JPH0327888A - Working method for sintered hard alloy parts - Google Patents

Working method for sintered hard alloy parts

Info

Publication number
JPH0327888A
JPH0327888A JP2031261A JP3126190A JPH0327888A JP H0327888 A JPH0327888 A JP H0327888A JP 2031261 A JP2031261 A JP 2031261A JP 3126190 A JP3126190 A JP 3126190A JP H0327888 A JPH0327888 A JP H0327888A
Authority
JP
Japan
Prior art keywords
sintered hard
hard alloy
cemented carbide
laser beam
sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2031261A
Other languages
Japanese (ja)
Inventor
Masaya Miyake
雅也 三宅
Juichi Hirayama
平山 壽一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2031261A priority Critical patent/JPH0327888A/en
Publication of JPH0327888A publication Critical patent/JPH0327888A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laser Beam Processing (AREA)

Abstract

PURPOSE:To work the sintered hard alloy parts of a shape having ruggedness at a low cost, and also, without having a defect by irradiating a sintered hard alloy heated to a specific temperature with a laser beam along a prescribed shape and cutting it. CONSTITUTION:In a state that a sintered hard alloy is heated at a temperature of >=200 deg.C, a laser beam is moved along the surface of the sintered hard ally. In such a way, while preventing the generation of a crack caused by a thermal shock, the sintered hard alloy can be worked in a short time and with high accuracy.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 外形に凹凸を有する超硬合金部品の加工法に関する。[Detailed description of the invention] [Industrial application field] This invention relates to a method of processing cemented carbide parts having irregularities on the outside.

〔従来の技術〕[Conventional technology]

超硬合金は耐摩耗性に優れ、しかもシャープなエツヂを
作ることから、機械部品、ミシン部品、時計枠等に多く
使用されている。
Cemented carbide has excellent wear resistance and creates sharp edges, so it is often used in mechanical parts, sewing machine parts, watch frames, etc.

これらの部品は形状が複雑で且つ寸法精度が厳しい。These parts have complex shapes and strict dimensional accuracy.

一般に超硬合金の四部や凸部を有する形状の部品は型押
後、中間焼結を行なうことで戒形体に機械加工が出来る
までの強度を与えた後、グイヤモンド工具等で機械加工
し、焼結後収縮によって所定の寸法形状が得られるよう
にする。この或形加工後、1400 ℃近辺の温度で焼
結し完全焼結体とする。戒形体は密度が焼結体の約50
%であり、焼結時の寸法変化は18〜22%収縮する。
Generally, parts made of cemented carbide that have four parts or convex parts are stamped, then intermediate sintered to give the shape a strength that can be machined, then machined with a Guyamond tool, etc. A predetermined size and shape can be obtained by contraction after tying. After this processing, it is sintered at a temperature around 1400°C to form a completely sintered body. The density of the sintered body is about 50
%, and the dimensional change during sintering shrinks by 18-22%.

第1図(a)、(b)に機械部品の収縮変形前後の状況
を示す。
Figures 1(a) and 1(b) show the mechanical parts before and after shrinkage and deformation.

超硬合金が焼結時に収縮する時は雰囲気、敷板との反応
、更に拘束度等により均一な収縮が行なわれない。
When cemented carbide contracts during sintering, it does not shrink uniformly due to the atmosphere, reaction with the base plate, degree of restraint, etc.

第2図は第1図の製品形状を焼結すると変形収縮を起こ
し、所定の寸法が得られないことを示す。
FIG. 2 shows that when the product shape of FIG. 1 is sintered, deformation and shrinkage occur, making it impossible to obtain the desired dimensions.

依ってこのような凹部や凸部を有する物品は寸法精度が
出ないため予め板材を焼結し、焼結後放電加工、ワイヤ
ーカットによって切り出す場合が多い。
Therefore, since the dimensional accuracy of articles having such concave portions and convex portions is poor, the plate material is often sintered in advance and then cut out by electric discharge machining or wire cutting after sintering.

しかじなかむ、放電加工、ワイヤーカットは加工速度が
遅く、又放電による亀裂が発生する等の問題点がある。
However, machining, electrical discharge machining, and wire cutting have problems such as slow machining speeds and the generation of cracks due to electrical discharge.

超硬合金等の脆性材料は高エネルギービームを当てると
、熱衝撃により割れが発生する。従って放電加工やワイ
ヤーカットでは放電エネルギーにより亀裂が発生し、そ
の為割れの原因となっている。しかも、これらの加工は
水、油中で行なわれるため亀裂が発生しやすいという問
題があった。
When brittle materials such as cemented carbide are exposed to high-energy beams, cracks occur due to thermal shock. Therefore, during electrical discharge machining and wire cutting, cracks occur due to electrical discharge energy, which causes cracks. Moreover, since these processes are carried out in water or oil, there is a problem in that cracks are likely to occur.

よって加工速度を遅くして長時間をかけて加工している
Therefore, the machining speed is slowed down and the machining takes a long time.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明は凹凸を有する形状の超硬部品を安価に且つ欠陥
を有することなく加工する方法を提供しようとするもの
である。
The present invention aims to provide a method for processing a carbide component having an uneven shape at low cost and without causing defects.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は200C以上に加熱された超硬合金にレーザー
ビームを当て、所定形状の超硬部品を切り出すことにあ
る。
The present invention involves applying a laser beam to a cemented carbide heated to 200C or higher to cut out a cemented carbide part of a predetermined shape.

〔作用〕[Effect]

超硬合金を200C以上の温度で加熱した状態でレーザ
ービームを照射しても亀裂が発生せず、レーザービーム
を用いるとエネルギー密度が高い為500 m/min
の加工速度により短時間加工が可能となる。
Even if the cemented carbide is heated to a temperature of 200C or higher and then irradiated with a laser beam, no cracks will occur, and when a laser beam is used, the energy density is high, so it can be heated at 500 m/min.
The machining speed enables short-time machining.

〔実施例) 実施例 第1図(b)に示すミシン部品を製造するに当り、板厚
5闘のWe−!2重量%CoMi戊と、25重量%we
−55重量%Ti(!−10重量%Co−1 0重fJ
 %Nt組或の二種類の超硬合金を400 ℃に加熱し
、CO  レーザービームを照射して所定形状に切断し
た。レーザービームの照射条件は0. 5 KW ,加
工速度5 00 mtpr/ m i nとした。形状
は数値制御機構を有するレーザービーム加工機を用い、
400 C’の熱膨張率を考慮し加工を行なったところ
、最終製品が精度良く得られた。
[Example] In manufacturing the sewing machine parts shown in Example Fig. 1(b), a We-! 2% by weight CoMi and 25% by weight
-55 wt% Ti (! -10 wt% Co-1 0 weight fJ
Two types of cemented carbide containing %Nt were heated to 400° C. and cut into a predetermined shape by irradiation with a CO 2 laser beam. The laser beam irradiation conditions are 0. The power was 5 KW and the processing speed was 500 mtpr/min. The shape is created using a laser beam processing machine with a numerical control mechanism.
When processing was carried out taking into account the coefficient of thermal expansion of 400 C', a final product was obtained with good precision.

加工時間は約2秒/個であり、短時間で数多〈の製品が
得られることが判った。
The processing time was about 2 seconds per piece, and it was found that a large number of products could be obtained in a short time.

比較例 上記形状の寸法の部品を得るため、超硬合金の板材を加
熱することなくレーザービームを当てて切断したところ
、超硬合金に亀裂が多数発生し、最終製品が得られなか
った。
Comparative Example When a cemented carbide plate was cut by applying a laser beam without heating to obtain a part with the above-mentioned dimensions, many cracks occurred in the cemented carbide and the final product could not be obtained.

〔発明の効果〕〔Effect of the invention〕

凹凸を有するような超硬合金を短時間で精度良く加工出
来る。
Cemented carbide with uneven surfaces can be machined with high precision in a short time.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)は超硬合金を型押後中間焼結した状態の最
終製品を得るための、戒形加工した形状を示し、第l図
(b)は同(&)の成形体を焼結して得ようとする最終
製品寸法を示した図、第2@は第1図(a)を焼結した
時に生ずる変形を示した図である。 第1図 (b) 第2図
Figure 1 (a) shows the shape of the cemented carbide processed to obtain the final product in the state of intermediate sintering after stamping, and Figure 1 (b) shows the molded body of the same (&). Figure 2 shows the dimensions of the final product to be obtained by sintering, and Figure 2 shows the deformation that occurs when Figure 1 (a) is sintered. Figure 1 (b) Figure 2

Claims (1)

【特許請求の範囲】[Claims] (1)200℃以上の温度に加熱した超硬合金にレーザ
ービームを所定形状に沿つて照射し超硬合金を切断する
ことを特徴とする超硬部品の加工法。
(1) A method for processing cemented carbide parts, which comprises cutting the cemented carbide by irradiating the cemented carbide heated to a temperature of 200° C. or higher with a laser beam along a predetermined shape.
JP2031261A 1990-02-09 1990-02-09 Working method for sintered hard alloy parts Pending JPH0327888A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2031261A JPH0327888A (en) 1990-02-09 1990-02-09 Working method for sintered hard alloy parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2031261A JPH0327888A (en) 1990-02-09 1990-02-09 Working method for sintered hard alloy parts

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP57026696A Division JPS58141886A (en) 1982-02-19 1982-02-19 Production of sintered hard parts having intricate shape

Publications (1)

Publication Number Publication Date
JPH0327888A true JPH0327888A (en) 1991-02-06

Family

ID=12326406

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2031261A Pending JPH0327888A (en) 1990-02-09 1990-02-09 Working method for sintered hard alloy parts

Country Status (1)

Country Link
JP (1) JPH0327888A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5124610A (en) * 1974-07-01 1976-02-28 Ford Motor Co
JPS60111698A (en) * 1983-11-18 1985-06-18 杉田 福代 Hanger in vertical finish machine for fiber product

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5124610A (en) * 1974-07-01 1976-02-28 Ford Motor Co
JPS60111698A (en) * 1983-11-18 1985-06-18 杉田 福代 Hanger in vertical finish machine for fiber product

Similar Documents

Publication Publication Date Title
CN108817674B (en) Double-beam five-axis numerical control laser polishing method
US4229640A (en) Working pieces by laser beam
JP5602913B2 (en) Manufacturing method of three-dimensional shaped object and three-dimensional shaped object obtained therefrom
CN109926584A (en) A kind of increasing material manufacturing and surface polishing synchronous processing method and device
ATE209551T1 (en) PUNCHING KNIFE AND MANUFACTURING PROCESS
CN110076339A (en) A kind of complexity cavity increases the polishing method of material product surfaces externally and internally
JPS5869745A (en) Glass work cutting system utilizing laser supplementarily
JPS61152345A (en) Machining method in combine use with laser beam
DE3862891D1 (en) METHOD FOR PRODUCING PROFILE PARTS BY GRINDING AND TURBO MACHINE BLADES PRODUCED accordingly.
JPH0327888A (en) Working method for sintered hard alloy parts
JP6980320B2 (en) Laser machining method of workpiece and manufacturing method of cutting tool
Lamikiz et al. Laser polishing techniques for roughness improvement on metallic surfaces
AU2021101664A4 (en) Polishing method for inner and outer surfaces of complex cavity additive manufacturing parts
JPS58141886A (en) Production of sintered hard parts having intricate shape
JPS5941150B2 (en) Manufacturing method of watch side
JPH0825043B2 (en) Ruler plate scale formation method
Tsoukantas et al. Overview of 3D laser materials processing concepts
JPS61219535A (en) Manufacture of blanking die
RU2033435C1 (en) Method for strengthening of press tool
JP2571749B2 (en) Rotary die manufacturing method
CN114289884B (en) Laser-induced plasma processing device and method using bimetal alloy target
CN111702322B (en) Composite manufacturing system and method for additive manufacturing and laser preheating auxiliary material reduction cutting
JPS5825921A (en) Jig for microwave processing
JPS6333191A (en) Laser machining method for metal member with protection material
JPS6416637A (en) Micro fusion welding device