JPH03278461A - Method of implanting organic molecules onto solid silicon surface - Google Patents

Method of implanting organic molecules onto solid silicon surface

Info

Publication number
JPH03278461A
JPH03278461A JP2078427A JP7842790A JPH03278461A JP H03278461 A JPH03278461 A JP H03278461A JP 2078427 A JP2078427 A JP 2078427A JP 7842790 A JP7842790 A JP 7842790A JP H03278461 A JPH03278461 A JP H03278461A
Authority
JP
Japan
Prior art keywords
organic molecules
silicon
wafer
fluorized
produced
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2078427A
Other languages
Japanese (ja)
Other versions
JPH067591B2 (en
Inventor
Takayuki Takahagi
隆行 高萩
Kei Ishitani
石谷 炯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Research Development Corp of Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Development Corp of Japan filed Critical Research Development Corp of Japan
Priority to JP2078427A priority Critical patent/JPH067591B2/en
Publication of JPH03278461A publication Critical patent/JPH03278461A/en
Publication of JPH067591B2 publication Critical patent/JPH067591B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Silicon Compounds (AREA)

Abstract

PURPOSE:To directly bond organic molecules on a sold silicon surface by chemically bonding the organic molecules to F or OH groups bonded to a part of or all of connectors directed outside the silicon atoms of the Si solid body surface. CONSTITUTION:A Si wafer is heated in an ultra-high vacuum and a cleaned surface is formed. Next, it is placed inside a vacuum container for fluorination of Si wafers having a cleaned surface. The surface is fluorized by xenon gas whose pressure is adjusted by a variable leakage valve, and the fluorized surface is subjected to hydrogen treatment. In this case, the hydrogen pressure is set at a predetermined value, and the loss of dimer bond on the surface is confirmed. The surface-fluorized Si wafer produced in this way is taken out to the air and dried in a bond dry nitrogen air flow after it is immersed into ultra-pure water. A great number of Si-OH bondings are produced by hydrolyzing Si-F bonding on the surface. This Si wafer is immersed into a silane coupling solution having predetermined compositions. After treatment, it is washed with chloroform and an adjusted organic thin film is produced.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はシリコン固体表面への有機分子の植え付け方法
に関するものである。さらに詳しくは、この発明は半導
体製造工程等における有機電子素子形成に好適な、シリ
コン固体表面への有機分子の直接結合方法に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to a method for implanting organic molecules onto a silicon solid surface. More specifically, the present invention relates to a method for directly bonding organic molecules to a silicon solid surface, which is suitable for forming organic electronic devices in semiconductor manufacturing processes and the like.

(従来技術とその課題) エレクトロニクスの発展にともなって、半導体製造工程
におけるシリコン固体表面への有機分子の直接的な植え
付けは、有機電子素子の形成のための重要な技術として
認識されている。
(Prior Art and Its Problems) With the development of electronics, the direct implantation of organic molecules onto the silicon solid surface in the semiconductor manufacturing process has been recognized as an important technology for forming organic electronic devices.

このシリコン固体表面に有機分子を付着させる方法とし
ては、従来より、ラングミュア−・プロジェット法(L
B法)が−船釣なものとして知られている。このLB法
では、水面に展開した両親媒性有機化合物をシリコン固
体表面にすくい採るという方法でシリコン固体表面に有
I!薄膜を形成している。
As a method for attaching organic molecules to the silicon solid surface, the Langmuir-Prodgett method (L
Method B) is known as - boat fishing. In this LB method, an amphiphilic organic compound developed on the water surface is scooped onto the silicon solid surface. Forms a thin film.

しかしながら、この方法によって作成された有機薄膜は
シリコン表面に分散力でのみ付着しているために、シリ
コン固体表面と有機分子との相互作用が非常に弱く、有
II を子素子形成に応用することは不適当である。さ
らにまた、機械的強度も非常に脆弱であるとの欠点を有
している。
However, since the organic thin film created by this method is attached to the silicon surface only by dispersion force, the interaction between the silicon solid surface and organic molecules is very weak, making it difficult to apply the method to device formation. is inappropriate. Furthermore, it has the disadvantage that its mechanical strength is very weak.

この発明は、以上の通りの事情を踏まえてなされたもの
であり、シリコン固体表面に有機分子を直接結合させる
ことができる、有機電子素子形成のための新しい方法を
提供することを目的とじている。
This invention was made in light of the above circumstances, and aims to provide a new method for forming organic electronic devices that allows organic molecules to be directly bonded to the silicon solid surface. .

(課題を解決するための手段) この発明は、上記の課題を解決するために、シリコン固
体表面に形成した5i−P結合、またはこれを加水分解
して形成したS i −OH結合を反応サイトとして利
用し、有機化合物をシリコン固体表面に共有化学結合さ
せることを特徴とするシリコン固体表面への有機分子の
直接植え付け方法を提供する。
(Means for Solving the Problems) In order to solve the above problems, the present invention uses 5i-P bonds formed on the silicon solid surface or Si-OH bonds formed by hydrolyzing the same as reaction sites. Provided is a method for directly implanting organic molecules onto a silicon solid surface, which is characterized by covalently chemically bonding an organic compound to the silicon solid surface.

第1図はこの発明の方法を模式的に示した工程図である
。以下、この図面に沿ってこの発明について詳しく説明
する。
FIG. 1 is a process diagram schematically showing the method of the present invention. The present invention will be described in detail below with reference to the drawings.

同図に示したように、この発明の方法においては、まず
シリコン固体(シリコンウェハ)(1)の表面を弗素化
する(工程(a))、この弗素化は、シリコン固体表面
を超高真空中でイオンエツチングすることにより清浄化
した後に、気相弗素化処理を施すことにより行うことが
できる。この場合、気相弗素化処理としては、たとえば
、第2図に示したような、シリコンウェハ(1)ととも
にこれを載せる試料ホルダー(2)、ホルダー受け(3
)、ガス導入管(4)、イオンポンプ(6)、ターボモ
レキュラーポンプく7)を有する弗素化用真空容器中に
おいて、弗素化剤ガスを導入し、シリコンウェハ表面を
弗素化する。弗素化剤ガスとしては弗化キセノンガス、
弗素ガスや弗化水素ガス等がある。
As shown in the figure, in the method of the present invention, the surface of a silicon solid (silicon wafer) (1) is first fluorinated (step (a)). This can be carried out by cleaning the substrate by ion etching inside the substrate and then performing a gas phase fluorination treatment. In this case, as shown in FIG.
), a gas introduction pipe (4), an ion pump (6), and a turbo molecular pump (7), a fluorination agent gas is introduced into a fluorination vacuum vessel to fluorinate the surface of the silicon wafer. As the fluorinating agent gas, xenon fluoride gas,
Examples include fluorine gas and hydrogen fluoride gas.

ただし、以上の処理ではシリコンウェハ表面のダイマー
ボンドは残存しているため、さらに以下に述べる水素化
処理を引き続き行うことが好ましい。すなわち、タング
ステンフィラメント(5)を1900に以上に加熱する
とともに外部より水素ガスを導入し、原子状水素を発生
させることによって処理することができる。また、シリ
コン固体表面の弗素化は、その表面を弗化水素酸水溶液
処理することにより行うこともできる。この場合弗化水
素酸は0.3%以上が好ましい。また、処理方法として
は、浸漬、スプレー洗浄、流下洗浄等の適宜な方法を採
用することができる。また、このような弗化水素酸水溶
液処理に先立って、シリコン固体の表面に酸化性雰囲気
内で紫外線を照射し、その表面の有機汚染物を除去して
もよい。
However, since dimer bonds remain on the surface of the silicon wafer in the above treatment, it is preferable to further perform the hydrogenation treatment described below subsequently. That is, the treatment can be carried out by heating the tungsten filament (5) to a temperature of 1900° C. or more and introducing hydrogen gas from the outside to generate atomic hydrogen. Fluorination of the silicon solid surface can also be carried out by treating the surface with an aqueous solution of hydrofluoric acid. In this case, the amount of hydrofluoric acid is preferably 0.3% or more. Further, as a treatment method, an appropriate method such as immersion, spray cleaning, downstream cleaning, etc. can be adopted. Further, prior to such hydrofluoric acid aqueous solution treatment, the surface of the silicon solid may be irradiated with ultraviolet rays in an oxidizing atmosphere to remove organic contaminants on the surface.

この発明の方法においては、このようにシリコン固体の
表面を弗素化した後に、第1図の工程(b)に示したよ
うに、加水分解処理を行いシリコン固体表面の5i−F
結合をs i −OH結合に変換することも可能である
。このようにして、表面に5S−F結合またはS i 
−OH結合を形成したシリコン固体を第1図工程(c)
に示したように、有機分子で処理して有機分子をシリコ
ン固体最表面のシリコン原子と共有結合を形成する。こ
の場合有機分子としては種々のものが使用できるが、た
とえば、5t−F結合に対しては種々のアルコール分子
や種々のアミン分子が、またSj −OH結合に対して
は種々のりOロシラノール分子、種々のエトキシシラン
分子、種々の有m酸分子や種々のアミン分子等が例示さ
れるが、これらに限定されるものではない。
In the method of this invention, after the surface of the silicon solid is fluorinated, as shown in step (b) of FIG.
It is also possible to convert the bond into a s i -OH bond. In this way, 5S-F bonds or Si
The silicon solid with -OH bonds formed is shown in step (c) in Figure 1.
As shown in Figure 2, the organic molecules are treated with organic molecules to form covalent bonds with the silicon atoms on the outermost surface of the silicon solid. In this case, various organic molecules can be used; for example, various alcohol molecules and various amine molecules are used for the 5t-F bond, and various silanol molecules, Examples include various ethoxysilane molecules, various m-acid molecules, and various amine molecules, but are not limited to these.

このようにして得られたシリコン固体表面では、有機分
子は反応点以外には化学的変化を起こすことがなく、ま
た酸化膜等の異物を間にはさむことなくシリコン固体最
表面の珪素原子に直接共有結合を形成する。このため、
この有機分子は基板であるところのシリコン固体と電気
的に密接な関係にある系を形成する。密着性も極めて高
いものとなっている。また、シリコン固体表面における
有機分子の密度は、当初形成する 5i−F結合の密度を制御することにより簡便に制御で
きる。なお、5i−F結合の密度は気相弗素化の場合に
は弗素化剤ガスの圧力または弗素化の時間等を調整する
ことにより、また弗化水素酸水溶液による場合には使用
する弗化水素酸水溶液の濃度を調整することにより制御
することができる。
On the silicon solid surface obtained in this way, the organic molecules do not undergo any chemical changes other than at the reaction point, and directly contact the silicon atoms on the outermost surface of the silicon solid without intervening foreign substances such as oxide films. Form a covalent bond. For this reason,
The organic molecules form a system in close electrical contact with the solid silicon substrate. Adhesion is also extremely high. Furthermore, the density of organic molecules on the silicon solid surface can be easily controlled by controlling the density of the 5i-F bonds that are initially formed. The density of 5i-F bonds can be determined by adjusting the pressure of the fluorinating agent gas or the fluorination time in the case of gas phase fluorination, or by adjusting the hydrogen fluoride used in the case of using an aqueous solution of hydrofluoric acid. It can be controlled by adjusting the concentration of the acid aqueous solution.

以下に、この発明を実施例に基づいて具体的に説明する
The present invention will be specifically described below based on examples.

(実施例) (i)  表面に薄い酸化膜が存在するシリコンウェハ
に対して、超高真空中で750°C以上に加熱すること
によって、オージェ測定においても珪素以外に炭素や酸
素が検出されない清浄表面を作成した。
(Example) (i) By heating a silicon wafer with a thin oxide film on its surface to 750°C or higher in an ultra-high vacuum, it can be cleaned so that carbon and oxygen other than silicon are not detected even in Auger measurements. created the surface.

(ii)  次に清浄表面を有するシリコンウェハを第
2図に示した弗素化用真空容器内に設置し、圧力5 x
 10−’ 〜2 x 10−”Torrにバリアプル
リークバルブで調整しな弗化キセノンガスで40分の表
面弗素化を行った0次いで、得られた弗素化表面をさら
に同一真空容器中で水素化処理を20分間行った。この
場合、タングステン製フィラメントの温度は1900に
以上とし、また水素圧力はバリアプルリークバルブによ
り5X10−’〜2×10−’Torrになるように調
整した。1×IRHEEDパターンによって表面のダイ
マーボンドの消失を確認しな。
(ii) Next, the silicon wafer with a clean surface was placed in the vacuum vessel for fluorination shown in FIG.
The surface was fluorinated for 40 minutes with xenon fluoride gas adjusted to 10-' to 2 x 10-'' Torr using a barrier pull leak valve.Then, the resulting fluorinated surface was further heated with hydrogen in the same vacuum vessel. The oxidation treatment was carried out for 20 minutes. In this case, the temperature of the tungsten filament was set to above 1900 °C, and the hydrogen pressure was adjusted to 5 x 10 -' to 2 x 10 -' Torr using a barrier pull leak valve. 1 x Confirm the disappearance of the dimer bond on the surface using the IRHEED pattern.

(iii)このようにして得られた表面弗素化シリコン
ウェハを空気中に取り出して、TOC30Ell)b以
下の超純水中に10秒間浸漬した後に、絶乾窒素気流中
で15分間乾燻した。このようにして表面の5i−F結
合を加水分解して、S i −OH結合を多数生成した
。このシリコンウェハをノルマルオクタデシルトリクロ
ロシラン/ビシクロヘキシル/四塩化炭素/クロロホル
ム−0,09g/100m1/ 15 ecl / 1
0 mlの組成のシランカップリング処理溶液に浸漬し
て30分間処理した。この後、クロロホルム中で十分に
洗浄した。このようにして調整された有m薄膜の膜厚を
エリプソメトリ−により測定したところ25〜30Aで
あった。
(iii) The surface fluorinated silicon wafer thus obtained was taken out into the air, immersed in ultrapure water with a TOC of 30Ell)b or less for 10 seconds, and then dry-smoked for 15 minutes in an absolutely dry nitrogen stream. In this way, the 5i-F bonds on the surface were hydrolyzed to generate a large number of Si-OH bonds. This silicon wafer was treated with normal octadecyltrichlorosilane/bicyclohexyl/carbon tetrachloride/chloroform-0.09g/100ml/15 ecl/1
It was immersed in 0 ml of a silane coupling treatment solution and treated for 30 minutes. This was followed by thorough washing in chloroform. The thickness of the thin film thus prepared was measured by ellipsometry and was found to be 25 to 30A.

(発明の効果) この発明によれば、シリコン固体表面に酸化膜などの異
物層を挟むことなく、直接共有結合によって最表面の珪
素原子に結合した有機分子層を形成することが可能とな
る。
(Effects of the Invention) According to the present invention, it is possible to form an organic molecular layer bonded to silicon atoms on the outermost surface by direct covalent bonds without interposing a foreign material layer such as an oxide film on the silicon solid surface.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明の模式的工程図である。 第2図は、シリコン固体表面を弗素化するために好適な
弗素代用真空容器の概略図である。 1・・・シリコンウェハ 2・・・試料ホルダー 3・・・ホルダー受け 4・・・弗素化剤ガス 5・・・タングステン製フィラメント 6・・・イ オンポンプ 7・・・ターボモレキュラーポンプ
FIG. 1 is a schematic process diagram of the present invention. FIG. 2 is a schematic diagram of a fluorine substitute vacuum vessel suitable for fluorinating silicon solid surfaces. 1... Silicon wafer 2... Sample holder 3... Holder receiver 4... Fluorinating agent gas 5... Tungsten filament 6... Ion pump 7... Turbo molecular pump

Claims (1)

【特許請求の範囲】[Claims]  シリコン固体最表面に存在する珪素原子の外側に向い
た結合手の一部または全部に結合した弗素または水酸基
に有機分子を化学結合することを特長とするシリコン固
体表面への有機分子の植え付け方法。
A method for implanting organic molecules onto the surface of a silicon solid, which is characterized by chemically bonding organic molecules to fluorine or hydroxyl groups bonded to some or all of the outwardly facing bonds of silicon atoms present on the outermost surface of the silicon solid.
JP2078427A 1990-03-27 1990-03-27 Method of implanting organic molecules on silicon solid surface Expired - Lifetime JPH067591B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2078427A JPH067591B2 (en) 1990-03-27 1990-03-27 Method of implanting organic molecules on silicon solid surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2078427A JPH067591B2 (en) 1990-03-27 1990-03-27 Method of implanting organic molecules on silicon solid surface

Publications (2)

Publication Number Publication Date
JPH03278461A true JPH03278461A (en) 1991-12-10
JPH067591B2 JPH067591B2 (en) 1994-01-26

Family

ID=13661746

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2078427A Expired - Lifetime JPH067591B2 (en) 1990-03-27 1990-03-27 Method of implanting organic molecules on silicon solid surface

Country Status (1)

Country Link
JP (1) JPH067591B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0553807A1 (en) * 1992-01-29 1993-08-04 Tokyo Institute Of Technology Semiconductor device having organically doped structure
JP2007173516A (en) * 2005-12-22 2007-07-05 Kagawa Univ Silicon fine particles, manufacturing method thereof, solar battery using the same and manufacturing method thereof
JP2007173517A (en) * 2005-12-22 2007-07-05 Kagawa Univ Solar battery and manufacturing method thereof
WO2008155862A1 (en) * 2007-06-20 2008-12-24 Kazufumi Ogawa Light sensor and method for manufacturing the same
WO2009001472A1 (en) * 2007-06-22 2008-12-31 Kazufumi Ogawa Solar cell and method for manufacturing the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62262868A (en) * 1986-05-09 1987-11-14 Matsushita Electric Ind Co Ltd Formation of monomolecular built-up film pattern

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62262868A (en) * 1986-05-09 1987-11-14 Matsushita Electric Ind Co Ltd Formation of monomolecular built-up film pattern

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0553807A1 (en) * 1992-01-29 1993-08-04 Tokyo Institute Of Technology Semiconductor device having organically doped structure
US5412231A (en) * 1992-01-29 1995-05-02 Tokyo Institute Of Technology Semiconductor device having organically doped structure
JP2007173516A (en) * 2005-12-22 2007-07-05 Kagawa Univ Silicon fine particles, manufacturing method thereof, solar battery using the same and manufacturing method thereof
JP2007173517A (en) * 2005-12-22 2007-07-05 Kagawa Univ Solar battery and manufacturing method thereof
WO2008155862A1 (en) * 2007-06-20 2008-12-24 Kazufumi Ogawa Light sensor and method for manufacturing the same
WO2009001472A1 (en) * 2007-06-22 2008-12-31 Kazufumi Ogawa Solar cell and method for manufacturing the same
US8592676B2 (en) 2007-06-22 2013-11-26 Empire Technology Development Llc Solar cell and method for manufacturing the same

Also Published As

Publication number Publication date
JPH067591B2 (en) 1994-01-26

Similar Documents

Publication Publication Date Title
CN101416277B (en) Method and system for treating a dielectric film
US5620559A (en) Hydrogen radical processing
KR0159179B1 (en) Method of cleaning hydrogen plasma downstream apparatus and method of making a semiconductor device using such apparatus
JP5902030B2 (en) Low temperature bonding method and bonding composition
JP2804700B2 (en) Semiconductor device manufacturing apparatus and semiconductor device manufacturing method
JPH05198549A (en) Manufacture of semiconductor substrate
US5320978A (en) Selective area platinum film deposition
KR20030019323A (en) Processes and apparatus for treating electronic components
JPH09509531A (en) Method of semiconductor processing using a mixture of HF and carboxylic acid
EP0603849A2 (en) Method for producing a semiconducteur substrate by using a bonding process, and semiconductor stubstrate produced by the same
JP3101975B2 (en) Gas phase removal of SiO2 / metal from silicon
JP2003303798A (en) Semiconductor cleaning equipment
JPH03278461A (en) Method of implanting organic molecules onto solid silicon surface
EP1408534B1 (en) A method and a device for producing an adhesive surface of a substrate
JP3572056B2 (en) Optical patterning of organic monolayer on silicon wafer
Ljungberg et al. The effects of HF cleaning prior to silicon wafer bonding
Zazzera et al. In situ internal reflection infrared study of aqueous hydrofluoric acid and ultraviolet/ozone treated silicon (100) surfaces
JP3484480B2 (en) Method for manufacturing semiconductor device
JPH09167764A (en) Forming method of insulating film
CN207441658U (en) A kind of structure for being bonded wafer
JPH07302775A (en) Manufacture of semiconductor device
JPH02137313A (en) Method for forming pattern on silicon solid surface
JPH03204932A (en) Removal of coating film on silicon layer and selective removal of silicon natural oxide film
JP5179401B2 (en) Bonded wafer and manufacturing method thereof
JPH01146330A (en) Surface cleaning method for silicon solid