JPH03279839A - Solidification time deciding method - Google Patents
Solidification time deciding methodInfo
- Publication number
- JPH03279839A JPH03279839A JP8201590A JP8201590A JPH03279839A JP H03279839 A JPH03279839 A JP H03279839A JP 8201590 A JP8201590 A JP 8201590A JP 8201590 A JP8201590 A JP 8201590A JP H03279839 A JPH03279839 A JP H03279839A
- Authority
- JP
- Japan
- Prior art keywords
- time
- coagulation
- measurement
- frequency
- oscillation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims description 20
- 238000007711 solidification Methods 0.000 title abstract description 8
- 230000008023 solidification Effects 0.000 title abstract description 8
- 230000010355 oscillation Effects 0.000 claims abstract description 27
- 238000006243 chemical reaction Methods 0.000 claims abstract description 20
- 230000015271 coagulation Effects 0.000 claims description 34
- 238000005345 coagulation Methods 0.000 claims description 34
- 238000005259 measurement Methods 0.000 abstract description 23
- 239000007788 liquid Substances 0.000 abstract description 8
- 239000013078 crystal Substances 0.000 abstract description 7
- 230000007423 decrease Effects 0.000 abstract description 2
- 230000003247 decreasing effect Effects 0.000 abstract 1
- 239000000463 material Substances 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 8
- 238000011088 calibration curve Methods 0.000 description 4
- 210000004027 cell Anatomy 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 102000015081 Blood Coagulation Factors Human genes 0.000 description 3
- 108010039209 Blood Coagulation Factors Proteins 0.000 description 3
- 206010053567 Coagulopathies Diseases 0.000 description 3
- 239000003114 blood coagulation factor Substances 0.000 description 3
- 229940019700 blood coagulation factors Drugs 0.000 description 3
- 230000035602 clotting Effects 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 3
- 239000002158 endotoxin Substances 0.000 description 3
- 238000001879 gelation Methods 0.000 description 2
- 239000010453 quartz Substances 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 241001529572 Chaceon affinis Species 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 239000003918 blood extract Substances 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 210000002858 crystal cell Anatomy 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000006911 enzymatic reaction Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 238000005185 salting out Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2203/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N2203/0058—Kind of property studied
- G01N2203/0092—Visco-elasticity, solidification, curing, cross-linking degree, vulcanisation or strength properties of semi-solid materials
Landscapes
- Investigating Or Analyzing Materials Using Thermal Means (AREA)
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
この発明は、化学、物理化学、生化学および食品、医療
、化学工業分野における反応計測を行う装置の使用法に
関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to the use of an apparatus for measuring reactions in the fields of chemistry, physical chemistry, biochemistry, food, medicine, and chemical industry.
この発明の凝固判定法は、圧電振動子を使用し、液体の
反応を同時に計測する装置において、測定値が一定値(
しきい値)まで達した時間を凝固時間とするものである
。The solidification determination method of this invention uses a piezoelectric vibrator to simultaneously measure liquid reactions, and the measured value is a constant value (
The time it takes to reach the threshold value) is defined as the coagulation time.
本発明に使用する装置は、圧電振動子(!l*に水晶振
動子)、発振回路、周波数測定回路、データ処理制御装
置および恒温器より構成されている。The device used in the present invention is composed of a piezoelectric vibrator (crystal vibrator in !l*), an oscillation circuit, a frequency measurement circuit, a data processing control device, and a thermostat.
本発明の凝固時間判定法は、この凝固反応計測装置を用
い、圧電振動子の発振周波数変化を測定の指標とし、液
体試料の凝固反応を;1測する場合に、周波数変化がし
きい値に達したときの時間を求める方法である。The coagulation time determination method of the present invention uses this coagulation reaction measuring device, uses the change in the oscillation frequency of the piezoelectric vibrator as a measurement index, and when measuring the coagulation reaction of a liquid sample once, the frequency change reaches a threshold value. This is a method to find the time when it is reached.
これまで凝固反応を測定する方法としては、試料の濁度
を光学的に測定する方法、機械的な振動を与えゲル化に
よる粘性変化を検知する方法が取られていた。また、本
発明者らによって、圧電素子を用いた方法も開発されて
いる。Up until now, the methods for measuring coagulation reactions have been to optically measure the turbidity of a sample, or to apply mechanical vibrations to detect changes in viscosity due to gelation. The present inventors have also developed a method using a piezoelectric element.
ゲル化反応の測定では、従来の濁度を測定する方法の場
合、着色試料の測定には不向きであり、塩析によって大
きな誤差を生じたり、測定が不能になる止いう問題点が
あった。また、機械的な振動を与える方法では、機械部
分があるため小型軽量化が難しいという問題があった。When measuring gelation reactions, conventional methods for measuring turbidity are not suitable for measuring colored samples, and have the problem of causing large errors due to salting out or making measurements impossible. Furthermore, in the method of applying mechanical vibration, there is a problem that it is difficult to reduce the size and weight of the device due to the presence of mechanical parts.
これらの点に加え、いずれの方法も、最低0.2N1程
度の試料を必要とするという問題があった。In addition to these points, each method has the problem of requiring a sample of at least about 0.2N1.
本発明者らによって考案された水晶振動子による測定法
は、試料の着色や濁りの影響を受けず、0.2d以下の
試料を測定することが可能であり、システムの小型化も
可能であった。ただし、凝固時間の判定を行う際に、凝
固時間終了まで測定を行うため、反応時間が長い場合に
は、測定に長時間を要するという問題があった。The measurement method using a quartz crystal oscillator devised by the present inventors is not affected by sample coloration or turbidity, is capable of measuring samples of 0.2 d or less, and allows for system miniaturization. Ta. However, when determining the coagulation time, the measurement is carried out until the end of the coagulation time, so if the reaction time is long, there is a problem in that the measurement takes a long time.
上記課題を解決するために、圧電素子を用いた凝固計測
装置を用い、凝固反応の測定指標である発振周波数変化
が、ある一定M(しきい値)番こ達したときの時間をゲ
ル化時間に採用することにした。In order to solve the above problem, we used a coagulation measurement device using a piezoelectric element, and measured the time when the oscillation frequency change, which is a measurement index of the coagulation reaction, reaches a certain M (threshold) number. I decided to adopt it.
本発明に用いた装置において、圧電振動子は、圧電効果
を利用したデバイスであり、発振回路と接続することに
よって、発振させることができる。In the device used in the present invention, the piezoelectric vibrator is a device that utilizes the piezoelectric effect, and can be caused to oscillate by being connected to an oscillation circuit.
この際、圧電振動子の表面番よ、微少な振動を起こす。At this time, the surface of the piezoelectric vibrator causes a slight vibration.
このため振動子の表面に物質が接することによって、こ
の振動が影響を受け、発振周波数の変化が生しる。これ
を利用して、液体の粘性変化の測定を行うことが可能で
ある。凝固反応に伴う発振周波数変化を模式的に示すと
、第1図のようになる。発振周波数は、凝固反応l二伴
い徐々に減少していき、凝固の終了とともに、一定値を
示すようになる0本来の凝固時間は、凝固反応が終了し
た点であるから、第1図において、反応が進行し周波数
が変化している線と反応が終了し周波数が一定となった
線を外挿した交点の時間であると考えられる。この交点
を点Bで示した。このときの凝固時間がTbである。一
方、より簡便に、凝固時間を求める方法として、凝固に
よって生した全体の周波数変化を100%として、ある
割合(例えば90%)に達したときの時間を凝固時間と
する方法も本発明者らによって開示されている。第1図
において、点Cで示した。このときの時間は、TCであ
る。これらの方法の場合、凝固終了まで測定を行わなく
てはならないため、比較的長い時間を要するという問題
がある。Therefore, when a substance comes into contact with the surface of the vibrator, this vibration is affected, causing a change in the oscillation frequency. Utilizing this, it is possible to measure changes in the viscosity of a liquid. FIG. 1 schematically shows the change in oscillation frequency accompanying the coagulation reaction. The oscillation frequency gradually decreases with the coagulation reaction, and reaches a constant value as the coagulation ends.The original coagulation time is the point at which the coagulation reaction ends, so in Fig. 1, It is considered to be the time of the intersection of the line where the reaction progresses and the frequency changes and the line where the reaction ends and the frequency becomes constant. This intersection is designated as point B. The solidification time at this time is Tb. On the other hand, as a simpler method for determining the coagulation time, the present inventors have also proposed a method in which the overall frequency change caused by coagulation is set as 100%, and the time when a certain percentage (for example, 90%) is reached is determined as the coagulation time. disclosed by. In FIG. 1, this is indicated by point C. The time at this time is TC. These methods have a problem in that they require a relatively long time because measurement must be carried out until the end of coagulation.
本発明の凝固判定法は、発振周波数が、ある−定値(し
きい値)に達するまでの時間を求めるものである。第1
図で、点へで示した。このときの時間は、Taである。The coagulation determination method of the present invention determines the time it takes for the oscillation frequency to reach a certain constant value (threshold value). 1st
In the figure, it is indicated by a point. The time at this time is Ta.
この方法によれば、点へに達した時点で、凝固時間の判
定を行うことができ、測定時間の短縮が可能である。According to this method, the coagulation time can be determined when the point is reached, and the measurement time can be shortened.
全体の周波数変化は、反応試薬のロフト間の差、試料液
の性状、圧電素子の個体差によって変化するため、この
点を考慮すると、Tb、Tcは、凝固時間として優れて
いる。しかし、実際には、この凝固時間の測定は、絶対
時間が必要なのではなく、測定対象物の1度との関係に
よって意味を持つものである。すなわち、既知1度の試
料に対する凝固時間から検量線を求め、この検量線を用
いて未知試料の凝固時間から未知試料の濃度が推定され
るものである。したがって、最も重要なことは、試料濃
度と凝固時間の間に再現性のある結果が得られるかどう
かという点である。Since the overall frequency change varies depending on the loft difference of the reaction reagent, the properties of the sample liquid, and the individual differences of the piezoelectric elements, taking this point into consideration, Tb and Tc are excellent as coagulation times. However, in reality, the measurement of this coagulation time does not require absolute time, but has meaning based on its relationship to 1 degree of the object to be measured. That is, a calibration curve is obtained from the clotting time of a known sample, and the concentration of the unknown sample is estimated from the clotting time of the unknown sample using this calibration curve. Therefore, the most important thing is whether reproducible results can be obtained between sample concentration and clotting time.
ここで、第2図に濃度の異なる試料について、凝固に伴
う周波数変化の模式図を示す。一般に周波数変化は、第
2図に示されるように、時間軸に対して形はほとんど変
化せず大きさが比例して変化する。これは、凝固反応を
引き起こす酵素反応の速度が、測定試料の濃度に依存し
て変化するためである。したがって、あるしきい(fi
A + によって得られるTa1.Taz、Taiを
用いても、しきい値B1によって得られるT b、、
T b2. T b、を用いても、検量線を得ることが
できる。Here, FIG. 2 shows a schematic diagram of frequency changes accompanying coagulation for samples with different concentrations. Generally, as shown in FIG. 2, the frequency change hardly changes in shape with respect to the time axis, but changes proportionally in magnitude. This is because the rate of the enzyme reaction that causes the coagulation reaction changes depending on the concentration of the measurement sample. Therefore, some threshold (fi
Ta1. obtained by A + . Even if Taz and Tai are used, T b obtained by threshold B1, ,
Tb2. A calibration curve can also be obtained using T b.
第2図において、周波数変化の初期の段階では、周波数
変化の誤差を考慮し、しきい値の値は、100)1z以
上が適切である。また、最終的な周波数変化の大きさは
、対象とする反応によって異なる。In FIG. 2, at the initial stage of frequency change, taking into account the error in frequency change, the appropriate threshold value is 100)1z or more. Furthermore, the magnitude of the final frequency change varies depending on the target reaction.
また、試料間の格差によっても変化することから、しき
い値は最終変化時の平均80%程度が適切である。Furthermore, since it changes depending on the difference between samples, it is appropriate for the threshold value to be about 80% on average at the final change.
以下、この発明の実施例を図面に基づいて説明する。第
3図は、本発明で使用した反応計測装置の模式図を示し
たものである。第3回において、水晶振動子1には、水
晶振動子の片側が液体に接するようにしたセル2が付け
られている。このセルは、恒温器3に接するように置か
れ、発振回路4に接続されている。発振回路は、周波数
カウンター5に接続され、さらにデータをモニターする
ためのマイクロコンピュータ(入出力インタフェースを
含む)6に接続され、マイクロコンピュータには、記録
装置7、表示装置8、キースイッチ9が接続されている
。Embodiments of the present invention will be described below based on the drawings. FIG. 3 shows a schematic diagram of the reaction measuring device used in the present invention. In the third time, a cell 2 is attached to the crystal resonator 1 so that one side of the crystal resonator is in contact with a liquid. This cell is placed in contact with a thermostat 3 and connected to an oscillation circuit 4. The oscillation circuit is connected to a frequency counter 5 and further connected to a microcomputer (including an input/output interface) 6 for monitoring data, and a recording device 7, a display device 8, and a key switch 9 are connected to the microcomputer. has been done.
測定は、試料液体をセル2中に入れ、発振周波数測定開
始のスイッチを入れ、測定を開始した。The measurement was started by putting the sample liquid into the cell 2 and turning on the switch to start measuring the oscillation frequency.
最初の発振周波数を基準としてこの後に求めた発振周波
数との差をΔFとして記録した。The difference between the first oscillation frequency and the subsequently determined oscillation frequency was recorded as ΔF.
〈エンドトキシン濃度測定への応用〉
9MHz−ATカット水晶振動子を用い、恒温器を37
℃とした本装置に、エンドトキシン濃度0.2−と規定
量のカブトガニ血液抽出物の凍結乾燥品とを混合し、水
晶振動子セル中に注入し、発振周波数の変化の測定を行
った。得られた周波数変化をもとに、最終変化量の90
%になった時間(Tc)と上記、しきい値を2000H
zとしたときの周波数変化が、しきい値に達するまでの
時間(Ta)を求めた。<Application to endotoxin concentration measurement> Using a 9 MHz-AT cut crystal oscillator, the thermostat was set to 37°C.
An endotoxin concentration of 0.2- and a specified amount of freeze-dried horseshoe crab blood extract were mixed into this apparatus at a temperature of .degree. C., and the mixture was injected into a quartz crystal cell, and changes in oscillation frequency were measured. Based on the obtained frequency change, the final change amount is 90
% time (Tc) and the above, threshold value is 2000H
The time (Ta) required for the frequency change to reach the threshold value when z was determined.
エンドトキシン濃度0.125/dから8Eu/wiに
ついて、4種類の濃度で2点ずつ測定したときのTaと
Tcの結果をそれぞれ、第4図(alと第4図(ト))
に示す0図中の直線は、1次の回帰式を求めた結果であ
る。第4図(al、 C:b+ともに良い直線関係を示
すことがわかる。このときの回帰式の相関係数は、それ
ぞれ、0.995 と0.996でありほぼ同程度であ
った。2つの方法によって得た検量線を用いて未知試料
の凝固時間から、濃度を求めたところ、きわめて良い一
致を示した。全体の周波数変化の平均は6000Hzで
あり、しきい値としては100Hzから5000Hzの
間で使用可能であることが確認された。Figure 4 (al) and Figure 4 (g) show the results of Ta and Tc when measuring two points each at four different concentrations for endotoxin concentrations from 0.125/d to 8Eu/wi.
The straight line in the diagram 0 is the result of finding a first-order regression equation. Figure 4 (It can be seen that both al and C: b+ show a good linear relationship. The correlation coefficients of the regression equations at this time were 0.995 and 0.996, respectively, which were almost the same. When the concentration was determined from the coagulation time of the unknown sample using the calibration curve obtained by the method, it showed very good agreement.The average frequency change was 6000 Hz, and the threshold value was between 100 Hz and 5000 Hz. It has been confirmed that it can be used.
次に、発振周波数の測定をしきい値に達した時間で打ち
切り、Taだけを測定した場合にも、第4図(a)と同
様な結果が得られ、測定時間を大幅に短縮することがで
きた。Next, when the measurement of the oscillation frequency is stopped at the time when the threshold value is reached and only Ta is measured, results similar to those shown in Fig. 4(a) can be obtained, and the measurement time can be significantly shortened. did it.
く血液凝固因子測定への応用〉
一方、血W7.m固因子の測定に関しても同様の効果を
得ることができた。血液凝固因子の測定の例として血液
凝固第8因子および第9因子の測定を行ったところ、全
体の周波数変化の平均は、1000)1zであり、発振
周波数のしきい値とては】00Hzから800 )IZ
の範囲が適当であることが確認された。Application to measurement of blood coagulation factors> On the other hand, blood W7. A similar effect could be obtained with respect to the measurement of m-fixation factor. When blood coagulation factors 8 and 9 were measured as an example of blood coagulation factor measurement, the average frequency change was 1000) 1 z, and the oscillation frequency threshold was 00 Hz to 00 Hz. 800)IZ
It was confirmed that the range was appropriate.
以上、発振周波数変化についての実施例を述べたが、本
発明による判定法は共振抵抗変化について同様ム二適用
可能である。Although the embodiments regarding changes in oscillation frequency have been described above, the determination method according to the present invention can be similarly applied to changes in resonance resistance.
本発明の凝固時間測定法によって、従来の凝固時間を求
める方法に対して、測定精度を落とすこと無く、測定時
間の大幅な短縮が可能となった。The method for measuring coagulation time of the present invention makes it possible to significantly shorten the measurement time as compared to conventional methods for determining coagulation time without reducing measurement accuracy.
第1図は本発明の判定原理を示す図、第2図は試料濃度
に対する発振周波数変化を示す図、第3図は本発明で使
用した凝固反応計測装置の模式図、第4図fa)は本発
明の凝固判定法により測定した結果の示す図、第4図f
blは従来の方法で測定した結果を示す図である。
水晶振動子
・セル
恒温器
・発振回路
・周波数カウンター
以
上Figure 1 is a diagram showing the determination principle of the present invention, Figure 2 is a diagram showing changes in oscillation frequency with respect to sample concentration, Figure 3 is a schematic diagram of the coagulation reaction measuring device used in the present invention, and Figure 4 fa) is A diagram showing the results measured by the coagulation determination method of the present invention, Figure 4f
bl is a diagram showing the results measured by a conventional method. Crystal oscillators, cell thermostats, oscillation circuits, frequency counters and above
Claims (1)
装置において、前記共振状態変化の測定値が、一定値(
以下、しきい値という)まで達した(2)上記、測定値
が、発振周波数変化の測定値である請求項1記載の凝固
時間判定法。 (3)上記測定値が共振抵抗変化の測定値である請求項
1記載の凝固時間判定法。 (4)上記しきい値が、100Hzから凝固に伴う最大
変化量の80%の間である請求項1記載の凝固時間判定
法。[Scope of Claims] (1) In a coagulation reaction measuring device that uses a change in the resonance state of a piezoelectric element, the measured value of the change in the resonance state is a constant value (
2. The method for determining a coagulation time according to claim 1, wherein the measured value (2) is a measured value of a change in oscillation frequency. (3) The method for determining coagulation time according to claim 1, wherein the measured value is a measured value of a change in resonance resistance. (4) The method for determining coagulation time according to claim 1, wherein the threshold value is between 100 Hz and 80% of the maximum change due to coagulation.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8201590A JPH03279839A (en) | 1990-03-29 | 1990-03-29 | Solidification time deciding method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8201590A JPH03279839A (en) | 1990-03-29 | 1990-03-29 | Solidification time deciding method |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH03279839A true JPH03279839A (en) | 1991-12-11 |
Family
ID=13762697
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8201590A Pending JPH03279839A (en) | 1990-03-29 | 1990-03-29 | Solidification time deciding method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH03279839A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111562289A (en) * | 2020-07-08 | 2020-08-21 | 中建四局第三建设有限公司 | In-situ testing method for sludge solidification |
-
1990
- 1990-03-29 JP JP8201590A patent/JPH03279839A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111562289A (en) * | 2020-07-08 | 2020-08-21 | 中建四局第三建设有限公司 | In-situ testing method for sludge solidification |
CN111562289B (en) * | 2020-07-08 | 2022-07-08 | 中建四局第三建设有限公司 | In-situ testing method for sludge solidification |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Kratky et al. | [5] The determination of the partial specific volume of proteins by the mechanical oscillator technique | |
Chen et al. | Micro-electromechanical film bulk acoustic sensor for plasma and whole blood coagulation monitoring | |
NO994831L (en) | Device for measuring dew point and boiling point | |
EP1605257B1 (en) | Two-frequency measuring method using surface acoustic wave device, and surface acoustic wave device and biosensor device with analysis liquid agitating means | |
Ashcroft et al. | Density measurement by oscillating tube. Effects of viscosity, temperature, calibration and signal processing | |
JPH07190919A (en) | Biosensor for measuring at least one of viscosity and density | |
US5211054A (en) | Method and system for analyzing a gelation reaction by utilizing a piezoelectric resonator | |
JPH03279839A (en) | Solidification time deciding method | |
EP0304283B1 (en) | Apparatus for measuring a characteristic of a liquid | |
JPH03257346A (en) | Apparatus for measuring reaction | |
JPH0466843A (en) | Determining method of time of congelation | |
JPH0432767A (en) | Measuring method, measuring instrument and measuring element for gelatinization reaction arising from blood clotting | |
JP3041361B2 (en) | Reaction measurement device | |
JP2006052996A (en) | Determination method of extreme value frequency | |
JPH01311250A (en) | Method and device for measuring fluid viscosity | |
JPH0249131A (en) | Temperature measuring instrument | |
JPH049744A (en) | Quartz vibrator cell | |
JPH03165235A (en) | Reaction measuring instrument | |
Apenten et al. | Determination of the adiabatic compressibility of bovine serum albumen in concentrated solution by a new ultrasonic method | |
Chang et al. | Determination of coagulation time in whole blood containing anticoagulant by piezoelectric quartz crystal sensor | |
JPH02226043A (en) | Reaction measuring apparatus | |
JPS62288547A (en) | Apparatus for analyzing living body-related substance, bacterium and cell | |
JP2632544B2 (en) | Gelation reaction measurement device | |
Kondoh et al. | Identification of ionic solutions using a liquid flow system with SH-SAW sensors | |
JPH0682106B2 (en) | Thermal characteristic measuring method and device |