くなり、電気抵抗が高(
なるという問題があり、また、焼成時にデラミネーショ
ンが発生することが多かった。また、前記粒径が16m
未満のニッケル粉で純度のよいものがな(、電極の低抵
抗化、あるいは誘電体の特性への悪影響を防止し、電子
部品材料としての高信頼性化が十分に達成できないとい
う問題があった。 【発明が解決しようとする課題1 本発明は上記従来技術の問題点を解決するために、内部
電極を薄層化・低抵抗化し得る導電ペースト、並びにこ
の導電ペーストに使用し得るニッケル粉末を提供するも
のである。 [課題を解決するための手段1 本発明は上記課題を解決するために、ニッケル含有量が
99.5重量%以上で、面積平均径が0、 Q 5 g
 m以上1μm未満、かつ球状であることを特徴とする
ニッケル粉末、及び上記のニッケル粉末を含有すること
を特徴とする導電ペーストを提供するものである。 〔作用1 本発明は、ニッケル粉末のニッケル含有量を99.5重
置%以上に、またその面積平均径を0.05μm以上1
μm未満に、かつ球状に限定する。 ニッケル含有量が99.5重量%未満では、電極の低抵
抗化あるいは誘電体の特性への悪影響により電子部品材
料としての高信頼化が十分に達成できないので、ニッケ
ル含有量は99.5重量%以上とする。 面積平均径が0.05μm未満の粒子は凝集し易(、積
層セラミックスコンデンサ等の内部電極としてペースト
にして印刷した場合、フィラーの充填が極端に不十分な
ため焼成復電極層はポーラスものとなり電気抵抗が高く
なり、また、誘電体層との結合力が悪くなる結果デラミ
ネーションが発生する。1μm以上の粉末では、電極層
の薄層化(<]〜2μm)に対して物理的に不可能であ
る。 また、球状であるので、内部電極印刷時に最密充填に近
い構造を採り得るため、焼成後均−でボイドの少ない低
抵抗の電極が得られ、また、焼成時の電極層の収縮を低
く押えることができ、その結果、誘電体層のクラックや
デラミネーションを防止することができる。 次に、以上のようなニッケル含有量1而積平均径を有す
る球状のニッケル粉末の製造方法について述べる。 このような粉末は、気相化学反応法、ガス中蒸発法等に
より製造可能である。 気相化学反応法においては粒末の生成は次のように考^
られている。金属ハロゲン化物等容易気化金属化合物の
蒸気と還元ガス(82等)が接触した瞬間に、金属原子
又はクラスターの千ツマ−が生成し、千ツマ−の衝突・
凝集により超微粉末が生成される。 また、ガス中蒸発法においてもクラスターが形成され、
その衝突・凝集により超微粉末が生成され、その機構は
気相化学反応法と同じであると考えられる。 本発明のニッケル粉末の製造に、気相化学反応法を用い
る場合には、塩化ニッケルを500〜1000℃で蒸発
させ、この蒸気に水素ガスを吹き込み、750〜105
0℃で蒸気を還元することが望ましい、これによりニッ
ケル超微粉末か生成され、その粒度は蒸発・反応条件を
制御することにより変えることかできる。 また、ガス中蒸発法を用いる場合にはニッケルを不活性
ガス中で加熱蒸発することにより所望のニッケル超微粉
末が得られる。加熱方法としては誘導加熱、プラズマ加
熱等が採用でき、粉末の粒度は雰囲気の圧力を変える等
により制御できる。 次に気相化学反応法による具体的な粉末製造例を示す。 (粉末製造例1) 塩化ニッケル20gをアルゴンガス242/sinの気
流中で850℃に加熱することで蒸発させ、950℃で
水素1il/winと反応させた。得られた粉末の顕微
鏡写真を第1図に示す、また第1表にその組成を示す。 第1表に示す如く、得られた粉末のNi含有量は99.
5重量%以上であった。また得られた粉末の形状は顕微
鏡写真に示す如く球状であって、その面積平均径は0.
2μmであった。 なお、面積平均径の測定は粉末の比表面積及び比重を測
定して、それにより換算して求めた。以下同じである。 (粉末製造例2) 塩化ニッケル20gを3試料用意し、それぞれアルゴン
ガス2β/sinの気流中でそれぞれ異なる温度に加熱
することにより蒸発させて、これらに水素をlβ/s+
in流入して反応・還元させた。 得られた粉末の面積平均径は0.04μm(比較例)、
0.5μm(本発明)、1.5μm(比較例)で、粉末
の形状はいずれも球状であり、ニッケルの含有量はいず
れも99.5重量%以上であった。 【実施例1 実施例1 上記した粉末製造例により得られた面積平均径が0.2
及び0.5μmの2種の球状ニッケル粉末をペースト化
し、セラミックス誘電体シートに印刷し、乾燥・焼成後
電極の抵抗値を調べた。 ペースト化にはニッケル粉末100重量部に対し、バイ
ンダとしてエチルセルロース2.5重量部、溶媒として
テレピネオール10重量部を添加し、3本ロールミルで
混練して導電ペーストを作成した。 印刷、乾燥、脱バインダ後、1200℃の水素−窒素雰
囲気中で焼成した。最終的に縦5X横1mmで厚み1.
5μmの電極を形成した。 この電極のシート抵抗を測定した0面積平均径0.2μ
m、0.5 umのそれぞれに対し、0.38Ω、0.
39Ωであった。 また1表面性状を顕微鏡で調べたところ、大きなボイド
は認められず平坦な表面であった。 実施例2 実施例1に用いた0、 2 am、0.5 μmの2種
の球状ニッケル粉末を用いて、実際に積層セラミックス
コンデンサを作製した。導電ペーストの作製は実施例1
と同様である。 この導電ペーストを1組成が(Bao、sCao、o2
s S ro、ots ) (T i (3,92ro
、1 )にM n Oを添加した誘電体の厚さが約30
μmのグリーンシート上に厚みが4μmになるように印
刷した。 電極と誘電体層を交互に30層積み重ね、圧着したのち
切断し、乾燥・脱バインダ後、1200℃の水素−窒素
混合ガス中で焼成した。得られた積層コンデン勺の大き
さは、縦3.2×横2.5 X 厚さ0.9 m mで
あった。 まず、クラックやデラミネーションの有無を30個につ
いて調べたが認めらハなかった。 これに外部電極を取付は容量をはかったところ、いずれ
もO,16uF、tanδは0.8%であった。 比較例1 上記した粉末製造例により得られた面積平均径が0.0
4μm、1.5μmの2種の球状ニッケル粉末をペース
ト化し、セラミックス誘電体シートに印刷し、乾燥・焼
成後、電極の抵抗値を調べた。 実施例1と全く同様の方法でペースト化し、印刷、乾燥
・脱バインダ、焼成し、電極を形成した。この電極のシ
ート抵抗を測定した9面積平均径0.04μm、1.5
μmのそれぞれに対し、5.6Ω、1.9Ωであった。 また1表面性状をw4tj&鏡で調べたが、いずれも大
きなボイドが認められ粗い表面であった。 比較例2 比較例1に用いた面積平均径がQ、 04 sJ、m、
1.5%mの球状二・ンウル扮末を用いて、積層セラミ
ックスコンデンザを作製した。作製方法は実施例2と同
じである。 まず、クラックやデラミネーションの有無を30個につ
いて調べたが半分に欠陥が認められた。欠陥の無かった
ものに外部電極を取付は容量を測−) にところ、いず
れも0.05 g F 、 tar+ 6は7%であっ
た。 【発明の効果】 本発明により、内部電極層の薄層化、低抵抗化、並びに
焼成したときのデラミネーション、クラック等の発生の
低下を達成することができた。
[Prior Art] Multilayer ceramic capacitors, which are made by stacking ceramic dielectrics and internal electrodes in alternating layers, pressing them together, and baking them to integrate them, are rapidly growing as electronic components. However, when conventional ceramic dielectric materials are fired in a low oxygen partial pressure or reducing atmosphere, they are decomposed or reduced and become semiconductors. Therefore, as the material for the internal electrodes, expensive noble metals such as Pt and Pd are used, which do not melt at the temperature at which dielectric ceramics are sintered, and which do not oxidize even when fired in an atmosphere with a high oxygen partial pressure that does not decompose or reduce dielectric ceramics. Therefore, it has been an obstacle to increasing the capacity and lowering the price of manufactured capacitors. However, in recent years, ceramics have been developed that require the use of base metals for internal electrodes, do not turn into semiconductors even when fired in a low oxygen partial pressure or reducing atmosphere, and have sufficient resistivity and excellent dielectric properties to be used as dielectrics for capacitors. It has been. Japanese Patent Application Publication No. 6
No. 0-178611 discloses a method for manufacturing laminated ceramics using nickel as an internal electrode, and JP-A-64-80007 discloses an electrode paste for ceramic capacitors using nickel as a conductive filler. However, in recent years, as components have become smaller and larger in capacity, laminated films have become increasingly thinner and multilayered, and it is desired that internal electrodes be made thinner and have lower resistance. The thickness of the internal electrode is limited by the particle size of the filler in the paste used. In other words, it is not possible to make the thickness thinner than the particle size.In the past, filler powder with a small particle size could be used, but even if the average diameter per area is smaller than Iμm, the filler filling during internal electrode paste printing may not be sufficient. (Because the density is low, there are many voids after firing, and the electrical resistance is high (
In addition, delamination often occurred during firing. In addition, the particle size is 16 m
There was a problem that it was impossible to achieve high reliability as an electronic component material by reducing the resistance of the electrode or preventing adverse effects on the properties of the dielectric material. [Problem to be Solved by the Invention 1] In order to solve the above-mentioned problems of the prior art, the present invention provides a conductive paste that can make internal electrodes thinner and lower in resistance, and a nickel powder that can be used in this conductive paste. [Means for Solving the Problems 1] In order to solve the above problems, the present invention provides a material having a nickel content of 99.5% by weight or more, an area average diameter of 0, and Q 5 g.
The present invention provides a nickel powder characterized by having a particle size of m or more and less than 1 μm and a spherical shape, and a conductive paste characterized by containing the above-mentioned nickel powder. [Effect 1] The present invention has a nickel powder with a nickel content of 99.5% or more and an area average diameter of 0.05 μm or more.
Limited to less than μm and spherical. If the nickel content is less than 99.5% by weight, high reliability as an electronic component material cannot be achieved due to low electrode resistance or adverse effects on dielectric properties. The above shall apply. Particles with an area average diameter of less than 0.05 μm tend to agglomerate (when printed as a paste for internal electrodes of multilayer ceramic capacitors, etc., the fired return electrode layer becomes porous and electrically Delamination occurs as a result of increased resistance and poor bonding force with the dielectric layer.With powder of 1 μm or more, it is physically impossible to make the electrode layer thinner (<] to 2 μm) In addition, since it is spherical, it is possible to obtain a structure close to close-packed when printing internal electrodes, so that an electrode with low resistance and few voids can be obtained evenly after firing, and shrinkage of the electrode layer during firing can be achieved. As a result, cracks and delamination of the dielectric layer can be prevented.Next, we will discuss the method for producing spherical nickel powder having a nickel content of 1 and a volume average diameter as described above. This kind of powder can be produced by a gas phase chemical reaction method, an evaporation method in gas, etc. In the gas phase chemical reaction method, the generation of particle powder is considered as follows.
It is being The moment the vapor of an easily vaporized metal compound such as a metal halide comes into contact with a reducing gas (82, etc.), thousands of metal atoms or clusters are generated, and thousands of them collide.
Agglomeration produces ultrafine powder. Also, clusters are formed in the in-gas evaporation method,
The collision and agglomeration produce ultrafine powder, and the mechanism is thought to be the same as that of the gas phase chemical reaction method. When using a gas phase chemical reaction method to produce the nickel powder of the present invention, nickel chloride is evaporated at 500 to 1000°C, hydrogen gas is blown into this vapor,
It is desirable to reduce the vapor at 0° C., which produces ultrafine nickel powder, the particle size of which can be varied by controlling the evaporation and reaction conditions. Further, when using the in-gas evaporation method, the desired ultrafine nickel powder can be obtained by heating and evaporating nickel in an inert gas. As the heating method, induction heating, plasma heating, etc. can be adopted, and the particle size of the powder can be controlled by changing the pressure of the atmosphere. Next, a specific example of powder production using a gas phase chemical reaction method will be shown. (Powder Production Example 1) 20 g of nickel chloride was evaporated by heating to 850°C in an argon gas flow of 242/sin, and reacted with 1 il/win of hydrogen at 950°C. A micrograph of the obtained powder is shown in FIG. 1, and its composition is shown in Table 1. As shown in Table 1, the Ni content of the obtained powder was 99.
It was 5% by weight or more. The shape of the obtained powder is spherical as shown in the micrograph, and its area average diameter is 0.
It was 2 μm. The area average diameter was determined by measuring the specific surface area and specific gravity of the powder, and converting the results. The same applies below. (Powder production example 2) Three samples of 20 g of nickel chloride were prepared and evaporated by heating to different temperatures in an argon gas flow of 2β/sin, and hydrogen was added to them by lβ/s+.
Inflow was carried out to cause reaction and reduction. The area average diameter of the obtained powder was 0.04 μm (comparative example),
The powder size was 0.5 μm (invention) and 1.5 μm (comparative example), the shape of the powder was spherical, and the nickel content was 99.5% by weight or more in both cases. [Example 1 Example 1 The area average diameter obtained by the above powder production example was 0.2
Two types of spherical nickel powder of 0.5 μm and 0.5 μm were made into a paste, printed on a ceramic dielectric sheet, and after drying and firing, the resistance value of the electrode was examined. To form a paste, 2.5 parts by weight of ethyl cellulose as a binder and 10 parts by weight of terpineol as a solvent were added to 100 parts by weight of nickel powder, and the mixture was kneaded in a three-roll mill to prepare a conductive paste. After printing, drying, and removing the binder, it was fired in a hydrogen-nitrogen atmosphere at 1200°C. The final size is 5mm long x 1mm wide and 1mm thick.
A 5 μm electrode was formed. The sheet resistance of this electrode was measured with a zero area average diameter of 0.2μ.
m, 0.5 um, 0.38Ω, 0.5 um, respectively.
It was 39Ω. Furthermore, when the surface properties were examined using a microscope, no large voids were observed and the surface was flat. Example 2 Using the two types of spherical nickel powder of 0, 2 am, and 0.5 μm used in Example 1, a multilayer ceramic capacitor was actually produced. Preparation of conductive paste is in Example 1
It is similar to One composition of this conductive paste is (Bao, sCao, o2
s S ro, ots ) (T i (3,92ro
, 1) with MnO added, the thickness of the dielectric is approximately 30
Printing was performed on a μm green sheet to a thickness of 4 μm. Thirty electrodes and dielectric layers were stacked alternately, crimped, cut, dried, binder removed, and fired in a hydrogen-nitrogen mixed gas at 1200°C. The size of the obtained laminated condensate plate was 3.2 mm long x 2.5 mm wide x 0.9 mm thick. First, 30 pieces were examined for cracks and delamination, but none were found. When an external electrode was attached to this and the capacitance was measured, the capacitance was O, 16 uF, and tan δ was 0.8%. Comparative Example 1 The area average diameter obtained by the above powder production example was 0.0
Two types of spherical nickel powder of 4 μm and 1.5 μm were made into a paste, printed on a ceramic dielectric sheet, and after drying and firing, the resistance value of the electrode was examined. It was made into a paste in exactly the same manner as in Example 1, printed, dried/removed from the binder, and fired to form an electrode. The sheet resistance of this electrode was measured with an area average diameter of 0.04 μm and 1.5
They were 5.6Ω and 1.9Ω for μm, respectively. In addition, the surface texture was examined using w4tj and a mirror, and large voids were observed in both cases and the surface was rough. Comparative Example 2 The area average diameter used in Comparative Example 1 was Q, 04 sJ, m,
A multilayer ceramic capacitor was manufactured using 1.5% m of spherical powder. The manufacturing method is the same as in Example 2. First, 30 pieces were examined for cracks and delamination, and defects were found in half of them. When external electrodes were attached to those with no defects, the capacitance was measured and the capacitance was 0.05 g F in all cases, and 7% in tar+6. [Effects of the Invention] According to the present invention, it was possible to reduce the thickness and resistance of the internal electrode layer, and to reduce the occurrence of delamination, cracks, etc. during firing.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明におけるニッケル粉末の形状を示す顕微
鏡写真である。
FIG. 1 is a micrograph showing the shape of nickel powder in the present invention.

Claims (1)

【特許請求の範囲】 1 ニッケル含有量が99.5重量%以上で、面積平均
径が0.05μm以上1μm未満、かつ球状であること
を特徴とするニッケル粉末。 2 請求項1記載のニッケル粉末を含有することを特徴
とする導電ペースト。
[Scope of Claims] 1. A nickel powder having a nickel content of 99.5% by weight or more, an area average diameter of 0.05 μm or more and less than 1 μm, and a spherical shape. 2. A conductive paste containing the nickel powder according to claim 1.
JP2077100A 1990-03-28 1990-03-28 Nickel powder and conductive paste containing the powder Pending JPH03280304A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2077100A JPH03280304A (en) 1990-03-28 1990-03-28 Nickel powder and conductive paste containing the powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2077100A JPH03280304A (en) 1990-03-28 1990-03-28 Nickel powder and conductive paste containing the powder

Publications (1)

Publication Number Publication Date
JPH03280304A true JPH03280304A (en) 1991-12-11

Family

ID=13624372

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2077100A Pending JPH03280304A (en) 1990-03-28 1990-03-28 Nickel powder and conductive paste containing the powder

Country Status (1)

Country Link
JP (1) JPH03280304A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6454830B1 (en) * 1999-08-31 2002-09-24 Toho Titanium Co., Ltd. Nickel powder for multilayer ceramic capacitors

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6454830B1 (en) * 1999-08-31 2002-09-24 Toho Titanium Co., Ltd. Nickel powder for multilayer ceramic capacitors

Similar Documents

Publication Publication Date Title
US6295196B1 (en) Monolithic ceramic electronic component
JP3644235B2 (en) Multilayer ceramic electronic components
US20070193410A1 (en) Copper alloy powder for electrically conductive paste
JP2002348603A (en) Method for manufacturing metal powder, metal powder, conductive paste, and laminated ceramic electronic component
KR100259562B1 (en) Nickel powder containing a composite oxide of la and ni and process for preparing the same
KR20100131938A (en) Barium titanate powder, nickel paste, their production methods and monolithic ceramic capacitors
JPH01273305A (en) Ceramic multilayer capacitor and its manufacture
JP2002060877A (en) Ni ALLOY POWDER FOR ELECTRICALLY CONDUCTIVE PASTE
JP4168773B2 (en) Method for producing nickel powder with excellent sinterability
JPH03280304A (en) Nickel powder and conductive paste containing the powder
JP2004179349A (en) Laminated electronic component and its manufacturing method
JP4427966B2 (en) Multilayer ceramic electronic component and manufacturing method thereof
JP2003115416A (en) Conductive paste, method of manufacturing laminated ceramic electronic component, and laminated ceramic electronic component
JPH07197103A (en) Method for coating surface of metallic powder with metallic compound
JP2003516619A (en) Static device with composite
JP4844589B2 (en) Nickel powder with excellent sinterability
JP2987995B2 (en) Internal electrode paste and multilayer ceramic capacitor using the same
JPH09186044A (en) Inner electrode material paste for stacked electronic component, and stacked electronic part, and its manufacture
JPH07201222A (en) Conductive paste, ceramic lamination body, and manufacture of ceramic lamination body
JPH1116766A (en) Manufacture of laminated ceramic electronic component
JP2003068565A (en) Manufacturing method for laminated ceramic electronic component and laminated ceramic electronic component
JPH04206612A (en) Conductive paste for internal electrode of multilayer capacitor
JPH0380334B2 (en)
JPH06283369A (en) Manufacture of dielectric powder layered capacitor
JP2002025360A (en) Manufacturing method of oxidation resistant conductive powder, conductive powder, conductive paste, and laminated ceramic electronic component