JP2011110577A - Lost foam pattern casting method - Google Patents

Lost foam pattern casting method Download PDF

Info

Publication number
JP2011110577A
JP2011110577A JP2009268748A JP2009268748A JP2011110577A JP 2011110577 A JP2011110577 A JP 2011110577A JP 2009268748 A JP2009268748 A JP 2009268748A JP 2009268748 A JP2009268748 A JP 2009268748A JP 2011110577 A JP2011110577 A JP 2011110577A
Authority
JP
Japan
Prior art keywords
casting
model
time
modulus
casting method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009268748A
Other languages
Japanese (ja)
Other versions
JP5491144B2 (en
Inventor
Fumio Hirai
文男 平井
Osamu Ito
理 伊藤
Hiroyuki Yamada
浩幸 山田
Hiroshi Ichikawa
浩 市川
Hidemine Sotozono
英峰 外薗
Tomohiko Yamamoto
智彦 山本
Kosuke Murai
恒輔 村井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Yamamoto Foundry Asia Co Ltd
Original Assignee
Honda Motor Co Ltd
Yamamoto Foundry Asia Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd, Yamamoto Foundry Asia Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2009268748A priority Critical patent/JP5491144B2/en
Priority to BR112012012784-5A priority patent/BR112012012784B1/en
Priority to CN201080053600.4A priority patent/CN102686333B/en
Priority to US13/512,130 priority patent/US8733421B2/en
Priority to PCT/JP2010/070997 priority patent/WO2011065410A1/en
Publication of JP2011110577A publication Critical patent/JP2011110577A/en
Application granted granted Critical
Publication of JP5491144B2 publication Critical patent/JP5491144B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Molds, Cores, And Manufacturing Methods Thereof (AREA)
  • Mold Materials And Core Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To set a casting time in a lost foam pattern casting method exactly and with high accuracy. <P>SOLUTION: In the lost foam pattern casting method, a melt is poured into a mold formed by embedding a pattern comprising a resin foaming body in casting sand and a product is cast while losing the pattern by the melt. The casting time during casting is set corresponding to the modulus of the pattern (the volume of the pattern divided by the surface area of the pattern). <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、消失模型鋳造法に係り、特に最適な鋳込み時間の設定方法に関する。   The present invention relates to a disappearance model casting method, and more particularly, to an optimum casting time setting method.

樹脂性発泡体を成形して得た所望形状の模型を鋳物砂内に埋設して鋳型を構成し、この鋳型に溶湯を注湯して模型を燃焼・消失させて鋳物に置換する消失模型鋳造法が知られている。同法においては、空隙に溶湯を鋳込む空隙鋳造を行う際の鋳込み時間と消失模型鋳造を行う際の鋳込み時間との比に基づいて、最適な鋳込み時間を定める提案がなされている(特許文献1)。   A model with a desired shape obtained by molding a resinous foam is embedded in the molding sand to form a mold, and molten metal is poured into the mold to burn and disappear the model and replace it with a casting. The law is known. In this method, a proposal has been made to determine the optimum casting time based on the ratio between the casting time when casting the molten metal into the gap and the casting time when performing the disappearance model casting (Patent Document). 1).

特開2003−340547号公報JP 2003-340547 A

しかしながら消失模型鋳造法においては、モジュラス(模型の体積÷模型の表面積)が大きくなるほど模型が燃焼する際に発生する燃焼ガスの鋳型外への排出性が低下し、空隙鋳造の鋳込み時間とは異なった挙動を示す。そのため、モジュラスの異なる空隙鋳造の鋳込み時間と消失模型鋳造の鋳込み時間とは比例しないことが判っている。そこで、消失模型鋳造法での正確、かつ高精度な鋳込み時間の設定方法の提供が求められている。   However, in the disappearance model casting method, the higher the modulus (model volume / model surface area), the lower the discharge of combustion gas generated when the model burns out of the mold, which is different from the casting time of void casting. Show the behavior. For this reason, it has been found that the casting time of void casting with different moduli is not proportional to the casting time of vanishing model casting. Therefore, there is a demand for providing an accurate and highly accurate casting time setting method in the disappearance model casting method.

よって本発明は、鋳込み時間を正確、かつ高精度に設定することができる消失模型鋳造法を提供することを目的とする。   Therefore, an object of the present invention is to provide a vanishing model casting method in which the casting time can be set accurately and with high accuracy.

本発明の消失模型鋳造法は、鋳物砂内に樹脂性発泡体からなる模型を埋設してなる鋳型に溶湯を注湯し、該溶湯によって前記模型を消失させながら製品を鋳造する消失模型鋳造法において、鋳造時の鋳込み時間を、前記模型のモジュラス(模型の体積÷模型の表面積)に応じて設定することを特徴とする。   The vanishing model casting method of the present invention is a vanishing model casting method in which a molten metal is poured into a mold in which a model made of a resinous foam is embedded in foundry sand, and the product is cast while the model is eliminated by the molten metal. The casting time during casting is set according to the modulus of the model (volume of the model ÷ surface area of the model).

本発明によれば、鋳造時の鋳込み時間を模型の上記モジュラスに応じて設定することにより、消失模型鋳造法における鋳込み時間を正確、かつ高精度に設定することができる。   According to the present invention, by setting the casting time during casting according to the modulus of the model, the casting time in the disappearance model casting method can be set accurately and with high precision.

本発明では、前記鋳込み時間が下記式(1)により算出されることを特徴とする。

Figure 2011110577

t:鋳込み時間(s)
W:鋳込み重量(kg)
A’:湯口面積(cm
ρ:溶湯密度(g/cm−3
a,b:定数
m:モジュラス(模型の体積÷模型の表面積)
g:重力加速度
H’:湯口から模型上端までの高さ(cm) In the present invention, the casting time is calculated by the following formula (1).
Figure 2011110577

t: Casting time (s)
W: Casting weight (kg)
A ': Gate area (cm 2 )
ρ: Molten metal density (g / cm −3 )
a, b: constant m: modulus (model volume / model surface area)
g: Gravitational acceleration H ': Height from the gate to the top of the model (cm)

また、本発明は、前記式(1)から算出された鋳込み時間と、実際の鋳造時の鋳込み時間を比較し、両者の差異に基づいて鋳造欠陥の有無を判断することを特徴とする。   Further, the present invention is characterized in that the casting time calculated from the formula (1) is compared with the casting time at the time of actual casting, and the presence or absence of a casting defect is determined based on the difference between the two.

さらに本発明は、前記式(1)から算出された鋳込み時間に基づいて鋳造シミュレーションを行うことを特徴とする。   Furthermore, the present invention is characterized in that a casting simulation is performed based on the casting time calculated from the formula (1).

本発明によれば、鋳造時の鋳込み時間を模型のモジュラスに応じて設定することにより、消失模型鋳造法における鋳込み時間を正確、かつ高精度に設定することができ、品質の優れた鋳物製品を得ることができるといった効果を奏する。   According to the present invention, by setting the casting time at the time of casting according to the modulus of the model, the casting time in the disappearance model casting method can be set accurately and with high accuracy, and a cast product with excellent quality can be obtained. There is an effect that it can be obtained.

本発明の消失模型鋳造法を概念的に示した鋳型の断面図である。It is sectional drawing of the casting_mold | template which showed the vanishing model casting method of this invention notionally. 模型のモジュラスの大小により鋳込み時間が変化するメカニズムを説明する概念図であって、モジュラスが比較的小さい鋳造モデルを示す。It is a conceptual diagram explaining the mechanism by which casting time changes with the size of the modulus of a model, Comprising: The casting model with a comparatively small modulus is shown. 模型のモジュラスの大小により鋳込み時間が変化するメカニズムを説明する概念図であって、モジュラスが比較的大きい鋳造モデルを示す。It is a conceptual diagram explaining the mechanism by which casting time changes with the size of the modulus of a model, Comprising: The casting model with a comparatively large modulus is shown. 実施例において鋳込み時間を算出するにあたって必要なC’(定数)と模型のモジュラスの関係を示すグラフ。The graph which shows the relationship between C '(constant) required when calculating casting time in an Example, and the modulus of a model. 実施例において模型のモジュラスに応じて算出された鋳込み時間を示すグラフである。It is a graph which shows the casting time calculated according to the modulus of the model in an Example.

以下、図面を参照して本発明に係る実施形態を説明する。
図1は、一実施形態に係る消失模型鋳造法を概念的に示した鋳型1の断面を示している。この鋳型1は、図示せぬ鋳枠内に充填された鋳物砂2内に模型3が埋没されて構成されている。
Embodiments according to the present invention will be described below with reference to the drawings.
FIG. 1 shows a cross section of a mold 1 conceptually showing a vanishing model casting method according to an embodiment. The mold 1 is configured by burying a model 3 in foundry sand 2 filled in a casting frame (not shown).

鋳物砂2内における模型3の周囲には、模型に接続されるゲート4と、このゲート4に接続される湯道5が形成されている。湯道5は鋳型1の上面への開口が複数(図1では2つ)設けられており、一方(図1で右側)の開口に湯口6が設けられる。また、他方の開口側の湯道5は特にガス抜き通路7とされ、このガス抜き通路7には燃焼ガスのみを鋳型1外の大気に放出させるフィルタ8が配設されている。   A gate 4 connected to the model and a runner 5 connected to the gate 4 are formed around the model 3 in the foundry sand 2. The runner 5 is provided with a plurality of openings (two in FIG. 1) to the upper surface of the mold 1, and a gate 6 is provided in one (right side in FIG. 1). Further, the runner 5 on the other opening side is particularly a gas vent passage 7, and a filter 8 for releasing only the combustion gas to the atmosphere outside the mold 1 is provided in the gas vent passage 7.

鋳型1の製造は、次の手順による。まず、模型3の表面に黒鉛を主成分とする耐火性に優れた塗型剤を塗布して十分に乾燥させる。一方、鋳枠に湯道(ガス抜き通路7を含む)5およびゲート4を紙管を組むなどの手法で形成するとともに、鋳枠内の概ね中心部分に模型3を配置して支持する。この段階で、ガス抜き通路7にフィルタ8も配設する。この後、鋳枠内に鋳物砂2を充填して模型3を埋没させ、湯口6を設置する。   The mold 1 is manufactured according to the following procedure. First, a mold-forming agent having graphite as a main component and having excellent fire resistance is applied to the surface of the model 3 and sufficiently dried. On the other hand, the runner 5 (including the gas vent passage 7) 5 and the gate 4 are formed in the cast frame by a method such as assembling a paper tube, and the model 3 is arranged and supported at a substantially central portion in the cast frame. At this stage, a filter 8 is also disposed in the gas vent passage 7. Thereafter, the casting sand 2 is filled in the casting frame, the model 3 is buried, and the gate 6 is installed.

鋳物砂2は、石英質を主成分とする珪砂の他、ジルコン砂、クロマイト砂、合成セラミック砂等の新砂あるいは旧砂が用いられる。鋳物砂2には、必要に応じて粘結剤や硬化剤が添加される。   As the foundry sand 2, new sand or old sand such as zircon sand, chromite sand, and synthetic ceramic sand is used in addition to quartz sand mainly composed of quartz. A binder and a curing agent are added to the foundry sand 2 as necessary.

湯道5およびゲート4の形成は、φ30〜70mmの市販品(例えば、花王社製・クエーカー鋳造用湯道管:EGランナーCF−30S,CF−50S,CF−70Sなど、主成分は再生パルプ)などが用いられる。また、フィルタ8は2号珪砂相当の砂に適宜なバインダを混入させて厚さ40mm程度に成形した多孔質材料などが用いられる。なお、模型3の上面である湯口面から湯口6までの高さHは700mmが好ましく、その場合のヘッド圧は0.044MPa程度となる。   The runner 5 and the gate 4 are formed with commercially available products having a diameter of 30 to 70 mm (for example, Kao's quaker casting runner pipes: EG runners CF-30S, CF-50S, CF-70S, etc., the main component is recycled pulp. ) Etc. are used. The filter 8 is made of a porous material or the like formed by mixing an appropriate binder with sand equivalent to No. 2 silica sand and having a thickness of about 40 mm. The height H from the gate surface to the gate 6 as the upper surface of the model 3 is preferably 700 mm, and the head pressure in this case is about 0.044 MPa.

模型3は、発泡ポリスチレン等の合成樹脂性発泡体を手作りで所望形状に成形したものである。塗型剤は、例えば花王社製・花王クエーカーPC260などが用いられ、厚さ1.5〜3.5mm、10mm当たりの通気度1程度で模型の表面に塗布される。 The model 3 is obtained by hand-molding a synthetic resin foam such as expanded polystyrene into a desired shape. As the coating agent, for example, Kao Quaker PC260 manufactured by Kao Corporation is used, and is applied to the surface of the model with a thickness of 1.5 to 3.5 mm and an air permeability of about 10 mm 2 .

以上で鋳型1は製造される。この鋳型1によれば、湯口6から溶湯(溶融した金属材料)を注湯すると、溶湯は湯道5およびゲート4を通って模型3に至り、模型3は溶湯で溶解されることによって消失し、消失空間に溶湯が充填される。すなわち、模型3が溶湯に置換される。模型3が燃焼する注湯初期の段階で燃焼ガスが大量に発生し、その燃焼ガスは、湯道5の最下流のガス抜き通路7のフィルタ8を通って大気に排出される。また、燃焼ガスの一部は、模型3の表面に塗型剤が塗布されて形成された塗型膜を通過し、さらに鋳物砂2を通過して大気に排出される。   Thus, the mold 1 is manufactured. According to this mold 1, when molten metal (molten metal material) is poured from the gate 6, the molten metal reaches the model 3 through the runner 5 and the gate 4, and the model 3 disappears by being melted with the molten metal. The molten space is filled in the disappearing space. That is, the model 3 is replaced with molten metal. A large amount of combustion gas is generated at the initial stage of pouring in which the model 3 burns, and the combustion gas is discharged to the atmosphere through the filter 8 in the gas vent passage 7 at the most downstream side of the runner 5. A part of the combustion gas passes through a coating film formed by applying a coating agent to the surface of the model 3, and further passes through the foundry sand 2 and is discharged to the atmosphere.

さて、本発明においては、模型のモジュラス(模型の体積÷模型の表面積)が大きくなるほど鋳込み時間が長くなるという相関関係があることに基づき、下記旧来の鋳込み時間の式(2)と過去の鋳造データから、モジュラスを考慮した鋳込み時間の式(1)を作成した。(式(2)は、日本鋳物協会編 丸善株式会社発行、改訂4版鋳物便覧:85ページに記載)   In the present invention, based on the fact that the casting time becomes longer as the modulus of the model (model volume / model surface area) increases, the following old casting time formula (2) and past castings From the data, a formula (1) of the casting time considering the modulus was created. (Formula (2) is published by Maruzen Co., Ltd. edited by Japan Foundry Association, revised 4 edition casting manual: described on page 85)

Figure 2011110577

t:鋳込み時間(s)
W:鋳込み重量(kg)
A’:湯口面積(cm
ρ:溶湯密度(g/cm−3
a,b:定数
m:モジュラス(模型の体積÷模型の表面積)
g:重力加速度
H’:湯口から模型上端までの高さ(cm)
Figure 2011110577

t: Casting time (s)
W: Casting weight (kg)
A ': Gate area (cm 2 )
ρ: Molten metal density (g / cm −3 )
a, b: constant m: modulus (model volume / model surface area)
g: Gravitational acceleration H ': Height from the gate to the top of the model (cm)

Figure 2011110577

c:流量係数
A:鋳物に対するゲート開口(せき)の断面積(cm
H:有効水頭
Figure 2011110577

c: Flow coefficient A: Cross-sectional area (cm 2 ) of gate opening (cough) with respect to casting
H: Effective head

ここで、旧来の式(2)は、湯口面積よりゲート面積の方が小さい場合には有効であるが、消失模型鋳造法においては鋳型内で模型が燃焼する際にガスが大量に発生するため、ゲート面積を湯口面積より大きくしてゲートからもガス抜きをする必要がある。そのため、旧来の式(2)では、鋳込み時間はゲート開口の断面積をパラメータに用いているところ、本発明においてはそれを湯口面積に置き換えたものである。   Here, the conventional equation (2) is effective when the gate area is smaller than the gate area, but in the disappearance model casting method, a large amount of gas is generated when the model burns in the mold. It is necessary to vent the gas from the gate by making the gate area larger than the gate area. Therefore, in the conventional formula (2), the casting time uses the cross-sectional area of the gate opening as a parameter. In the present invention, the casting time is replaced with the gate area.

ここで、モジュラスが大きくなると鋳込み時間が長くなると考えられるメカニズムを図2および図3により説明する。これら図は鋳造モデルを概略的に示しており、図2の鋳造モデル1の模型が、表面積S、体積V、肉厚wとした場合、図3の鋳造モデル2の模型は図2の模型に対して体積が同じで肉厚が2倍とされ、したがって表面積が半分とされている。   Here, the mechanism that the casting time becomes longer as the modulus increases will be described with reference to FIGS. These drawings schematically show the casting model. When the model of the casting model 1 in FIG. 2 has a surface area S, a volume V, and a wall thickness w, the model of the casting model 2 in FIG. 3 becomes the model in FIG. In contrast, the volume is the same and the wall thickness is doubled, thus the surface area is halved.

この条件で単位時間当たりの模型表面に塗布された塗型剤を通過する燃焼ガス量およびモジュラスを比較してみる。単位時間当たりの塗型剤通過ガス量は塗型の表面積に比例するので、単位時間当たりの塗型剤通過ガス量比は、
モデル1:モデル2=a・S:aS/2(aは定数)
=2:1 …(3)
となる。
The amount of combustion gas passing through the coating agent applied to the model surface per unit time and the modulus per unit time will be compared. Since the amount of coating agent passing gas per unit time is proportional to the surface area of the coating mold, the ratio of coating agent passing gas amount per unit time is
Model 1: Model 2 = a · S: aS / 2 (a is a constant)
= 2: 1 (3)
It becomes.

一方、モジュラスは体積/表面積の比であるから、
モジュラス比
モデル1:モデル2=V/S:2V/S
=1:2 …(4)
となる。
On the other hand, because the modulus is the ratio of volume / surface area,
Modulus ratio Model 1: Model 2 = V / S: 2V / S
= 1: 2 (4)
It becomes.

上記式(3)および式(4)から、モジュラスが2倍になると、単位時間当たりの塗型剤通過ガス量は1/2になることが判る。つまり、モジュラスが大きくなると単位体積当たりの燃焼ガス量が増え、鋳型の内圧が高くなる。鋳型の内圧が高くなることにより鋳込み時間が長くなると考えられる。そのため、消失模型鋳造法での鋳込み時間を算出する際には、模型のモジュラスを考慮する必要がある。   From the above formulas (3) and (4), it can be seen that when the modulus is doubled, the amount of the coating agent passing gas per unit time is halved. That is, as the modulus increases, the amount of combustion gas per unit volume increases and the internal pressure of the mold increases. It is considered that the casting time becomes longer as the internal pressure of the mold becomes higher. Therefore, when calculating the casting time in the disappearance model casting method, it is necessary to consider the modulus of the model.

上記のようにして消失模型鋳造法における鋳込み時間を算出することにより、以下の付加的な鋳造に関する事項を実施することができる。   By calculating the casting time in the disappearance model casting method as described above, the following additional casting matters can be implemented.

・早期の鋳造欠陥判定
実際の鋳込み時間t1(秒)と、上記本発明に係る算出方法で算出した鋳込み時間t2(秒)とを比較することにより、鋳造欠陥の判定を早期にすることができる。t1とt2の関係と鋳造欠陥の種類については、例えば以下のように判定される。なお、定数σは、本発明では3σ≒6で規定される。
-Early casting defect determination By comparing the actual casting time t1 (seconds) with the casting time t2 (seconds) calculated by the calculation method according to the present invention, the casting defect determination can be made earlier. . The relationship between t1 and t2 and the type of casting defect are determined as follows, for example. The constant σ is defined by 3σ≈6 in the present invention.

t1>t2+3σ:湯回り不良、残渣欠陥(模型の溶け残り)
t1<t2−3σ:鋳込み量不足、塗型噛み
すなわち、実際の鋳込み時間と算出された鋳込み時間との間に大幅な差異がある場合には、製品に何らかの鋳造欠陥が生じていると判断することができる。これにより、もしも鋳造欠陥が発生していることが判定されれば、鋳型の解砕前に速やかに吹き直すことによって冷却時間のタイムロスを短縮することができるといった生産上の利点がある。
t1> t2 + 3σ: Poor water runoff, residue defect (undissolved model)
t1 <t2-3σ: Insufficient casting amount, coating bite That is, if there is a significant difference between the actual casting time and the calculated casting time, it is determined that some casting defect has occurred in the product. be able to. Thus, if it is determined that a casting defect has occurred, there is a production advantage in that the time loss of the cooling time can be shortened by blowing again immediately before crushing the mold.

・溶湯の流動解析用の鋳込み時間パラメータ
上記本発明に係る算出方法で算出した鋳込み時間を、溶湯の流動解析用の計算に用いることにより、高い精度で溶湯の充填温度や最終充填部位などをシミュレーションすることができ、このため、シミュレーションの結果の信頼度を高めることができる。
-Casting time parameter for melt flow analysis By using the casting time calculated by the calculation method according to the present invention for calculation for melt flow analysis, the melt filling temperature, final filling site, etc. can be simulated with high accuracy. Therefore, the reliability of the simulation result can be increased.

外形寸法が750×800×430(mm)、モジュラスが2.15の発泡ポリスチレンから成形した模型の表面に塗型剤(60〜65ボーメ)を塗布して乾燥させ、次いで、図1に示したものと同様の構成で鋳型を形成し、鋳造を行った。鋳造材料はFC300(片状黒鉛鋳鉄)、注湯時の溶湯の温度(鋳込み温度)は1380℃、鋳込み重量は1.2トンであった(表1の鋳造サンプル1)。同様にして鋳込み重量1〜13トン、模型のモジュラスが1.9〜2.5の範囲で変化させた鋳造を行って、表1に記載の鋳造サンプル2〜6を得た。表1には、鋳造条件と算出した鋳込み時間を示している。   A coating agent (60-65 Baume) was applied to the surface of a model molded from expanded polystyrene having an outer dimension of 750 × 800 × 430 (mm) and a modulus of 2.15, and then dried, as shown in FIG. A mold was formed with the same structure as that of the mold, and casting was performed. The casting material was FC300 (flaky graphite cast iron), the temperature of the molten metal during pouring (casting temperature) was 1380 ° C., and the cast weight was 1.2 tons (cast sample 1 in Table 1). In the same manner, casting samples 1 to 6 shown in Table 1 were obtained by performing casting in which the casting weight was 1 to 13 tons and the modulus of the model was changed in the range of 1.9 to 2.5. Table 1 shows the casting conditions and the calculated casting time.

Figure 2011110577
Figure 2011110577

ここで、上記式(1)に至る計算式を説明すると、
上記式(2)より、下記式(5)を求める。式(5)はモジュラスを考慮しない場合の鋳込み時間である。

Figure 2011110577
Here, the calculation formula leading to the above formula (1) will be described.
From the above equation (2), the following equation (5) is obtained. Formula (5) is the casting time when the modulus is not considered.
Figure 2011110577

表1の鋳造条件を式(5)に代入し、それぞれの定数C’を求める。これの計算結果を表2に示す。   Substituting the casting conditions in Table 1 into equation (5), the respective constants C ′ are obtained. Table 2 shows the calculation results.

Figure 2011110577
Figure 2011110577

次に、C’と模型のモジュラスをグラフ化し(図4)、下記の近似式(6)を求める。
(ここでは、上記定数a,bはa=0.0012、b=1.0995となる)
C=0.0012m−1.0955 …(6)
近似式(6)を式(5)に代入すると、式(1)になる。
そして、式(1)にモジュラスの値m=1.8,2.0,2.2,2.4を代入すると、図5に示すグラフを得る。
Next, C ′ and the modulus of the model are graphed (FIG. 4), and the following approximate expression (6) is obtained.
(Here, the constants a and b are a = 0.0012 and b = 1.9995)
C = 0.0012m -1.0955 (6)
Substituting approximate expression (6) into expression (5) yields expression (1).
Then, when the modulus value m = 1.8, 2.0, 2.2, 2.4 is substituted into the equation (1), the graph shown in FIG. 5 is obtained.

図5には、表1で示した鋳造サンプル1〜6における鋳込み時間の実際の計測値を示している。また、W/A’が鋳造サンプルNo5,6と共通で、モジュラスを考慮せずに上記式(2)のみで鋳込み時間を設定した場合も示している(×で示す)。このモジュラスを考慮しない場合と本発明とを比較すると、モジュラスを考慮しない場合は、本発明よりも鋳込み時間が18秒遅く、また、最終充填温度は20℃程度低かった。したがって本発明によれば、鋳込み時間を適正な時間に設定することができ、これとともに、良好な品質の鋳物を確実に得ることができることが判った。   In FIG. 5, the actual measured value of the casting time in the casting samples 1-6 shown in Table 1 is shown. In addition, the case where W / A ′ is common to casting samples Nos. 5 and 6 and the casting time is set only by the above formula (2) without considering the modulus is shown (indicated by ×). When this modulus is not considered and the present invention is compared, when the modulus is not considered, the casting time is 18 seconds later than the present invention, and the final filling temperature is about 20 ° C. lower. Therefore, according to the present invention, it has been found that the casting time can be set to an appropriate time, and at the same time, a casting of good quality can be reliably obtained.

1…鋳型
2…鋳物砂
3…模型
4…ゲート
5…湯道
6…湯口
7…ガス抜き通路
8…フィルタ
DESCRIPTION OF SYMBOLS 1 ... Mold 2 ... Foundry sand 3 ... Model 4 ... Gate 5 ... Runway 6 ... Spout 7 ... Degassing passage 8 ... Filter

Claims (4)

鋳物砂内に樹脂性発泡体からなる模型を埋設してなる鋳型に溶湯を注湯し、該溶湯によって前記模型を消失させながら製品を鋳造する消失模型鋳造法において、
鋳造時の鋳込み時間を、前記模型のモジュラス(模型の体積÷模型の表面積)に応じて設定することを特徴とする消失模型鋳造法。
In the disappearance model casting method in which a molten metal is poured into a mold in which a model made of a resinous foam is embedded in foundry sand, and the product is cast while the model is lost by the molten metal,
A vanishing model casting method characterized in that a casting time during casting is set according to the modulus of the model (volume of the model ÷ surface area of the model).
前記鋳込み時間が、下記式(1)により算出されることを特徴とする請求項1に記載の消失模型鋳造法。
Figure 2011110577

t:鋳込み時間(s)
W:鋳込み重量(kg)
A’:湯口面積(cm
ρ:溶湯密度(g/cm−3
a,b:定数
m:モジュラス(模型の体積÷模型の表面積)
g:重力加速度
H’:湯口から模型上端までの高さ(cm)
The disappearance model casting method according to claim 1, wherein the casting time is calculated by the following formula (1).
Figure 2011110577

t: Casting time (s)
W: Casting weight (kg)
A ': Gate area (cm 2 )
ρ: Molten metal density (g / cm −3 )
a, b: constant m: modulus (model volume / model surface area)
g: Gravitational acceleration H ': Height from the gate to the top of the model (cm)
前記式(1)から算出された鋳込み時間と、実際の鋳造時の鋳込み時間を比較し、両者の差異に基づいて鋳造欠陥の有無を判断することを特徴とする請求項2に記載の消失模型鋳造法。   3. The disappearance model according to claim 2, wherein the casting time calculated from the formula (1) is compared with the casting time during actual casting, and the presence or absence of casting defects is determined based on the difference between the casting times. Casting method. 前記式(1)から算出された鋳込み時間に基づいて鋳造シミュレーションを行うことを特徴とする請求項2に記載の消失模型鋳造法。   The vanishing model casting method according to claim 2, wherein a casting simulation is performed based on a casting time calculated from the equation (1).
JP2009268748A 2009-11-26 2009-11-26 Vanishing model casting method Expired - Fee Related JP5491144B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2009268748A JP5491144B2 (en) 2009-11-26 2009-11-26 Vanishing model casting method
BR112012012784-5A BR112012012784B1 (en) 2009-11-26 2010-11-25 EVAPORATIVE MODEL FOUNDRY PROCESS
CN201080053600.4A CN102686333B (en) 2009-11-26 2010-11-25 Evaporative pattern casing process
US13/512,130 US8733421B2 (en) 2009-11-26 2010-11-25 Evaporative pattern casting process
PCT/JP2010/070997 WO2011065410A1 (en) 2009-11-26 2010-11-25 Evaporative pattern casing process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009268748A JP5491144B2 (en) 2009-11-26 2009-11-26 Vanishing model casting method

Publications (2)

Publication Number Publication Date
JP2011110577A true JP2011110577A (en) 2011-06-09
JP5491144B2 JP5491144B2 (en) 2014-05-14

Family

ID=44233338

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009268748A Expired - Fee Related JP5491144B2 (en) 2009-11-26 2009-11-26 Vanishing model casting method

Country Status (1)

Country Link
JP (1) JP5491144B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102699277A (en) * 2012-05-10 2012-10-03 杨玉光 Casting process method for gray cast iron lost foam
JP2016041444A (en) * 2014-08-18 2016-03-31 株式会社神戸製鋼所 Disappeared model casting method
KR20170068541A (en) 2014-11-19 2017-06-19 가부시키가이샤 고베 세이코쇼 Evaporative pattern casting method
US10130989B2 (en) 2014-11-18 2018-11-20 Kobe Steel, Ltd. Evaporate pattern casting method
US10150157B2 (en) 2014-12-03 2018-12-11 Kobe Steel, Ltd. Buoyancy transfer jig

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63264243A (en) * 1987-04-22 1988-11-01 Kubota Ltd Mold for casting sublimation pattern
JPH0327842A (en) * 1989-06-21 1991-02-06 Hitachi Metals Ltd Method for making casting plan in lost foam pattern casting
JPH1190583A (en) * 1997-09-12 1999-04-06 Mitsubishi Kagaku Basf Kk Full-mold casting method
JP2003154435A (en) * 2001-11-20 2003-05-27 Kao Corp Lost foam pattern casting method
JP2003340547A (en) * 2002-05-24 2003-12-02 Kao Corp Method for evaporative pattern casting

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63264243A (en) * 1987-04-22 1988-11-01 Kubota Ltd Mold for casting sublimation pattern
JPH0327842A (en) * 1989-06-21 1991-02-06 Hitachi Metals Ltd Method for making casting plan in lost foam pattern casting
JPH1190583A (en) * 1997-09-12 1999-04-06 Mitsubishi Kagaku Basf Kk Full-mold casting method
JP2003154435A (en) * 2001-11-20 2003-05-27 Kao Corp Lost foam pattern casting method
JP2003340547A (en) * 2002-05-24 2003-12-02 Kao Corp Method for evaporative pattern casting

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102699277A (en) * 2012-05-10 2012-10-03 杨玉光 Casting process method for gray cast iron lost foam
CN102699277B (en) * 2012-05-10 2015-01-28 杨玉光 Casting process method for gray cast iron lost foam
JP2016041444A (en) * 2014-08-18 2016-03-31 株式会社神戸製鋼所 Disappeared model casting method
US9862022B2 (en) 2014-08-18 2018-01-09 Kobe Steel, Ltd Casting method using lost foam
DE112015003812B4 (en) 2014-08-18 2022-11-24 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) CASTING PROCESS USING LOSED FOAM
US10130989B2 (en) 2014-11-18 2018-11-20 Kobe Steel, Ltd. Evaporate pattern casting method
DE112015005190B4 (en) 2014-11-18 2022-11-24 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) evaporation pattern casting process
KR20170068541A (en) 2014-11-19 2017-06-19 가부시키가이샤 고베 세이코쇼 Evaporative pattern casting method
US10099274B2 (en) 2014-11-19 2018-10-16 Kobe Steel, Ltd. Evaporative pattern casting method
DE112015005231B4 (en) 2014-11-19 2022-11-24 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) EVAPORATION PATTERN CASTING PROCESS
US10150157B2 (en) 2014-12-03 2018-12-11 Kobe Steel, Ltd. Buoyancy transfer jig

Also Published As

Publication number Publication date
JP5491144B2 (en) 2014-05-14

Similar Documents

Publication Publication Date Title
WO2011065410A1 (en) Evaporative pattern casing process
JP5491144B2 (en) Vanishing model casting method
CN102151788A (en) Resin sand and foam plastic pattern casting method
CN104148590A (en) Method for casting upper bearing and lower bearing of compressor
CN106623793A (en) Running and feeding system on DISA line for producing annular thin-wall gray iron castings and design method of running and feeding system
Sai et al. A critical review on casting types and defects
US7044190B2 (en) Sublimation pattern casting method
JP5634665B2 (en) Tire molding die casting apparatus and tire molding die casting method using the same
JP2010052019A (en) Simulation method for sand mold casting
JP2009119469A (en) Fluid sand self-curing mold
SE540320C2 (en) Method and system for creating a sand core for a sand casting process
Kamble Analysis of different sand casting defects in a medium scale foundry industry-A review
US2772458A (en) Method of making smooth-surfaced sand-resin molds
JP2011110572A (en) Lost foam pattern casting method
JP5398491B2 (en) Vanishing model casting method
Said et al. Optimization of permeability for quality improvement by using factorial design
JP2015003342A (en) Casting device of tire molding metal mold and casting method of tire molding metal mold using the same
Hasbrouck et al. A comparative study of dimensional tolerancing capabilities and microstructure formation between binder jet additively manufactured sand molds and olivine green sand molds for metalcasting of A356. 0
JP6172456B2 (en) Sand mold forming method using foam sand, molding die and sand mold
JP5491143B2 (en) Vanishing model casting method
KR101231635B1 (en) Core for casting with hollow
JP3871966B2 (en) Vanishing model casting method
JP2018161660A (en) Binder-containing sand for core production having high fillability
JP6826751B2 (en) A presser foot forming body and a method for manufacturing a casting using the presser foot forming body.
JP6231465B2 (en) Disappearance model casting method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111005

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131004

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140131

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140227

R150 Certificate of patent or registration of utility model

Ref document number: 5491144

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees