JPH03280208A - Magneto-resistance effect head - Google Patents

Magneto-resistance effect head

Info

Publication number
JPH03280208A
JPH03280208A JP7929590A JP7929590A JPH03280208A JP H03280208 A JPH03280208 A JP H03280208A JP 7929590 A JP7929590 A JP 7929590A JP 7929590 A JP7929590 A JP 7929590A JP H03280208 A JPH03280208 A JP H03280208A
Authority
JP
Japan
Prior art keywords
thickness
head
magnetic shield
shield
gap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7929590A
Other languages
Japanese (ja)
Other versions
JP2718242B2 (en
Inventor
Takao Maruyama
丸山 隆男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2079295A priority Critical patent/JP2718242B2/en
Publication of JPH03280208A publication Critical patent/JPH03280208A/en
Application granted granted Critical
Publication of JP2718242B2 publication Critical patent/JP2718242B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Magnetic Heads (AREA)

Abstract

PURPOSE:To improve a resolving power by specifying the thicknesses of upper and lower magnetic shields and the gaps between the upper and lower magnetic shields and a magneto-resistance effect element with respect to the shortest reading out wavelength. CONSTITUTION:The shielding type MR head is so set that the thickness T1 of the lower magnetic shield 2, the thickness T2 of the upper magnetic shield 6, the gap G1 between the lower magnetic shield 2 and the MR element 3 and the gap G2 between the upper magnetic shield 6 and the MR element 3 satisfy equation I with respect to the shortest reading out wavelength lambda. The shielding type MR head having the high resolving power is obtd. in this way.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は磁気ディスク装置、磁気テープ装置、フロッピ
ーディスク装置に用いられる磁気抵抗効果ヘッドに関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a magnetoresistive head used in a magnetic disk device, a magnetic tape device, and a floppy disk device.

〔従来の技術〕[Conventional technology]

磁気抵抗効果ヘッドは、 NiFeやNiCoなどの強
磁性体金属において、その抵抗値Rが磁化と電流のなす
角度θに対し、次式 %式% たたし、RO:iff界により変化しない抵抗分、 ΔR:磁界により変化する抵抗 分 に従フて変化する性質を利用した再生専用の磁気ヘット
である。磁気抵抗効果ヘット(以下、MRヘットと呼ぶ
)では、センス電流を供給して磁・気抵抗効果素子(以
下、’MR素子と呼ぶ)の両端に発生する信号電圧、す
なわち再生出力を検出する。そのため、再生出力が磁気
記録媒体と磁気ヘッド間の相対速度に依存せず、また、
適切なバイアスを与えることにより、信号磁界に比例し
た再生出力を取り出すことができる。この再生出力の大
きさは、抵抗変化率の大きな材料、たとえばN1aoC
O2o、あるいはpe61N1+eを用いると、従来用
いられてきたインダクティブヘッドより極めて大きくな
るため、MRヘッドは磁気記録装置の高記録密度化を進
めるために有望な磁気ヘッドである。
In a magnetoresistive head, in a ferromagnetic metal such as NiFe or NiCo, the resistance value R is expressed by the following formula, %, with respect to the angle θ between magnetization and current. , ΔR: A read-only magnetic head that utilizes the property of changing according to the resistance that changes with the magnetic field. In a magnetoresistive head (hereinafter referred to as an MR head), a sense current is supplied to detect a signal voltage generated across a magnetoresistance effect element (hereinafter referred to as an MR element), that is, a reproduction output. Therefore, the reproduction output does not depend on the relative speed between the magnetic recording medium and the magnetic head, and
By applying an appropriate bias, it is possible to extract a reproduction output proportional to the signal magnetic field. The magnitude of this reproduction output is determined by the use of materials with a large resistance change rate, such as N1aoC.
If O2o or pe61N1+e is used, the head will be much larger than the conventionally used inductive head, so the MR head is a promising magnetic head for increasing the recording density of magnetic recording devices.

MR素子単独では、分解能がMR素子の信号磁界検出方
向の幅(以後、MR素子高さと呼ぶ)に依存するため、
MRヘッドの分解能を高めるために、MR素子の上部お
よび下部に隣接して軟磁性材料からなる磁気シールドを
設ける場合がある。
When using an MR element alone, the resolution depends on the width of the MR element in the signal magnetic field detection direction (hereinafter referred to as the MR element height).
In order to improve the resolution of the MR head, magnetic shields made of soft magnetic material may be provided adjacent to the upper and lower portions of the MR element.

このように磁気シールドを備えたMRヘッドはシールド
型MRヘッドと呼ばれる。このシールド型MRヘッドに
おいては、従来、分解能は磁気シールドとMR素子の間
隔、すなわちシールド間ギャップで規定されると考えら
れてきた。
An MR head equipped with a magnetic shield in this manner is called a shield type MR head. In this shield type MR head, it has conventionally been thought that the resolution is defined by the distance between the magnetic shield and the MR element, that is, the gap between the shields.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

シールド型MRヘッドの分解能を上げるためには、シー
ルド間ギャップを縮めれば良い。しかし、シールド型M
Rヘッドを高分解能化するために、シールド間ギャップ
を縮小することには、次の2つの理由で限界がある。
In order to increase the resolution of a shielded MR head, it is sufficient to shorten the gap between the shields. However, shield type M
There are limits to reducing the inter-shield gap in order to improve the resolution of the R head for the following two reasons.

第1に、シールド間ギャップを小さくすると、MR素子
と磁気シールド間の電気的絶縁を確保できなくなる可能
性がある。もし、MR素子に供給されるべきセンス電流
か磁気シールドに分流すると、その分だけ再生出力が低
下するので好ましくない。
First, if the inter-shield gap is made small, it may become impossible to ensure electrical insulation between the MR element and the magnetic shield. If the sense current to be supplied to the MR element is shunted to the magnetic shield, the reproduction output will be reduced by that amount, which is not preferable.

第2に、MR素子にバイアスを与える手段は、MR素子
に近接して設けることが効果的であり、シールド間ギャ
ップをこのバイアス印加手段より小さくすることはでき
ない。
Secondly, it is effective to provide a means for applying a bias to the MR element close to the MR element, and the inter-shield gap cannot be made smaller than this bias applying means.

以上のように、シールド型MRヘッドの高分解能化を、
シールド間ギャップの縮小のみで達成することには限界
があり、そのため、シールド型MRヘッドを用いて読出
し可能な記録密度には限界があった。
As mentioned above, the high resolution of the shielded MR head is
There is a limit to what can be achieved only by reducing the inter-shield gap, and therefore there is a limit to the recording density that can be read using a shielded MR head.

本発明の目的は上記問題を解決した高分解能のシールド
型MRヘッドを提供することにある。
An object of the present invention is to provide a high-resolution shielded MR head that solves the above problems.

〔課題を解決するための手段〕[Means to solve the problem]

本発明のシールド型MRヘッドは、上部磁気シールドの
厚さT1、下部磁気シールドの厚さT2、上部磁気シー
ルドとMR素子間のギャップG1および下部磁気シール
ドとMR素子間のギャップG2が最短読出し波長λに対
して、弐T1+2・G、=72+2・G2=λを満足す
る。
In the shielded MR head of the present invention, the thickness T1 of the upper magnetic shield, the thickness T2 of the lower magnetic shield, the gap G1 between the upper magnetic shield and the MR element, and the gap G2 between the lower magnetic shield and the MR element have the shortest readout wavelength. For λ, 2T1+2・G,=72+2・G2=λ is satisfied.

〔作用〕[Effect]

本発明では、磁気シールドの厚さとシールド間ギャップ
の和を最短読出し波長に対して最適化することにより、
シールド型MRヘットの高分解能化を実現した。
In the present invention, by optimizing the sum of the thickness of the magnetic shield and the gap between the shields for the shortest readout wavelength,
Achieved high resolution of the shield type MR head.

第2図はシールド間ギャップが0.2μm、スペーシン
グが0.2μmの場合の磁気シールド厚と再生出力の関
係を示したグラフである。記録波長lOμ■の場合を除
き、再生出力は、特定の磁気シールド厚でピークを示す
。すなわち、記録波長が2μ量の場合には磁気シールド
厚1.6μm、M己録波長が1.4μmの場合には磁気
シールド厚!μm、記録波長1μmの場合には磁気シー
ルド厚0.6μmの場合に再生出力が最大になる。この
関係をシールド間ギャップG、磁気シールド厚T、記録
波長λて表わすと λ=20+T となる。また、記録波長]OAtmの場合には、再生出
力は磁気シールド厚が0.3μmで最低となり、それ以
上では緩やかに増加し、それ以下では急増する。磁気シ
ールド厚0,3μm以下で再生出方が急増する理由は、
シールド効果が/J)さくなるためと考えられる。
FIG. 2 is a graph showing the relationship between the magnetic shield thickness and the reproduction output when the gap between the shields is 0.2 μm and the spacing is 0.2 μm. Except for the recording wavelength lOμ■, the reproduction output peaks at a specific magnetic shield thickness. That is, when the recording wavelength is 2 μm, the magnetic shield thickness is 1.6 μm, and when the M recording wavelength is 1.4 μm, the magnetic shield thickness is ! μm, and in the case of a recording wavelength of 1 μm, the reproduction output becomes maximum when the magnetic shield thickness is 0.6 μm. When this relationship is expressed as inter-shield gap G, magnetic shield thickness T, and recording wavelength λ, it becomes λ=20+T. Further, in the case of the recording wavelength [OAtm], the reproduction output reaches its lowest value when the magnetic shield thickness is 0.3 μm, increases gradually above this value, and rapidly increases below this value. The reason why the reproduction rate increases rapidly when the magnetic shield thickness is 0.3 μm or less is as follows.
This is thought to be because the shielding effect becomes /J) smaller.

以上のようにシールド間ギャップ、磁気シールド厚、記
録波長が上記の式を満たす場合には、高分解能のシール
ド型MRヘッドが得らゎる。
As described above, when the inter-shield gap, magnetic shield thickness, and recording wavelength satisfy the above formula, a high-resolution shielded MR head can be obtained.

〔実施例〕〔Example〕

次に、本発明の実施例について図面を参照して説明する
Next, embodiments of the present invention will be described with reference to the drawings.

第1図は本発明の第1の実施例のMRヘッドを示す斜視
図である。
FIG. 1 is a perspective view showing an MR head according to a first embodiment of the present invention.

1は基板、2は下部磁気シールド、3はMR素子、4は
中間層、5はバイアス印加膜、6は上部磁気シールド、
7は電極、T1は下部シールド厚、T2は上部シールド
厚、G、は下部シールド間ギャップ、G2は上部シール
ド間ギャップである。第1図において、下部磁気シール
ド厚T1は0.8μ田、下部シールド間ギャップG1は
0.4μm、上部磁気シールド厚T2は0.6μm、上
部シールド間キャップG2は0,5μmである。本実施
例のシールド型MRヘッドは、最短読出し波長λか1.
6μmとなる磁気記録装置で使用される場合に、次式 %式% を満たす構造である。
1 is a substrate, 2 is a lower magnetic shield, 3 is an MR element, 4 is an intermediate layer, 5 is a bias application film, 6 is an upper magnetic shield,
7 is an electrode, T1 is a lower shield thickness, T2 is an upper shield thickness, G is a gap between lower shields, and G2 is a gap between upper shields. In FIG. 1, the lower magnetic shield thickness T1 is 0.8 μm, the lower inter-shield gap G1 is 0.4 μm, the upper magnetic shield thickness T2 is 0.6 μm, and the upper inter-shield cap G2 is 0.5 μm. The shield type MR head of this embodiment has a shortest readout wavelength of λ or 1.
When used in a magnetic recording device with a thickness of 6 μm, the structure satisfies the following formula.

次に、第1図を参照して本実施例のシールド型MRヘッ
ドの製造方法を説明する。
Next, a method of manufacturing the shield type MR head of this embodiment will be explained with reference to FIG.

まず、セラミック基板1上に、厚さ0.8μmのNiF
e膜をスパッタリング法で成膜し、フォトリソグラフィ
ー技術とイオンエツチング技術を用いて下部磁気シール
ド2を形成する。次に、厚さ0.4μmのSin、絶縁
膜(図示せず)をスパッタリング法により成膜した後、
厚さ0.04μmのNiFe膜、厚さ0.01pmのT
i膜、厚さ0.05μmのCoZrMo膜をスパッタリ
ング法により連続成膜し、さらに、厚さ0.2μmのA
u膜を真空蒸着法により成膜する。この積層膜は、フォ
トリソグラフィー技術、イオンエツチング技術、および
化学エツチング技術を用いて、MR素子4、中間層5お
よびバイアス印加膜6の3層構造MRヘッドと、その両
端に接続される電極7に形成される。この3層構造MR
ヘッドでは、バイアス印加膜6とMR素子4の磁気的な
結合と、センス電流か発生するバイアス磁界により、M
R素子4にバイアスが与えられる。この3層構造MRヘ
ッドの上には、厚さ0.44μmの5in2絶縁膜(図
示せず)をスパッタリング法により成膜した後、厚さ0
.6μmのNiFe膜をスパッタリング法で成膜し、フ
ォトリソグラフィー技術とイオンエツチング技術を用い
て上部磁気シールド6を形成する。ここで、上部シール
ド間ギャップG2は、厚さ0.44μmのSin□膜、
厚さ0.01μmのTi膜、および厚さ0.05μmの
CoZrMo膜の膜厚の総和により規定される。上部磁
気シールド6形成後、端子(図示せず)を形成し、さら
に厚さ30μmのAl2O3保護膜をスパッタリング法
により成膜してトランスジューサを完成させる。完成し
たトランスジューサは、機械加工により磁気へラドスラ
イダに形成する。
First, NiF with a thickness of 0.8 μm is placed on the ceramic substrate 1.
The e-film is formed by sputtering, and the lower magnetic shield 2 is formed using photolithography and ion etching. Next, after forming a 0.4 μm thick Sin insulating film (not shown) by sputtering,
NiFe film with a thickness of 0.04 μm, T with a thickness of 0.01 pm
A CoZrMo film with a thickness of 0.05 μm was successively formed by a sputtering method, and then a CoZrMo film with a thickness of 0.2 μm was formed.
A u film is formed by vacuum evaporation. Using photolithography, ion etching, and chemical etching, this laminated film is formed into a three-layer MR head consisting of an MR element 4, an intermediate layer 5, and a bias application film 6, and an electrode 7 connected to both ends of the MR head. It is formed. This three-layer structure MR
In the head, due to the magnetic coupling between the bias application film 6 and the MR element 4 and the bias magnetic field generated by the sense current,
A bias is applied to R element 4. A 5in2 insulating film (not shown) with a thickness of 0.44 μm was formed on this three-layer structure MR head by sputtering, and then
.. A 6 μm NiFe film is formed by sputtering, and the upper magnetic shield 6 is formed using photolithography and ion etching. Here, the gap G2 between the upper shields is made of a 0.44 μm thick Sin□ film,
It is defined by the total thickness of a Ti film with a thickness of 0.01 μm and a CoZrMo film with a thickness of 0.05 μm. After forming the upper magnetic shield 6, terminals (not shown) are formed, and a 30 μm thick Al2O3 protective film is further formed by sputtering to complete the transducer. The completed transducer is machined into a magnetic Rad slider.

本実施例により作製したシールド型MRヘットの再生特
性を測定したところ、シールド間ギャップが同一て、磁
気シールド厚が3μmの他のシールド型MRヘッドに比
較して、最短読出し波長1.6μmでの再生出力が3d
B大きかった。また、読出し波長lOμmに対する再生
出力は1dB小さかった。
When the reproduction characteristics of the shielded MR head fabricated according to this example were measured, it was found that the reading characteristics at the shortest readout wavelength of 1.6 μm were higher than that of other shielded MR heads with the same inter-shield gap and magnetic shield thickness of 3 μm. Playback output is 3D
B It was big. Furthermore, the reproduction output with respect to the read wavelength 10 μm was 1 dB smaller.

次に、第2の実施例として、下部磁気シールド厚T、が
0,2μm、上部磁気シールド厚T2が0.2μm、下
部シールド間ギャップG1が0.7μmおよび上部シー
ルド間ギャップG2が0.7μmのシールド型MRヘッ
トを製作した。本実施例におけるシールド型MRヘッド
の構成は、第1図に示す第1の実施例のシールド型MR
ヘッドと同じである。このシールド型MRヘットの再生
特性を測定したところ、シールド間ギャップが同で磁気
シールド厚が3μmの他のシールド型MRヘットに比較
して、最短記録波長1.6μmでの再生出力が3dB大
きかった。しかしながら、記録波長lOμ0での再生出
力が6dB大きく、結果として分解能が低下した。した
がって、磁気シールド厚が極めて薄い場合には長記録波
長に対するシールド効果が低下することか示された。
Next, as a second example, the lower magnetic shield thickness T is 0.2 μm, the upper magnetic shield thickness T2 is 0.2 μm, the lower inter-shield gap G1 is 0.7 μm, and the upper inter-shield gap G2 is 0.7 μm. A shield type MR head was manufactured. The configuration of the shielded MR head in this embodiment is the same as that of the shielded MR head in the first embodiment shown in FIG.
Same as head. When we measured the reproduction characteristics of this shield type MR head, we found that the reproduction output at the shortest recording wavelength of 1.6 μm was 3 dB higher than that of other shield type MR heads with the same gap between shields and magnetic shield thickness of 3 μm. . However, the reproduction output at the recording wavelength lOμ0 was 6 dB larger, resulting in lower resolution. Therefore, it was shown that when the magnetic shield thickness is extremely thin, the shielding effect for long recording wavelengths decreases.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、磁気シールド厚とシール
ド間ギャップの和を最短読出し波長に対して最適化する
ことにより、分解能を大幅に改善できる効果がある。
As explained above, the present invention has the effect of significantly improving resolution by optimizing the sum of the magnetic shield thickness and the inter-shield gap with respect to the shortest read wavelength.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例のMRヘッドを示す斜視図、
第2図は本発明の作用を示す再生出力の磁気シールド厚
依存性のグラフである。 1・・・基板、      2・・・下部磁気シールド
、3・・・MR素子、   4・・・中間層、5・・・
バイアス印加膜、6・・・上部磁気シールド、7・・・
電極、 G、−・・下部シールド間ギャップ、 G2・・・上部シールド間ギャップ、 T1 ・・・下部シールド厚、 2 −・上部シールド厚。
FIG. 1 is a perspective view showing an MR head according to an embodiment of the present invention;
FIG. 2 is a graph of the dependence of the reproduction output on the thickness of the magnetic shield, showing the effect of the present invention. DESCRIPTION OF SYMBOLS 1... Substrate, 2... Lower magnetic shield, 3... MR element, 4... Intermediate layer, 5...
Bias application film, 6... Upper magnetic shield, 7...
Electrode, G, - Gap between lower shields, G2... Gap between upper shields, T1... Lower shield thickness, 2 - Upper shield thickness.

Claims (1)

【特許請求の範囲】 1、磁気抵抗効果素子と、前記磁気抵抗効果素子の上部
および下部に隣接した磁気シールドを備えた磁気抵抗効
果ヘッドにおいて、 前記上部磁気シールドの厚さT_1、前記下部磁気シー
ルドの厚さT_2、前記上部磁気シールドと前記磁気抵
抗効果素子間のギャップG_1および前記下部磁気シー
ルドと前記磁気抵抗効果素子間のギャップG_2が、最
短読出し波長λに対して、式T_1+2・G_1=T_
2+2・G_2=λを満足することを特徴とする磁気抵
抗効果ヘッド。
[Claims] 1. A magnetoresistive head including a magnetoresistive element and magnetic shields adjacent to the upper and lower parts of the magnetoresistive element, wherein the upper magnetic shield has a thickness T_1, the lower magnetic shield has a thickness T_1, and a thickness T_1 of the upper magnetic shield; The thickness T_2, the gap G_1 between the upper magnetic shield and the magnetoresistive element, and the gap G_2 between the lower magnetic shield and the magnetoresistive element are expressed by the formula T_1+2・G_1=T_ with respect to the shortest read wavelength λ.
A magnetoresistive head characterized by satisfying 2+2・G_2=λ.
JP2079295A 1990-03-28 1990-03-28 Magnetoresistive head Expired - Lifetime JP2718242B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2079295A JP2718242B2 (en) 1990-03-28 1990-03-28 Magnetoresistive head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2079295A JP2718242B2 (en) 1990-03-28 1990-03-28 Magnetoresistive head

Publications (2)

Publication Number Publication Date
JPH03280208A true JPH03280208A (en) 1991-12-11
JP2718242B2 JP2718242B2 (en) 1998-02-25

Family

ID=13685858

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2079295A Expired - Lifetime JP2718242B2 (en) 1990-03-28 1990-03-28 Magnetoresistive head

Country Status (1)

Country Link
JP (1) JP2718242B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5923502A (en) * 1995-12-21 1999-07-13 International Business Machines Corporation Magneto-resistive head including a selectively placed low-reluctance path between shields
US7616403B2 (en) 2004-10-29 2009-11-10 Hitachi Global Storage Technologies Netherlands B.V. Winged design for reducing corner stray magnetic fields
US7764469B2 (en) * 2004-10-29 2010-07-27 Hitachi Global Storage Technologies Netherlands B.V. Notched shield and pole structure with slanted wing for perpendicular recording

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6224847A (en) * 1985-07-23 1987-02-02 Toshiba Ceramics Co Ltd Method and instrument for measuring air permeability of gas blow-off type nozzle for pouring molten metal
JPS6326452A (en) * 1986-07-17 1988-02-04 Isuzu Motors Ltd Speed change device for automatic transmission

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6224847A (en) * 1985-07-23 1987-02-02 Toshiba Ceramics Co Ltd Method and instrument for measuring air permeability of gas blow-off type nozzle for pouring molten metal
JPS6326452A (en) * 1986-07-17 1988-02-04 Isuzu Motors Ltd Speed change device for automatic transmission

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5923502A (en) * 1995-12-21 1999-07-13 International Business Machines Corporation Magneto-resistive head including a selectively placed low-reluctance path between shields
US7616403B2 (en) 2004-10-29 2009-11-10 Hitachi Global Storage Technologies Netherlands B.V. Winged design for reducing corner stray magnetic fields
US7764469B2 (en) * 2004-10-29 2010-07-27 Hitachi Global Storage Technologies Netherlands B.V. Notched shield and pole structure with slanted wing for perpendicular recording

Also Published As

Publication number Publication date
JP2718242B2 (en) 1998-02-25

Similar Documents

Publication Publication Date Title
JP2637911B2 (en) Method of manufacturing magnetic head, magnetic tape data storage device, thin film magnetic sensor assembly on substrate, and method of manufacturing magnetoresistive (MR) head
KR100354685B1 (en) Thin film magnetic head and manufacturing method thereof
US7068476B2 (en) Magnetic sensing element having no variation in track width and capable of properly complying with track narrowing
JPH03280208A (en) Magneto-resistance effect head
US5959809A (en) Magnetoresistive head and method of manufacturing the same and magnetic recording apparatus
JPH08235542A (en) Magnetic reluctance effect element
EP0482642B1 (en) Composite magnetoresistive thin-film magnetic head
JP2973850B2 (en) Method of manufacturing magnetoresistive thin film magnetic head
JP2618380B2 (en) Magnetoresistive head and method of manufacturing the same
JP3089886B2 (en) Method of manufacturing magnetoresistive head
JPS63129512A (en) Production of magnetoresistance effect type magnetic head
JP2001084531A (en) Magnetoresistance effect type thin film magnetic head
JPH0743175A (en) Magnetic information detecting device
JP3210139B2 (en) Magnetoresistive magnetic head
JP4010702B2 (en) Manufacturing method of thin film magnetic head
JPS5857617A (en) Thin film magnetic head
JPH03244170A (en) Magnetoresistance effect element and magnetoresistance effect head
JPH03290812A (en) Magnetic head
JPH08316547A (en) Magneto-detecting element and manufacture thereof
JPH06223332A (en) Magnetoresistance-effect head
JPH05242433A (en) Magnetic head
JPH05159247A (en) Magneto-resistance effect head
JPH06251336A (en) Magnetoresistive effect type magnetic head
JPH0441413B2 (en)
JPS588051B2 (en) Magnetoresistive head