JPH0327842A - Method for making casting plan in lost foam pattern casting - Google Patents

Method for making casting plan in lost foam pattern casting

Info

Publication number
JPH0327842A
JPH0327842A JP15916889A JP15916889A JPH0327842A JP H0327842 A JPH0327842 A JP H0327842A JP 15916889 A JP15916889 A JP 15916889A JP 15916889 A JP15916889 A JP 15916889A JP H0327842 A JPH0327842 A JP H0327842A
Authority
JP
Japan
Prior art keywords
casting
molten metal
pouring
model
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15916889A
Other languages
Japanese (ja)
Inventor
Kimio Kubo
公雄 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP15916889A priority Critical patent/JPH0327842A/en
Publication of JPH0327842A publication Critical patent/JPH0327842A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To manufacture a casting without any casting defect by analyzing flowing and filling process of molten metal with reaction formula of tip part of the molten metal and a lost foam pattern at the time of pouring the molten metal and numerically analyzing temp. distribution in the casing on the way of cooling solidifying process since completing the filling-up. CONSTITUTION:The lost foam pattern 2, facing agent 3 and molding (sand) 4 are shown as a model composed of fine elements. Related to these fine elements, the flowing and filling process of molten metal 1 are analyzed with the reaction formula of the tip part of molten metal 1 and lost foam pattern 2 at the time of pouring the molten metal to numerically analyze the temp. distribution in the casting on the way of cooling solidifying process since completing the filling-up. Based on this result, the casting plan is decided. By this method, the casting planning design with good yield can be executed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は消失模型鋳造により軽合金および鉄系合金鋳物
を93iaするに当たり、吹かれ、湯境、引け巣等の鋳
造欠陥対策を、注湯時の溶湯の汰れおよび凝固の数値解
析によって行うことに関する.〔従来の技術〕 消失模型鋳造は、消失模型として発砲ボリスチレン等を
キャビティとして用い、中子が不要であり、ばつの発生
が少なく、従って後工程が容易となり、自動化も容易に
なる等の利点があり、優れた鋳造法である. 一方、消失模型鋳造は、空洞を有する鋳型と異なり発砲
ボリスチレン等からなる模型に溶湯を注ぎ、模型と溶湯
が置換して鋳物が形成される過程を経る.このため、吹
かれ、湯填等の欠陥が発生しやすい.また、込め数を増
やす場合には、引け巣欠陥も発生することがある.従っ
て、これらの欠陥を防止するため、試行錯誤的に種々の
方案を用いた鋳造を行い、そのうちの最良なものを盪産
用の方案としている. この試行Iff f4的な方案作製を改善するものとし
て、鋳物の凝固解析を行う方法がある.この凝固解析法
は、伝熱計Wに潜熱発生の処理を付加したものであり、
「コンピュータ伝熟・凝固解析入門j 19R5年、大
中逸膣著、丸善刊に総括的に纏めて報告されている. また、特開昭61−118963号公報には、収縮巣の
ない健全な軽合金鋳物を作るために、鋳物と鋳型の形状
に応じた解析モデルそ設定し、それを基に鋳物および鋳
型の材質・初期温度並びに境界条件を与えて有限要素法
で数値解析することにより、収縮巣発生限界固相率以上
の固相率における温度勾配分布図を作成し、鋳物の温度
勾配分布図から解析モデルにおける収縮巣の発生の有無
を評価する鋳造方案の作製法が開示されている.これに
よれば、方案件製時に机上にて評価し、方案作製・木型
作製・鋳造試作・欠陥検査の各作業の繰り返しを著しく
少なくして、鋳造方案作製の効率化を実現することがで
きる. 〔発明が解決しようとする課題〕 E記従来の凝固解析法は、溶渇が鋳型空洞部に瞬時に充
満され、一斉に冷却が開始されるとしたものである.一
方、消失模型鋳造においては、溶湯が時間とともに消失
模型と置換していく.そのため、最初に注渇された溶湯
は早く冷却が開始され、後から充満された溶湯は遅くか
ら冷却が始まる.従来法の凝固解析法のように、一瞬に
溶湯が充満されたとして解析したのでは、正確な方案件
製は不可能である. 本発明は、消失模型鋳造において、吹かれ、場境、引け
巣等の鋳造欠陥が発生しない健全な鋳物を製造するため
の方案件製を、注湯時の溶湯の流れおよび凝固の数値解
析によって行うことを目的とする. 〔課題を解決するための手段〕 上記目的を達成するために本発明においては、消失模型
鋳造における方案件製法において、消失模型、塗型およ
び鋳型を微小要素からなるモデルとして表し、前記微小
要素について、注湯時の溶湯先端と前記消失模型との反
応式により、溶湯の徹とする. 〔実施例〕 第2図は、消失模型鋳造においての注渇時の鋳型内の模
式図を示したものである.図において、溶tn1との境
界の発砲ボリスチレン等からなる消失模型2は、溶湯l
先端が近づくと、まず液体スチレン5に分解する.更に
、溶湯lから加熟され気化熱を与えられて気体スチレン
6になり、気体スチレン6は、塗型3、砂4を通じて大
気7中へ散逸する.消失模型2の存在によって、?8湯
lが充満する時間が通常の空洞を有する鋳型に比べてか
なり長くなる.また、溶湯!先端が注湯時に消失模型2
に冷却され、一方消失模型2が燃焼し゛ζ発生したガス
は大気7中に散逸する. 本発明は、溶湯lと消失模型2境界他の挙動を数値解析
することにより、消失模型鋳造における方案を作成する
ものである.その数値解析のステップを、第l図のフロ
ーチャートにより詳細に説明する. (a)  微小要素データ入力 まず、消失模型、塗型および鋳型の形状を微小要素に分
割したデータを人力する. 伽)温度場の計算 溶湯移動に伴う対清伝熱以外の熱移動、つまり鋳型、塗
型、溶湯、固体金属の伝導伝熱については、熱伝導の基
礎偏微分方程式を前進差分法で解き、凝固WJ熟は温度
回復法で取り扱い、温度場の計算を行う.この場合の解
析方法は、l.Ohnakaand↑.FukusaL
o :Transactions ISIJ,vol.
17(1977) p410と同様である.鋳型と大気
間の対沫伝熱は小さいので無視し、鋳型と塗型間、塗型
と溶湯間、塗型と固体金属間の熱抵抗も小さいので無視
する. (C)  消失模型の蒸発速度及び溶湯前面のガス圧力
の計算 第2図に示す消失模型2が溶湯l先端から加熱される熱
量は、気体スチレン6内の熱伝導によってなされるとす
れば、消失模型2の蒸発速度は次式によって表される. n=Aκ...(t”−t,)/(t,本ΔX.)(1
) ここで、 n:蒸発速度(g/s) ^:気体スチレンと18湯の界而積(c1)κ,.1:
気体スチレンの熱伝導率 (cal/cm ・”C ・s  ) T0:溶湯先端温度(”C) T,:スチレンの沸点(゜C) L,:スチレンの気化熱(cat/g)Δx,:気体ス
チレン層の厚さ(C麟〉また、時々刻々と溶湯l先端位
置は移動し、それに伴って気体スチレン6は大気7中に
散逸するのであるが、この物質収支は次式によって表さ
れる. n= A(v ” + d(ΔX . )/d L )
  9。 −−−− ( 2 )ここで、 v0:溶湯先端の移動速度(C−/=)t:時間(s) ρ。:ボリスチレンの密度Cg/C1)dt:時間の差
(s) また、気体スチレン6の大気7中に散逸する速度はダル
シーの法則によって表され、更に理想気体の状態方程式
を適用すると次式が得られる.n R ( T } 2
73 ) / P ”・八κ− (P ”   I’o
) / (1− u)  −(3)ここで、 R:気体定数 P0:溶湯前面のガス圧力(g/cm”)K, : f
P!型および砂型の直列の透過率(c1)P0:大気圧
(g/cs”) ls:塗型および砂型の厚さ (cm)p:ガスの粘性
係数(g−s/cs”)上記(1)から(3)式を差分
化して連立させて蒸発達度nと溶湯前面のガス圧力P0
を計算する.但し、溶湯先端の移動達度v0および非線
形項についてはdt時間後の値を使用する.(d)  
スチレンの気化反応による温度場の補正計算消失模型2
を構成する微小要素のうち、溶湯1先端を含む要素の温
度を前記(1)式によって補正計算する. ?e)  溶湯移動に伴う対流伝熱の計算注渇時の溶湯
lの流れの運動方程式はベルヌーイの式を用いて次のよ
うに表される. V@り(2g)舎P”/ρ = Z.   lltoss + Po /ρ −−−
− − − ( 4 )ここで、 g二重力の加速度(cm/s”) ρ:?8湯の密度(g/c1) z0:湯口の水頭(C一) hlO■:流れの損失木頭(C■) (4)式によって計算された溶渇先端速度v0から、汰
騎一定の法則よって、各要素の速度を求める.ピストン
流れの仮定によって溶湯が上から順に満たされるとして
対決伝熱を計算する.(f)  その後、注湯開始時か
ら鋳物が完全に凝固する迄、全ての微小要素について、
時間ステップ毎に計司を繰り返す. (f10  上記(『)の計算結果に)5づいて、方案
の変更を行い、欠陥の発生がないと判定されるまで、再
度上記(a)から(『)までの計算を繰り返す.次に、
上記本発明の鋳造方案作製法の計算結果により最良とし
た方案で、自動屯川のブレーキ部品鋳物に適用した実施
例を説明−する.第3図は、消失模型を要素分割したも
のであり、2ヶ込めで落とし込み注湯により鋳造した.
第4図は消失模型への注湯後の時間経過毎の温度状態を
示す図である.溶湯は球状黒鉛鋳鉄で注湯温度が145
0℃である.図の網目模様の部分が消失模型2であり、
(イ)に示す注湯開始後1secで堰lO前まで溶湯l
が充填され、(口)に示す2.5sec後にアウターブ
リッジ部11から低部12まで溶湯lが充填される.溶
湯lの先端は消失模型lに気化熱を奪われるために注湯
温度よりも200℃以上冷却されている.(ハ)に示す
3.3sec後で完全に溶湯lが満たされている.最初
に注渇された溶湯!はl200℃以下に冷却されて場口
8より最も遠い位置に充填され、末期に注渇された溶湯
lは、渇口8、渇道9、堰10に充填され、温度は14
00℃以上である.充填完了時に鋳物13側から湯口8
の方向に温度勾配があり、指向性凝固に有利となってい
る.第5図は、注湯時における?8tx:I前面のガス
圧力(P”)と消失模型としての発砲ポリスチレンの蒸
発速度(n)の関係を示す.図より、ガス圧力(P0)
は注湯開始後増加し、約1100g/cnfで一定にな
る.大気圧より約7 0 g / c nf高い圧力で
あり、この程度では、吹かれ等のガス欠陥は発生しない
.また、消失模型の蒸発速度(n)は注湯開始後の時間
とともに減少しているが、これは溶湯と気体スチレンの
界面積がPa湯の充填とともに減少するためである. 第6図は、注渇完了後の鋳物の凝固過程の数値解析の結
果を示す.図中のfsは擬固率であり、鋳物内の蒙小要
素内の凝固率をパターンで示している.図において、(
イ)の注湯完了後10secでアウターブリッジ部11
が凝固完了しており、(ハ)の50secでは鋳物l3
の大部分が凝固完了しているが、湯道9はまだ凝固途中
である.上記が本発明の消失模型鋳造における方案作製
法の実施例であり、この本発明の計算結果により最良と
した方案で、実際に鋳造を行ったが、良い指向性の凝固
をしており、引け欠陥は発生しなかった. 本発明との比較のために、従来法による溶湯が瞬時に充
填したと仮定した場合の解析の結果を第7図に示す.通
常の空洞を有する鋳造法では注湯に要する時間が短いた
めに比較的に第7図の場合に近いであろう.この空洞を
有する鋳造法の場合、(ハ)に示す注湯完了uk50s
ecでも鋳物の凝固が消失模型に比べて遅れており、こ
の部分がホットスポットになって引け欠陥が発生し易い
ことが判る. 〔発明の効果〕 本発明の数値解析による消失模型鋳造の方案件製法を用
いることによって、吹かれ、湯境、引け巣等の鋳造欠陥
が発生しない鋳物を製造することができる.特に、消失
模型鋳造法では、先に充填された溶湯が冷却されること
により、湯口方向への指向性凝固がされ易く、本発明を
利用することにより歩留りの良い方案設計を行うことが
できる.また、本発明はガス圧力等も計算で予測できる
ため、ガス欠陥を防止することができる.8:湯口、9
:湯道、lO:堰、ll:アウターブリッジ部、l2:
底部、13:鋳物.
[Detailed Description of the Invention] [Industrial Application Field] The present invention is a pouring method to prevent casting defects such as blowouts, hot spots, and shrinkage cavities when casting light alloys and ferrous alloys to 93ia by vanishing model casting. This paper concerns what can be done through numerical analysis of the sorting and solidification of molten metal. [Prior art] Disappearance model casting uses foamed polystyrene or the like as a cavity as a dissipation model, and has advantages such as no core is required, less occurrence of fraying, and therefore easy post-processing and easy automation. This is an excellent casting method. On the other hand, in vanishing model casting, unlike a mold with a cavity, molten metal is poured into a model made of foamed polystyrene, etc., and the model and molten metal replace each other to form a casting. For this reason, defects such as blowing and filling are likely to occur. In addition, when increasing the number of fillers, shrinkage cavity defects may occur. Therefore, in order to prevent these defects, various casting methods are used through trial and error, and the best method is selected for production. As a way to improve this trial If f4 method, there is a method of performing solidification analysis of castings. This solidification analysis method adds latent heat generation processing to the heat transfer meter W.
``Introduction to computer training/coagulation analysis,'' published in 19R5, written by Itsuka Onaka, and published by Maruzen.In addition, in Japanese Patent Application Laid-open No. 118963/1986, a healthy In order to make light alloy castings, we set up an analytical model that corresponds to the shape of the casting and mold, and based on that, we give the material, initial temperature, and boundary conditions of the casting and mold, and perform numerical analysis using the finite element method. A method for creating a casting method is disclosed in which a temperature gradient distribution map is created at a solid fraction higher than the solid fraction that is the limit for the generation of shrinkage cavities, and the presence or absence of the occurrence of shrinkage cavities in an analytical model is evaluated from the temperature gradient distribution diagram of the casting. .According to this, it is possible to improve the efficiency of casting plan production by conducting desk evaluations during casting plan production and significantly reducing the repetition of each task of plan production, wooden mold production, casting prototype production, and defect inspection. [Problems to be Solved by the Invention] Section E The conventional solidification analysis method assumes that the mold cavity is instantly filled with melt and cooling starts all at once.On the other hand, vanishing model casting In this case, the molten metal replaces the disappearing model over time.Therefore, the molten metal that is filled first starts cooling earlier, and the molten metal that is filled later starts cooling later.Conventional solidification analysis method If the analysis is performed assuming that the molten metal is filled in an instant, as in The purpose of this study is to develop a method for producing sound castings that do not generate metal by numerical analysis of the flow and solidification of molten metal during pouring. [Means for solving the problem] In order to achieve the above purpose. In the present invention, in the case manufacturing method for vanishing model casting, the vanishing model, the coating mold, and the mold are represented as models made up of microelements, and the reaction equation between the tip of the molten metal and the vanishing model during pouring is expressed for the microelements. [Example] Figure 2 shows a schematic diagram of the inside of the mold during quenching in vanishing model casting. Disappearance model 2 consisting of molten metal l
When the tip approaches, it first decomposes into liquid styrene 5. Further, the molten metal 1 is ripened and given heat of vaporization to form gaseous styrene 6, which is dissipated into the atmosphere 7 through the coating mold 3 and sand 4. Due to the existence of Vanishing Model 2? The time it takes for the mold to fill with 8 liters of hot water is considerably longer compared to a mold with a normal cavity. Also, molten metal! Model 2 where the tip disappears during pouring
On the other hand, the disappearing model 2 burns and the generated gas dissipates into the atmosphere 7. The present invention creates a method for vanishing model casting by numerically analyzing the behavior of the molten metal 1, the boundary between the vanishing model 2, and others. The steps of the numerical analysis will be explained in detail using the flowchart in Figure 1. (a) Input of minute element data First, the data obtained by dividing the shape of the vanishing model, coating mold, and mold into minute elements is input manually.佽) Calculation of temperature field For heat transfer other than heat transfer to and from the surface as the molten metal moves, that is, conductive heat transfer between the mold, coating mold, molten metal, and solid metal, solve the basic partial differential equation of heat conduction using the forward difference method. The solidification WJ ripening is handled using the temperature recovery method, and the temperature field is calculated. The analysis method in this case is l. Ohnakaand↑. FukusaL
o :Transactions ISIJ, vol.
17 (1977) p410. The droplet heat transfer between the mold and the atmosphere is small, so it is ignored, and the thermal resistance between the mold and the coating mold, between the coating mold and the molten metal, and between the coating mold and the solid metal is also small, so it is ignored. (C) Calculating the evaporation rate of the vanishing model and the gas pressure at the front of the molten metal.If the amount of heat that the vanishing model 2 shown in FIG. The evaporation rate of Model 2 is expressed by the following equation. n=Aκ. .. .. (t”-t,)/(t, book ΔX.)(1
) Here, n: Evaporation rate (g/s) ^: Boundary product of gaseous styrene and 18 hot water (c1) κ, . 1:
Thermal conductivity of gaseous styrene (cal/cm ・"C ・s) T0: Molten metal tip temperature ("C) T,: Boiling point of styrene (°C) L,: Heat of vaporization of styrene (cat/g) Δx,: Thickness of the gaseous styrene layer (Crin) Also, the position of the tip of the molten metal moves from time to time, and the gaseous styrene 6 dissipates into the atmosphere 7, and this mass balance is expressed by the following equation. .n=A(v''+d(ΔX.)/dL)
9. ---- (2) Here, v0: Moving speed of the tip of the molten metal (C-/=) t: Time (s) ρ. : Density of boristyrene Cg/C1)dt: Difference in time (s) Also, the speed at which gaseous styrene 6 dissipates into the atmosphere 7 is expressed by Darcy's law, and by further applying the ideal gas equation of state, the following equation is obtained. It will be done. n R ( T } 2
73) / P"・八κ- (P"I'o
) / (1- u) - (3) where, R: gas constant P0: gas pressure in front of molten metal (g/cm") K, : f
P! Transmittance of mold and sand mold in series (c1) P0: Atmospheric pressure (g/cs”) ls: Thickness of coating mold and sand mold (cm) p: Gas viscosity coefficient (gs/cs”) Above (1) ) to equation (3) and set them simultaneously to calculate the evaporation level n and the gas pressure P0 in front of the molten metal.
Calculate. However, for the movement degree v0 of the molten metal tip and the nonlinear term, the values after dt time are used. (d)
Temperature field correction calculation disappearance model 2 due to styrene vaporization reaction
Among the minute elements constituting , the temperature of the element including the tip of molten metal 1 is corrected and calculated using equation (1) above. ? e) Calculation of convective heat transfer associated with molten metal movement The equation of motion for the flow of molten metal l during pouring is expressed as follows using Bernoulli's equation. V@ri(2g)shaP''/ρ = Z. lltoss + Po/ρ ---
- - - (4) Here, g double force acceleration (cm/s”) ρ: ?8 Density of hot water (g/c1) z0: Water head at sprue (C1) hlO■: Flow loss head (C ■) From the melting tip velocity v0 calculated by equation (4), find the velocity of each element using the constant law. Calculate the duel heat transfer assuming that the molten metal is filled from the top based on the assumption of piston flow. (f) Then, from the start of pouring until the casting is completely solidified, all microelements are
Repeat the calculation for each time step. (f10 Based on the calculation result of (') above), change the plan and repeat the calculations from (a) to (') above again until it is determined that no defects occur. next,
An example will be described in which the method selected as the best based on the calculation results of the above-mentioned casting method of the present invention is applied to a brake component casting for an automatic Tunchuan. Figure 3 shows the vanishing model divided into elements, which were cast by drop-pouring in two stages.
Figure 4 shows the temperature status over time after pouring into the vanishing model. The molten metal is spheroidal graphite cast iron and the pouring temperature is 145.
It is 0℃. The mesh pattern part in the figure is the disappearing model 2,
The molten metal l reaches the front of the weir lO in 1 sec after the start of pouring as shown in (a).
is filled, and molten metal L is filled from the outer bridge portion 11 to the lower portion 12 after 2.5 seconds as shown in (opening). The tip of the molten metal l is cooled by more than 200°C below the pouring temperature because the heat of vaporization is taken away by the vanishing model l. After 3.3 seconds as shown in (c), the molten metal l is completely filled. The first molten metal poured! The molten metal is cooled to below 200°C and filled in the farthest position from the entrance 8, and the molten metal that has been drained at the final stage is filled into the entrance 8, the entrance 9, and the weir 10, and the temperature is 14.
00℃ or higher. When filling is completed, open the sprue 8 from the casting 13 side.
There is a temperature gradient in the direction of , which is advantageous for directional solidification. Figure 5 shows the state during pouring. 8tx: The relationship between the gas pressure (P”) in front of I and the evaporation rate (n) of expanded polystyrene as a disappearance model is shown. From the figure, the gas pressure (P0)
increases after the start of pouring and becomes constant at approximately 1100 g/cnf. The pressure is approximately 70 g/cnf higher than atmospheric pressure, and at this level, gas defects such as blowing do not occur. In addition, the evaporation rate (n) of the vanishing model decreases with time after the start of pouring, but this is because the interfacial area between the molten metal and gaseous styrene decreases as the Pa hot water is filled. Figure 6 shows the results of numerical analysis of the solidification process of the casting after completion of hydration. fs in the figure is the pseudosolidification rate, which shows the solidification rate in the small and small elements in the casting as a pattern. In the figure, (
10 seconds after the completion of pouring in (a), the outer bridge part 11
has completed solidification, and at 50 seconds in (c), the casting l3
Most of the water has solidified, but runner 9 is still solidifying. The above is an example of the method for producing a method for vanishing model casting according to the present invention.Actually, casting was performed using the method selected as the best based on the calculation results of the present invention, and solidification with good directionality was achieved. No defects occurred. For comparison with the present invention, Figure 7 shows the results of an analysis based on the assumption that the molten metal was filled instantaneously using the conventional method. In the case of a conventional casting method with a cavity, the time required for pouring is short, so the case would be relatively similar to the case shown in Figure 7. In the case of this casting method with a cavity, the pouring is completed in uk50s as shown in (c).
It can be seen that the solidification of the casting in EC is delayed compared to the disappearing model, and this area becomes a hot spot where shrinkage defects are likely to occur. [Effects of the Invention] By using the method of vanishing model casting based on the numerical analysis of the present invention, it is possible to produce castings that do not have casting defects such as blowouts, hot spots, and shrinkage cavities. In particular, in the vanishing model casting method, the molten metal filled first is cooled, which facilitates directional solidification in the direction of the sprue, and by utilizing the present invention, it is possible to design a method with a high yield. Furthermore, since the present invention can predict gas pressure etc. by calculation, it is possible to prevent gas defects. 8: Sprue, 9
: Water path, IO: Weir, ll: Outer bridge section, l2:
Bottom, 13: Cast metal.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の消失模型鋳造における方案件製法に
おける数値解析のフローチャートを示す図、第2図は、
注湯時の鋳型内の模式を示す図、第3図は、本発明に係
る実施例の消失模型の要素分割を示す図、第4図は、本
発明に係る実施例の消失模型への注湯後の時間経過毎の
温度状態を示す図、第5図は、注湯時における溶湯前面
のガス圧力(P0) と消失模型の蒸発速度(n)の関
係を示す図、第6図は、本発明に係る実施例の注湯完了
後の鋳物の凝固過程の数値解析の結果を示す図、第7図
は従来法による溶渇が瞬時に充填したと仮定した場合の
凝固過程の数値解析の結果を示す図である. l:溶湯、2:消失模型、3:堕型、4:砂、5:液体
スチレン、6:気体スチレン、7:大気、10,z,1 第 1 図 第 3 図 I 12底部 第 2 図 第 4 図 第 5 図 注湯開始後の時間 (sec) (イ) 第 6 図 (口) (ハ)
Fig. 1 is a flowchart of numerical analysis in the case manufacturing method in vanishing model casting of the present invention, and Fig. 2 is
FIG. 3 is a diagram showing a diagram of the interior of the mold during pouring, FIG. 3 is a diagram showing element division of the disappearing model of the embodiment according to the present invention, and FIG. 4 is a diagram showing notes to the disappearing model of the embodiment according to the present invention. Figure 5 is a diagram showing the temperature state over time after pouring the molten metal, and Figure 6 is a diagram showing the relationship between the gas pressure (P0) in front of the molten metal and the evaporation rate (n) of the disappearance model during pouring. Figure 7 is a diagram showing the results of numerical analysis of the solidification process of the casting after completion of pouring according to the embodiment of the present invention. It is a diagram showing the results. l: molten metal, 2: vanishing model, 3: fallen mold, 4: sand, 5: liquid styrene, 6: gaseous styrene, 7: atmosphere, 10, z, 1 Figure 1 Figure 3 Figure I 12 Bottom 2 Figure 4 Figure 5 Figure 5 Time after start of pouring (sec) (A) Figure 6 (mouth) (C)

Claims (1)

【特許請求の範囲】[Claims] 消失模型、塗型および鋳型を微小要素からなるモデルと
して表し、前記微小要素について、注湯時の溶湯先端と
前記消失模型との反応式により、溶湯の流れと充填過程
を解析して、充填完了より冷却凝固過程の鋳物の温度分
布を数値解析し、この結果にもとづき法案を決定するこ
とを特徴とする消失模型鋳造における方案作製法。
The vanishing model, the coating mold, and the mold are expressed as a model made up of microelements, and the flow of the molten metal and the filling process are analyzed using the reaction equation between the tip of the molten metal during pouring and the vanishing model for the microelements, and the filling is completed. A method for creating a method for vanishing model casting, characterized by numerically analyzing the temperature distribution of the casting during the cooling and solidifying process, and determining the method based on the results.
JP15916889A 1989-06-21 1989-06-21 Method for making casting plan in lost foam pattern casting Pending JPH0327842A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15916889A JPH0327842A (en) 1989-06-21 1989-06-21 Method for making casting plan in lost foam pattern casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15916889A JPH0327842A (en) 1989-06-21 1989-06-21 Method for making casting plan in lost foam pattern casting

Publications (1)

Publication Number Publication Date
JPH0327842A true JPH0327842A (en) 1991-02-06

Family

ID=15687765

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15916889A Pending JPH0327842A (en) 1989-06-21 1989-06-21 Method for making casting plan in lost foam pattern casting

Country Status (1)

Country Link
JP (1) JPH0327842A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007023738A1 (en) * 2005-08-22 2007-03-01 Sintokogio, Ltd. Production method of metal mold for molding foamed product pattern for use in sublimation pattern casting method
WO2007026552A1 (en) * 2005-08-29 2007-03-08 Sintokogio, Ltd. Casting method by sublimation pattern casting method and production method of metal mold for molding foamed product pattern
WO2011065410A1 (en) * 2009-11-26 2011-06-03 本田技研工業株式会社 Evaporative pattern casing process
JP2011110573A (en) * 2009-11-26 2011-06-09 Honda Motor Co Ltd Lost foam pattern casting method
JP2011110572A (en) * 2009-11-26 2011-06-09 Honda Motor Co Ltd Lost foam pattern casting method
JP2011110576A (en) * 2009-11-26 2011-06-09 Honda Motor Co Ltd Lost foam pattern casting method
JP2011110577A (en) * 2009-11-26 2011-06-09 Honda Motor Co Ltd Lost foam pattern casting method
US8434794B2 (en) 2004-08-31 2013-05-07 Samsonite Ip Holdings S.A.R.L. Three stage multi-point closure system for luggage

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8434794B2 (en) 2004-08-31 2013-05-07 Samsonite Ip Holdings S.A.R.L. Three stage multi-point closure system for luggage
WO2007023738A1 (en) * 2005-08-22 2007-03-01 Sintokogio, Ltd. Production method of metal mold for molding foamed product pattern for use in sublimation pattern casting method
JP2007054841A (en) * 2005-08-22 2007-03-08 Mie Katan Kogyo Kk Method for manufacturing die for forming foam product model to be used in disposable model casting process
WO2007026552A1 (en) * 2005-08-29 2007-03-08 Sintokogio, Ltd. Casting method by sublimation pattern casting method and production method of metal mold for molding foamed product pattern
JP2007061826A (en) * 2005-08-29 2007-03-15 Mie Katan Kogyo Kk Method for casting cast product by evaporative pattern casting method, and method for manufacturing metallic mold for forming foamed product pattern
WO2011065410A1 (en) * 2009-11-26 2011-06-03 本田技研工業株式会社 Evaporative pattern casing process
JP2011110573A (en) * 2009-11-26 2011-06-09 Honda Motor Co Ltd Lost foam pattern casting method
JP2011110572A (en) * 2009-11-26 2011-06-09 Honda Motor Co Ltd Lost foam pattern casting method
JP2011110576A (en) * 2009-11-26 2011-06-09 Honda Motor Co Ltd Lost foam pattern casting method
JP2011110577A (en) * 2009-11-26 2011-06-09 Honda Motor Co Ltd Lost foam pattern casting method
US8733421B2 (en) 2009-11-26 2014-05-27 Honda Motor Co., Ltd. Evaporative pattern casting process

Similar Documents

Publication Publication Date Title
Huang et al. Computer-aided modeling and experimental verification of optimal gating system design for investment casting of precision rotor
CN102117358B (en) Method for simulating casting defects and microstructures of castings
Ravi et al. Casting solidification analysis by modulus vector method
Hodbe et al. Design and Simulation of Lm 25 sand casting for defect minimization
US7164963B2 (en) System, method and apparatus for lost foam casting analysis
JPH0327842A (en) Method for making casting plan in lost foam pattern casting
Mohiuddin et al. Experimental investigation to produce thin-walled sand casting using combination of casting simulation and additive manufacturing techniques
CN107844852B (en) Shrinkage porosity defect prediction method for simulating steel casting sand casting process
JP2010052019A (en) Simulation method for sand mold casting
JP3396837B2 (en) Flow solidification analysis method
CN106407547A (en) Numerical simulation method for aiming at casting residual stress of anisotropic material
Kuo et al. Mold filling analysis in lost foam casting process for aluminum alloys and its experimental validation
Haldar et al. Simulation and validation of castings in shop floor
JP4765883B2 (en) Foam injection molded product quality prediction system, program, and method
Hebsur et al. Casting simulation for sand casting of Flywheel
Eqal Experimental and simulation study of solidification of commercial pure aluminium by sand casting
JP2001105098A (en) Designing method of casting plan and designing system
SH et al. Yield improvement of cast part using computer aided casting simulation
JP2692302B2 (en) How to set casting conditions for castings
Sulaiman et al. Validation of MAGMAsoft simulation of the sand casting process
JP3582930B2 (en) Manufacturing method for injection molded products
Patil et al. Analysis and simulation of die filling in gravity die casting using MAGMA software
Shrestha et al. Simulation and analysis of investment casting process on Francis turbine runner
Wang Computer Modeling of Fluid Flow and Heat Transfer in Metal Castings
JPH07236942A (en) Design method of metal mold for casting