JPH03278520A - Laser cvd apparatus - Google Patents

Laser cvd apparatus

Info

Publication number
JPH03278520A
JPH03278520A JP7711690A JP7711690A JPH03278520A JP H03278520 A JPH03278520 A JP H03278520A JP 7711690 A JP7711690 A JP 7711690A JP 7711690 A JP7711690 A JP 7711690A JP H03278520 A JPH03278520 A JP H03278520A
Authority
JP
Japan
Prior art keywords
substrate
laser
reaction
laser light
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7711690A
Other languages
Japanese (ja)
Inventor
Yoshiyuki Goto
令幸 後藤
Megumi Omine
大峯 恩
Makoto Doi
誠 土井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP7711690A priority Critical patent/JPH03278520A/en
Publication of JPH03278520A publication Critical patent/JPH03278520A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an apparatus, which can sufficiently form a desired deposit by one laser light source and can contrive to make a deposition speed higher and deposition more efficient by equipping an apparatus with a permeability variable optical system for half-splitting a single reaction-exciting laser light vertically and horizontally relative to a substrate and for applying the light to the substrate. CONSTITUTION:In a laser CVD apparatus for applying laser light to a raw material gas introduced into a reaction chamber 9 to subject the raw material gas to decomposition reaction and to deposit reaction chemical species generated from the raw material gas from a vapor phase on a substrate 8 placed in the reaction chamber 9 to grow a desired thin film, the apparatus is equipped with a permeability variable optical system 15 for half-splitting a single reaction-exciting laser light vertically and horizontally relative to the substrate 8 and for applying the light to the substrate 8. For example, a permeability variable optical system 15 for half-splitting laser light generated from a laser oscillator 1 and for changing the amount of energy of the half-split laser light in the manner of corresponding to a reaction time is provided and the half-split laser light is converged by a converging optical system 4, adjusted in energy density and guided to the reaction chamber 9.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、半導体や機械部品に用いられる高機能な薄
膜を形成するためのレーザCVD装置に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a laser CVD apparatus for forming highly functional thin films used for semiconductors and mechanical parts.

[従来の技術〕 第3図は、例えば特開昭61−30028号公報に示さ
れた従来のレーザCVD装置であり、図において。
[Prior Art] FIG. 3 shows a conventional laser CVD apparatus disclosed in, for example, Japanese Unexamined Patent Publication No. 61-30028.

基板加熱用光源(1)と反応用のパルスレーザ光源(2
)が並置されており、基板加熱用光源(1)には光線制
御系(3)が接続され、反応用のパルスレーザ光源(2
)には集光用のシリンドリカルレンズ(4〉が付設され
ている。(5)は基板(8)ヘレーザ光を垂直入射させ
るためのミラーである。所望の堆積物を形成すべき基板
(8)を設置した反応室(9)には反応用の原料ガス供
給系(6)および原料ガスの排気系(7)が接続されて
いる。また、反応室(9)には、垂直・水平レーザ光を
反応室(9)へ導びくためのレーザ透過窓(10)が設
けられている。
Light source for substrate heating (1) and pulsed laser light source for reaction (2)
) are arranged in parallel, a light beam control system (3) is connected to the substrate heating light source (1), and a pulsed laser light source (2) for reaction is connected to the light source (1) for heating the substrate.
) is attached with a cylindrical lens (4) for condensing light. (5) is a mirror for perpendicularly entering the laser beam onto the substrate (8).The substrate (8) on which the desired deposit is to be formed. A raw material gas supply system (6) for reaction and a raw material gas exhaust system (7) are connected to the reaction chamber (9) in which vertical and horizontal laser beams are installed. A laser transmission window (10) is provided to guide the laser beam into the reaction chamber (9).

光源(1)、(2)間には、互いの同期をとるための共
通りロック(11)および同期をとる際のそれぞれ所定
の遅延時間を設定するための可変遅延回路(12)が接
続されている。 (13)はこれらの制御用マイコン、
(14)は基板支持台である。
A common lock (11) for synchronizing each other and a variable delay circuit (12) for setting respective predetermined delay times when synchronizing are connected between the light sources (1) and (2). ing. (13) is a microcomputer for controlling these,
(14) is a substrate support stand.

以上の構成により、反応室(9)内に設置された基板(
8)の表面上に、原料ガス供給系(6)から原料ガスを
導びき、基板(8)上に堆積物を気相より形成させる。
With the above configuration, the substrate (
A source gas is introduced from the source gas supply system (6) onto the surface of the substrate (8), and a deposit is formed on the substrate (8) in a vapor phase.

このとき、基板加熱用のし〜ザパルス(1)をシリンド
リカルレンズ(4)を用いて集光した後に基板(8)へ
垂直に照射するとともに、反応用光源(2)よりのパル
スレーザ光を基板(8)に対し水平に照射する。この基
板加熱用のパルスレザと反応用のパルスレーザ光は、適
当な時間的タイミングで原料ガスと基板(8) とを照
射する必要がある。このタイミングをとるため、同期用
に共通りロック(11)を用い、それぞれの所定量の遅
延時間を設定するための可変遅延回路(12)によりタ
イミングを設定する。これにより2つのパルスレーザ光
で、供給された原料ガスは光分解され、所望の生成物が
基板(8)上に堆積できる。さらに。
At this time, the laser pulse (1) for heating the substrate is focused using a cylindrical lens (4) and then vertically irradiated onto the substrate (8), and the pulsed laser beam from the reaction light source (2) is applied to the substrate. (8) Irradiate horizontally. It is necessary to irradiate the raw material gas and the substrate (8) with the pulsed laser beam for heating the substrate and the pulsed laser beam for reaction at appropriate timings. In order to obtain this timing, a common lock (11) is used for synchronization, and the timing is set by a variable delay circuit (12) for setting each predetermined amount of delay time. As a result, the supplied raw material gas is photolyzed by the two pulsed laser beams, and a desired product can be deposited on the substrate (8). moreover.

使用後の原料ガスは排気系(7)により糸外へ排出され
る。
The raw material gas after use is discharged to the outside of the yarn through an exhaust system (7).

[発明が解決しようとする課題] 以上のような従来のレーザCVD装置は、反応用のレー
ザ光源として2台の光源を用いる必要があり、その2台
の光源の同期をとる必要もあるなど、装置が大がかりに
なり、しかも利用効率が低いなどの問題点があった。
[Problems to be Solved by the Invention] The conventional laser CVD apparatus as described above requires the use of two light sources as laser light sources for reaction, and the need to synchronize the two light sources. There were problems such as the equipment was large-scale and its utilization efficiency was low.

この発明は上記のような問題点を解消するためになされ
たもので、所望の堆積物を1台のレーザ光源で十分に形
成でき、しかも堆N遼度の高速化、効率化を図ることが
できるレーザCVD装置を得ることを目的とする。
This invention was made to solve the above-mentioned problems, and it is possible to sufficiently form a desired deposit with a single laser light source, and also to increase the speed and efficiency of deposition. The purpose is to obtain a laser CVD device that can perform the following steps.

[課題を解決するための手段] この発明に係るレーザCVD装置は、レーザ光の照射方
法として透過率可変のビームスプリッタのような光分割
手段を備え、レーザ光を水平・垂直に同時に基板照射す
るようにしたものである。
[Means for Solving the Problems] A laser CVD apparatus according to the present invention includes a light splitting means such as a beam splitter with variable transmittance as a laser light irradiation method, and simultaneously irradiates a substrate with laser light horizontally and vertically. This is how it was done.

[作 用] この発明においては、光分割手段により、レーザ光を2
分割し、基板に水平・垂直同時に照射する。さらに、光
分割手段の透過率を可変とすることにより、水平と垂直
のレーザエネルギー比率を変えて照射する。
[Function] In this invention, the laser beam is divided into two by the light splitting means.
Divide the beam and irradiate the substrate horizontally and vertically at the same time. Furthermore, by making the transmittance of the light splitting means variable, irradiation is performed with the horizontal and vertical laser energy ratios changed.

[実施例J 以下、この発明の一実施例を第1図、第2図について説
明する。第1図において、レーザ発振器(1)に、レー
ザ発振器(1)より発生するレーザ光を2分割し、かつ
、反応時間に対応して2分割したレーザ光のエネルギー
量を変化させるための透過率可変光学系(15)が付設
されている。(5)は垂直入射レーザ光(17)の光路
を変えるための全反射鏡、(4)はレーザ光のエネルギ
ー密度を調整するための集光光学系、(16) 、 (
17)はレーザ発振器(1)より発生したレーザ光を2
分割した、それぞれ水平入射レーザ光、垂直入射レーザ
光である。
[Embodiment J] An embodiment of the present invention will be described below with reference to FIGS. 1 and 2. In Figure 1, the laser oscillator (1) has a transmittance that divides the laser beam generated by the laser oscillator (1) into two, and changes the energy amount of the divided laser beam in accordance with the reaction time. A variable optical system (15) is attached. (5) is a total reflection mirror for changing the optical path of the vertically incident laser beam (17), (4) is a condensing optical system for adjusting the energy density of the laser beam, (16), (
17) converts the laser beam generated from the laser oscillator (1) into 2
These are the horizontally incident laser beam and the vertically incident laser beam, respectively.

その他、第3図と同一符号は同一ないし相当部分である
In addition, the same reference numerals as in FIG. 3 indicate the same or corresponding parts.

次に動作について説明する。レーザ発振器(1)より発
生されたレーザ光、例えばアルゴン・フッ素やクリプト
ン・フッ素エキシマレーザ光を透過率可変光学系(15
)を通して2分割する。2分割されたレーザ光はそれぞ
れ水平入射レーザ光(16)および垂直入射レーザ光(
17)となり、集光光学系(4)により集光しエネルギ
ー密度を調整された後、それぞれレーザ光導入窓(10
)を通して反応室(9)に導かれる。原料ガス供給系(
6)より流量制御しながら原料ガス、例えばジシランガ
スと水素ガスとを反応室(9)に供給する。この原料ガ
スにレーザ光を照射することにより、原料ガスは励起さ
れ分解反応して基板(8)上に所望の堆積物(微結晶性
シリコン)を気相より形成することができる従来のレー
ザCVD装置において、レーザ光は薄膜を形成する基板
に対して、水平、垂直あるいは双方を同時に照射されて
いるが、いずれの方法でもレーザエネルギーは常に一定
に保持されていた。しかし、薄膜形成の際に、基板表面
に結晶核を生成するには多くの垂直入射レーザのエネル
ギーを必要とするが、その後の成長過程では少なくてよ
い、これは、過大な垂直エネルギーで堆積物除去作用が
生じるため、むしろ高速度な成膜をするためには、垂直
レーザのエネルギーを減らし、水平入射エネル、ギーを
増大させることにより気相反応を促進させることが望ま
しいことを見出したことによる。そこで、1台のレーザ
発振器(1)よりのレーザ光をビームスプリッタで2分
割して、水平・垂直同時に照射するようにするが、その
分割に際してビームスプリッタの透過率を薄膜形成プロ
セスに合致するよう可変とする。具体的には、第2図に
示したように、この可変な透過率を反応時間に対しS字
型に変化させてプロセスに最適化することにより、レー
ザ光の有効利用と薄膜形成に適した装置構成とすること
が可能となる。
Next, the operation will be explained. A variable transmittance optical system (15) transmits a laser beam generated from a laser oscillator (1), such as an argon-fluorine or krypton-fluorine excimer laser beam.
) and divide it into two parts. The two divided laser beams are a horizontally incident laser beam (16) and a vertically incident laser beam (16), respectively.
17), and after condensing the light and adjusting the energy density by the condensing optical system (4), the laser beam introducing window (10
) into the reaction chamber (9). Raw material gas supply system (
6) Supplying raw material gases, such as disilane gas and hydrogen gas, to the reaction chamber (9) while controlling the flow rates. By irradiating this raw material gas with a laser beam, the raw material gas is excited and undergoes a decomposition reaction to form a desired deposit (microcrystalline silicon) on the substrate (8) in the gas phase using conventional laser CVD. In the apparatus, the substrate on which the thin film is to be formed is irradiated with laser light horizontally, vertically, or both at the same time, but in either method, the laser energy is always kept constant. However, during thin film formation, a lot of normal incident laser energy is required to generate crystal nuclei on the substrate surface, but less energy is needed in the subsequent growth process, which is because too much normal energy can cause the deposits to nucleate. This is due to the discovery that in order to achieve high-speed film formation, it is desirable to reduce the vertical laser energy and increase the horizontal incident energy to promote the gas phase reaction. . Therefore, the laser beam from one laser oscillator (1) is divided into two by a beam splitter and irradiated horizontally and vertically at the same time, but when dividing, the transmittance of the beam splitter is adjusted to match the thin film forming process. It is variable. Specifically, as shown in Figure 2, by optimizing the process by changing this variable transmittance in an S-shaped manner with respect to the reaction time, we have created a structure suitable for effective use of laser light and thin film formation. It becomes possible to set the device configuration.

以上の装置構成で、フォトンコストの高いレザ光が有効
に薄膜形成の反応へと利用できるようになり、高機能な
薄膜の効率的な形成とともに、高速堆積化が図られ、コ
ストの低減化が可能となる。
With the above device configuration, laser light, which has a high photon cost, can be effectively used for thin film formation reactions, and high-performance thin films can be efficiently formed, and high-speed deposition can be achieved, leading to cost reductions. It becomes possible.

なお、上記実施例では、レーザ光源としてエキシマレー
ザ発振器を用いた場合について説明したが、その他の光
源であってもよく、例えばYAGレーザ等の固体レーザ
の高調波を用いてもよい。
In the above embodiments, an excimer laser oscillator is used as the laser light source, but other light sources may be used, for example, harmonics of a solid-state laser such as a YAG laser may be used.

また、透過率可変光学系について説明したが、レーザ光
を分割する手段として、反射鏡を取付けたチョッパを回
転させて2分割してもよく5上記実施例と同様の効果を
有する。
Further, although the variable transmittance optical system has been described, as a means for dividing the laser beam, a chopper equipped with a reflecting mirror may be rotated to divide the laser beam into two parts, and the same effect as in the above embodiment can be obtained.

さらに、透過率可変光学系のビームスプリッタが誘電体
(例えば二酸化硅素等)を膜厚制御してコーティングす
ることにより作製したり、反応励起用レーザ光の発生光
源として、色素レーザ(例えばローダミン110等)の
高調波を用いるなど、穫々の変形が考えられ、同様の効
果を奏する。
Furthermore, a beam splitter for a variable transmittance optical system can be manufactured by coating a dielectric material (for example, silicon dioxide, etc.) with a controlled film thickness, or a dye laser (for example, Rhodamine 110, etc.) can be used as a light source for generating laser light for reaction excitation. ), various modifications can be considered, such as using harmonics of

[発明の効果] 以上のように、この発明によれば、単一のレーザ光を2
分割して水平・垂直に同時に照射し、さらに、水平・垂
直レーザエネルギーを反応に最適になるようにしたので
、装置が安価にでき、また効率よく堆積物が得られる効
果がある。
[Effect of the invention] As described above, according to the present invention, a single laser beam can be
Since the laser is divided and irradiated simultaneously horizontally and vertically, and the horizontal and vertical laser energies are optimized for the reaction, the equipment can be made at a low cost and deposits can be obtained efficiently.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例の光回路図、第2図は透過
率可変光学系のビームスプリッタの透過率の反応時間依
存特性線図、第3図は従来のレーザCVD装置の光回路
図である。 (1)・・レーザ発振器、(6)  ・・原料ガス供給
系、(8)・・基板、(9)・・反応室、(15)・・
透過率可変光学系。 なお、各図中、同一符号は同一または相当部分を示す。 代 理 人 曾 我 道 照 第1図 15−・透過率@変)E学系
Fig. 1 is an optical circuit diagram of an embodiment of the present invention, Fig. 2 is a reaction time dependence characteristic diagram of transmittance of a beam splitter of a variable transmittance optical system, and Fig. 3 is an optical circuit of a conventional laser CVD apparatus. It is a diagram. (1)... Laser oscillator, (6)... Raw material gas supply system, (8)... Substrate, (9)... Reaction chamber, (15)...
Variable transmittance optical system. In each figure, the same reference numerals indicate the same or corresponding parts. Agent Dosho Soga Figure 1 15-・Transmittance @variable) E school

Claims (1)

【特許請求の範囲】[Claims]  反応室に導入する原料ガスにレーザ光を照射すること
により前記原料ガスを分解反応させるとともに前記反応
室に設置された基板上に前記原料ガスより生成された反
応化、字種を気相より堆積させて所望の薄膜を成長させ
るレーザCVD装置において、単一の反応励起用レーザ
光を基板に対し垂直および水平に2分割して前記基板に
照射させる透過率可変光学系を備えてなることを特徴と
するレーザCVD装置。
By irradiating the raw material gas introduced into the reaction chamber with a laser beam, the raw material gas is decomposed and reacted, and the reaction generated from the raw material gas is deposited from the vapor phase on a substrate installed in the reaction chamber. A laser CVD apparatus for growing a desired thin film by irradiating a single reaction excitation laser beam into two parts perpendicularly and horizontally to a substrate and irradiating said substrate with a variable transmittance optical system. Laser CVD equipment.
JP7711690A 1990-03-28 1990-03-28 Laser cvd apparatus Pending JPH03278520A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7711690A JPH03278520A (en) 1990-03-28 1990-03-28 Laser cvd apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7711690A JPH03278520A (en) 1990-03-28 1990-03-28 Laser cvd apparatus

Publications (1)

Publication Number Publication Date
JPH03278520A true JPH03278520A (en) 1991-12-10

Family

ID=13624819

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7711690A Pending JPH03278520A (en) 1990-03-28 1990-03-28 Laser cvd apparatus

Country Status (1)

Country Link
JP (1) JPH03278520A (en)

Similar Documents

Publication Publication Date Title
CN115161601B (en) Processing method and equipment for ultra-fast laser deposited diamond-like film, anti-reflection film and anti-fingerprint film multi-film layer
EP0819782A1 (en) Process of forming a thin film by laser ablation
JPH03278520A (en) Laser cvd apparatus
JP2000244036A (en) Laser pulse generator
JPS63137174A (en) Device for forming functional deposited film by photochemical vapor growth method
JP3130977B2 (en) Thin film forming method and apparatus
JPH01244609A (en) Production of semiconductor thin film
JPS59208065A (en) Depositing method of metal by laser
JPS6328865A (en) Hard carbon film manufacturing device
US4839196A (en) Photochemical film-forming method
JPS60236215A (en) Laser cvd method
JPH0248627B2 (en) HAKUMAKUKEISEIBUHINNOSEIZOHOHOOYOBISOCHI
JPS60241219A (en) Method for forming thin film by utilizing laser
KR100338146B1 (en) Laser annealing apparatus
JPS63137163A (en) Apparatus for forming composite film by vapor deposition with laser
JPS59194425A (en) Photochemical vapor phase film forming apparatus
JPS6144183A (en) Optical cvd method
JP2814998B2 (en) Method and apparatus for forming semiconductor element film
JPH06199595A (en) Method for synthesizing diamond
JPS63312978A (en) Thin film forming device
JPS62264619A (en) Impurity doping method
JPH01208470A (en) Thin film-forming equipment
JPS62183111A (en) Laser cvd device
JPH01172574A (en) Optical cvd device
JPS6318077A (en) Method and apparatus for synthesizing hard carbon film