JP2007061826A - Method for casting cast product by evaporative pattern casting method, and method for manufacturing metallic mold for forming foamed product pattern - Google Patents

Method for casting cast product by evaporative pattern casting method, and method for manufacturing metallic mold for forming foamed product pattern Download PDF

Info

Publication number
JP2007061826A
JP2007061826A JP2005247371A JP2005247371A JP2007061826A JP 2007061826 A JP2007061826 A JP 2007061826A JP 2005247371 A JP2005247371 A JP 2005247371A JP 2005247371 A JP2005247371 A JP 2005247371A JP 2007061826 A JP2007061826 A JP 2007061826A
Authority
JP
Japan
Prior art keywords
casting
model
product model
dimensional
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005247371A
Other languages
Japanese (ja)
Inventor
Tatsuhiko Kato
龍彦 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MIE KATAN KOGYO KK
Sintokogio Ltd
Daisen Co Ltd
Daito KK
Original Assignee
MIE KATAN KOGYO KK
Sintokogio Ltd
Daisen Co Ltd
Daito KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MIE KATAN KOGYO KK, Sintokogio Ltd, Daisen Co Ltd, Daito KK filed Critical MIE KATAN KOGYO KK
Priority to JP2005247371A priority Critical patent/JP2007061826A/en
Priority to PCT/JP2006/316234 priority patent/WO2007026552A1/en
Publication of JP2007061826A publication Critical patent/JP2007061826A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C7/00Patterns; Manufacture thereof so far as not provided for in other classes
    • B22C7/02Lost patterns
    • B22C7/023Patterns made from expanded plastic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D46/00Controlling, supervising, not restricted to casting covered by a single main group, e.g. for safety reasons
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2113/00Details relating to the application field
    • G06F2113/22Moulding

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)
  • Forging (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an evaporative pattern casting method so that a cast product goes in a targeted size or permissible error range, and a method for manufacturing a metallic mold for forming the foamed pattern. <P>SOLUTION: A method for casting the cast product by the evaporative pattern casting method is contained of: (a) a casting simulation process for cast product, performing the simulation of the casting for cast product with the evaporative pattern casting method by inputting data related to three-dimensional size of the foamed product pattern corresponding to the targeted size, material data for foamed product and data of a gating system and a molten metal pouring method, into a computer, containing the simulations for molten metal flowing, the solidification of the molten metal and the deformation of the cast product with the solidification; (b) a process for deciding a last three-dimensional size of the foamed product pattern while considering the deformation of the cast product in the above casting simulation process for cast product and a contraction rule of the relation between the cast product and the foamed product pattern; (c) a process for manufacturing the foamed product pattern having the final three-dimensional size; and (d) a process for casting the cast product with the evaporative pattern casting method by using the foamed product pattern manufactured with the above method. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、消失模型鋳造法による鋳物鋳造方法と、消失模型鋳造法に用いる発泡製品模型を成形する発泡製品模型成形用金型の製造方法に関する。   The present invention relates to a casting casting method using a disappearance model casting method, and a method for manufacturing a foam product model molding die for molding a foam product model used in the disappearance model casting method.

消失模型鋳造法に用いる発泡製品模型は以下のように製作されている。先ず、粒状の発泡材料ビーズを容器内に密閉して蒸気を吹き込んで予備発泡(一次発泡)させ、この予備発泡させたビーズを次に発泡製品模型製作用の金型のキャビティに充填して硬化させる。   The foam product model used in the disappearance model casting method is manufactured as follows. First, the granular foam material beads are sealed in a container, and steam is blown into the foam to be pre-foamed (primary foaming), and then the pre-foamed beads are filled into a mold cavity for producing a foam product model and cured. Let

材料ビーズはPMMA(ポリメタクリル酸メチル)を主成分とし、これにポリスチレン等が加えられており、これらの成分の混合比率は製造者によって異なっている。予備発泡において材料ビーズは発泡倍率が40倍程度で発泡されている。発泡倍率を場合によっては(例えば、薄肉の鋳物を製造する場合)、45倍程度にすることもある。但し、このように発泡率を高くすると、発泡模型硬度が小さくなるため、砂充填した際に発泡模型が変形する傾向があるので、厚肉の鋳物の製造には適していない。   The material beads are mainly composed of PMMA (polymethyl methacrylate), and polystyrene or the like is added thereto. The mixing ratio of these components varies depending on the manufacturer. In the pre-expansion, the material beads are expanded with an expansion ratio of about 40 times. In some cases (for example, when producing a thin casting), the expansion ratio may be increased to about 45 times. However, if the foaming rate is increased in this way, the foamed model hardness decreases, and the foamed model tends to be deformed when it is filled with sand, which is not suitable for manufacturing a thick casting.

このように成形された発泡製品模型を使用して消失模型鋳造法により鋳物を製造した場合に、発泡材料ビーズの組成と発泡倍率の相異によって製造された鋳物の収縮率が異なってくる。   When a casting is manufactured by the vanishing model casting method using the foamed product model formed in this way, the shrinkage of the casting manufactured differs depending on the composition of the foam material beads and the difference in the expansion ratio.

また、注湯された金属が凝固して製品鋳物となる際の縮み代を考慮(即ち、伸尺を使用)して実際の金型キャビティは製作されている。縮み代は金属により異なる。鋳物と模型との関係の伸尺は5/1000の〜8/1000である。また、発泡製品模型とその成形用金型との関係においても発泡製品模型の縮みが存在し、その伸尺として3/1000の〜10/1000が用いられている。   Further, an actual mold cavity is manufactured in consideration of a shrinkage allowance when the poured metal is solidified to become a product casting (that is, using an extension scale). The shrinkage allowance varies depending on the metal. The scale of the relationship between the casting and the model is 5/1000 to 8/1000. Further, there is a shrinkage of the foamed product model in the relationship between the foamed product model and its molding die, and the scale of 3/1000 to 10/1000 is used.

このように伸尺を用いて鋳造された鋳物製品が目的とする形状・寸法であるか、あるいはその許容誤差範囲内に収まっているかを確認している。しかしながら製品が目標寸法ではなく、あるいは、許容誤差範囲から外れている場合には、模型寸法を修正する必要があるため発泡製品模型を成形する金型のキャビティを広げるか、あるいは、キャビティを埋めることは困難なため、再度金型を製作する必要性が生じてくる。   In this way, it is confirmed whether or not the cast product cast using the extender has a target shape and size, or is within an allowable error range. However, if the product is not the target size or is out of the tolerance range, the model size needs to be corrected, so the mold cavity that molds the foam product model is expanded or the cavity is filled It is difficult to make a mold again.

上記のように一定の伸尺を用いて鋳造しても、鋳物の部位により縮み代に相異が出る場合があり、鋳物製品が許容誤差内に収まらずに発泡製品模型用金型を再製作する必要が生じることが多々あった。部位により縮み代に相異が出る場合とは、例えば、二股に分岐する管であって、分岐した一方の管部分はほぼ直線状であり、もう一方の管部分は円弧状に湾曲している鋳物管製品であり、この場合、円弧状に湾曲している管部分の凸側部分と凹側部分の縮み代に相異が出る。   Even if casting is performed using a certain scale as described above, there may be differences in the shrinkage allowance depending on the casting part, and the casting product does not fit within the tolerance, and the mold for the foam product model is remanufactured. There was often a need to do that. The difference in the contraction allowance depending on the part is, for example, a bifurcated pipe, one of the branched pipe parts is substantially linear, and the other pipe part is curved in an arc shape. This is a cast pipe product. In this case, there is a difference in the shrinkage allowance between the convex part and the concave part of the pipe part that is curved in an arc shape.

下記特許文献1(特開平4−361849)に記載された発明は、フルモールド法によってプレス金型等を鋳造する場合に用いる鋳造品製造システムに関し、CADデータ作成時に、鋳造条件を充分考慮した設計を行い、鋳造区(鋳造工程)での作業管理を行うことのできる鋳造品製造システムを提供することを目的としている。   The invention described in the following Patent Document 1 (Japanese Patent Laid-Open No. 4-361849) relates to a cast product manufacturing system used when casting a press die or the like by a full mold method, and is designed with sufficient consideration of casting conditions when creating CAD data. The purpose is to provide a cast product manufacturing system capable of performing work management in a casting zone (casting process).

下記非特許文献1(「ジャクトニュース第558号(平成15年6月20)」(社団法人 日本鋳造技術協会))は、湯口方案、注湯法等に関するデータをコンピュータに入力し市販のコンピュータソフトウェアを用いて有限要素法等により鋳物の湯流れ、凝固、変形シミュレーションを行い、湯流れの状況、引け巣の発生の有無、鋳物凝固時の割れ・変形を観察することを教示している。   Non-Patent Document 1 ("Jacto News No. 558 (June 20, 2003)" (Japan Foundry Technology Association)) is a commercially available computer that inputs data on the pouring plan, pouring method, etc. into a computer. Teaching to observe the flow of molten metal, solidification, and deformation simulation by finite element method using software, and to observe the state of molten metal flow, the presence or absence of shrinkage cavities, and cracks / deformation during casting solidification.

但し、これらの両文献は、消失模型鋳造法を用いる鋳造シミュレーションを開示又は示唆していない。   However, both these documents do not disclose or suggest a casting simulation using the disappearance model casting method.

消失模型鋳造法における発泡製品模型用金型を再製作する必要を減少させ、あるいは、なくすことができる発泡製品模型用金型を製造する方法及び該方法を用いた鋳物鋳造法が望まれている。
特開平4−361849号公報 「ジャクトニュース第558号(平成15年6月20)」(社団法人 日本鋳造技術協会)
There is a demand for a method for producing a foam product model mold that can reduce or eliminate the need to remanufacture a mold for a foam product model in the disappearance model casting method, and a casting casting method using the method. .
JP-A-4-361849 “Jacto News No. 558 (June 20, 2003)” (Japan Foundry Technology Association)

本発明は、消失模型鋳造法により鋳造された鋳物製品が許容誤差内に収まらないといった問題、あるいは、許容誤差内に収まらずに発泡製品模型用金型を再製作する必要が生じるという問題を解決し、鋳物製品が目的寸法あるいはその許容誤差範囲内に収まるようにするための消失模型鋳造法及び該方法に用いる発泡製品模型を成形する金型を製造する方法を提供することを目的とする。   The present invention solves the problem that the cast product cast by the disappearance model casting method does not fall within the allowable error, or the problem that the mold for the foam product model needs to be remanufactured without being within the allowable error. It is another object of the present invention to provide a disappearance model casting method for making a cast product fall within a target dimension or an allowable error range thereof, and a method for manufacturing a mold for molding a foam product model used in the method.

上記目的を達成するために、本発明は、1実施態様において、発泡製品模型を用いる消失模型鋳造法により、目標寸法を有する鋳物を鋳造する方法であって、(a)前記目標寸法に相当する前記発泡製品模型の三次元寸法に関するデータと、前記発泡製品模型の材料に関するデータと、湯口方案及び注湯法に関するデータとをコンピュータに入力し消失模型鋳造法による鋳物鋳造のシミュレーションを行う工程であって、前記シミュレーションは湯流れ、湯の凝固及び該凝固による鋳物変形のシミュレーションを含む鋳物鋳造シミュレーション工程と、(b)前記鋳物鋳造シミュレーション工程における前記鋳物変形と、鋳物と発泡製品模型の関係の伸尺を考慮して発泡製品模型の最終三次元寸法を決定する工程と、(c)該最終三次元寸法の発泡製品模型を製作する工程と、(d)前記製作した発泡製品模型を用いて消失模型鋳造法により鋳物を鋳造する工程とを含む消失模型鋳造法による鋳物鋳造方法である。   In order to achieve the above object, in one embodiment, the present invention is a method of casting a casting having a target dimension by a vanishing model casting method using a foamed product model, and (a) corresponds to the target dimension. This is a process of inputting data relating to the three-dimensional dimensions of the foamed product model, data relating to the material of the foamed product model, and data relating to the pouring plan and the pouring method to a computer and simulating casting casting by the disappearance model casting method. The simulation includes a casting casting simulation process including simulation of molten metal flow, solidification of molten metal, and casting deformation caused by the solidification, and (b) the casting deformation in the casting casting simulation process, and the relationship between the casting and the foam product model. Determining the final three-dimensional dimension of the foam product model in consideration of the scale; and (c) the final three-dimensional dimension A step of fabricating a foamed product model, a (d) casting the casting method according evaporative pattern casting method comprising a step of casting the casting by evaporative pattern casting using the fabricated foamed product model.

本態様においては、発泡製品模型を発泡材料ブロックから製作することができ、それにより、発泡製品模型用金型を使用することなく、消失模型鋳造法による鋳物鋳造が可能である。   In this embodiment, the foamed product model can be manufactured from the foamed material block, thereby enabling casting by the disappearing model casting method without using a mold for the foamed product model.

本発明は、1実施態様において、目標寸法を有する鋳物を鋳造する消失模型鋳造法に用いる発泡製品模型を成形する金型を製造する方法であって、(a)前記目標寸法に相当する前記発泡製品模型の三次元寸法に関するデータと、前記発泡製品の原料に関するデータと、湯口方案及び注湯法に関するデータとをコンピュータに入力し消失模型鋳造法による鋳物鋳造のシミュレーションを行う工程であって、前記シミュレーションは湯流れ、湯の凝固及び鋳物変形のシミュレーションを含む鋳物鋳造シミュレーション工程と、(b)前記鋳物鋳造シミュレーション工程における前記鋳物変形と、鋳物と発泡製品模型の関係の伸尺を考慮して発泡製品模型の最終三次元寸法を決定する工程と、(c)該最終三次元寸法の発泡製品模型を製作する工程と、(d)前記製作した発泡製品模型を用いて消失模型鋳造法により鋳物を試作鋳造する工程と、(e)前記試作鋳造した鋳物の三次元データを測定する工程と、(f)前記測定された三次元データが前記目標寸法の許容誤差範囲内であるか否かを決定する工程と、(g)前記測定された三次元データが前記目標寸法の許容誤差範囲内であるならば、前記最終三次元寸法のデータをNC工作機のコントローラに入力し前記NC工作機によって金型基材を切削加工して前記最終三次元寸法のキャビティを備える金型を製作する工程と、(h)前記製作された金型を用いて発泡製品模型を成形する工程と、(i)前記成形された発泡製品模型を用いて消失模型鋳造法により鋳物を鋳造する工程と、(j)前記鋳造した鋳物の三次元データを測定する工程と、(k)工程(j)において測定した三次元データが目標寸法の許容誤差範囲内であるか否かを決定する工程と、(l)工程(k)において前記測定した三次元データが目標寸法の許容誤差範囲内にある場合は方法を終了し、前記許容誤差範囲内にない場合は、コントローラに入力する鋳物の三次元データを修正し、該修正した三次元データに基づき前記NC工作機により前記金型キャビティの前記最終三次元寸法を修正加工する工程と、
を含む金型製造方法である。
In one embodiment, the present invention is a method of manufacturing a mold for molding a foam product model used in a disappearance model casting method for casting a casting having a target dimension, and (a) the foam corresponding to the target dimension A step of inputting data relating to the three-dimensional dimensions of the product model, data relating to the raw material of the foamed product, and data relating to the pouring gate method and the pouring method to a computer and performing a casting casting simulation by the disappearance model casting method, The simulation includes a casting casting simulation process including simulation of molten metal flow, solidification of the molten metal and casting deformation, and (b) foaming in consideration of the deformation of the casting in the casting casting simulation process and the scale of the relationship between the casting and the foam product model. A step of determining a final three-dimensional dimension of the product model; And (d) a step of trial casting a casting by the vanishing model casting method using the produced foamed product model, (e) a step of measuring three-dimensional data of the trial casting and (f) the measurement Determining whether the measured three-dimensional data is within the tolerance range of the target dimension; and (g) if the measured three-dimensional data is within the tolerance range of the target dimension, (H) the step of inputting the data of the final three-dimensional dimension into the controller of the NC machine tool and cutting the mold base by the NC machine tool to produce a mold having the cavity of the final three-dimensional dimension; A step of molding a foam product model using the manufactured mold, (i) a step of casting a casting by a vanishing model casting method using the molded foam product model, and (j) of the cast casting Measure 3D data (K) determining whether the three-dimensional data measured in step (j) is within an allowable error range of the target dimension; and (l) the three-dimensional data measured in step (k). If it is within the tolerance range of the target dimension, the method is terminated. If it is not within the tolerance range, the three-dimensional data of the casting inputted to the controller is corrected, and the NC is based on the corrected three-dimensional data. Modifying the final three-dimensional dimension of the mold cavity with a machine tool;
A mold manufacturing method including

本金型製造方法の態様においては、何段階かにおいて、実測された三次元データが目標寸法の許容誤差範囲内であるかがチェックされるので、金型を再製作する可能性を極めて低くすることができる。   In this aspect of the mold manufacturing method, in several stages, it is checked whether the actually measured three-dimensional data is within the tolerance range of the target dimension, so the possibility of remanufacturing the mold is extremely low. be able to.

本発明は、1実施態様において、上記金型製造方法の態様において製造された金型を用いて発泡製品模型を成形する工程と、該成形された発泡製品模型を用いて消失模型鋳造法により鋳物を鋳造する工程とを含む鋳物鋳造方法である。   In one embodiment, the present invention provides a step of molding a foam product model using the mold manufactured in the above-described mold manufacturing method, and a casting by a vanishing model casting method using the molded foam product model. A casting casting method including a step of casting.

本発明の主要部であるコンピュータによる鋳造シミュレーションについて説明する。鋳造シミュレーションはコンピュータと、本発明に関して開発されたソフトウェアを用いてなされる。   A casting simulation by a computer which is a main part of the present invention will be described. The casting simulation is done using a computer and software developed in connection with the present invention.

まず、入力パラメータとして、製品鋳物の目標(設計)寸法に相当する発泡製品模型の三次元寸法に関するデータと、発泡製品模型の材料に関するデータと、湯口方案及び注湯法に関するデータとをコンピュータに入力する。これらのデータ以外のデータを必要に応じて入力することもできる。   First, as input parameters, data related to the three-dimensional dimensions of the foam product model corresponding to the target (design) dimensions of the product casting, data related to the material of the foam product model, and data related to the gate design and pouring method are input to the computer. To do. Data other than these data can be input as required.

シミュレーションは、湯流れ解析、凝固解析、変形解析の順に行われる。湯流れ解析はキャビティに溶湯が入っていく過程、キャビティに溶湯が入りきった時間、溶湯のキャビティ充填時の圧力状態及び温度分布を求めるものである。この湯流れ解析によって得られたキャビティ充填時の温度分布を使用して凝固解析を行い、次に、凝固解析によって得られた凝固時間と、凝固時の製品温度分布から熱応力による変形解析を行うものである。すなわち、湯流れはキャビティへの充填がどのようになされるのかを解析するために行われ、そのために、(1)充填時間、(2)湯流れが乱流かあるいは整流かどうか、(3)充填位置の順番の3つの因子を検討する。充填解析がなされた後、凝固に着目して熱解析を行い、そして熱解析における熱応力による変形解析がなされる。   The simulation is performed in the order of molten metal flow analysis, solidification analysis, and deformation analysis. The molten metal flow analysis is to obtain the process of the molten metal entering the cavity, the time when the molten metal has entered the cavity, the pressure state and the temperature distribution at the time of filling the molten metal into the cavity. Perform solidification analysis using the temperature distribution at the time of cavity filling obtained by this molten metal flow analysis, and then perform deformation analysis due to thermal stress from the solidification time obtained by solidification analysis and the product temperature distribution during solidification Is. That is, the hot water flow is performed to analyze how the cavities are filled, and for this purpose, (1) filling time, (2) whether the hot water flow is turbulent or rectified, (3) Consider three factors of the order of filling positions. After the filling analysis is performed, thermal analysis is performed focusing on solidification, and deformation analysis due to thermal stress in the thermal analysis is performed.

上記ソフトウェアを用いて有限要素法により最小メッシュ間隔4.5のメッシュモデルにより、以下の条件で消失模型鋳造法の鋳造シミュレーションを行った。   A casting simulation of the disappearance model casting method was performed under the following conditions using a mesh model with a minimum mesh interval of 4.5 by the finite element method using the above software.

条件
鋳造製品の形状:円筒(長さ(高さ)80mm、外径250mm、最小肉厚3.5mm)
製品材質:FCD450
結果
鋳造シミュレーションの結果は以下の通りであった。
Conditions Shape of cast product: Cylindrical (length (height) 80mm, outer diameter 250mm, minimum wall thickness 3.5mm)
Product material: FCD450
Results The results of the casting simulation were as follows.

1.湯流れ解析
溶湯が製品に入っていく過程、入りきった時間、溶湯のキャビティ充填時の圧力状態が得られた。注湯時間は7.07秒、溶湯圧(製品部)は0.07〜0.10MPaであった。
1. Analysis of molten metal flow The process of molten metal entering the product, the time that it entered, and the pressure state at the time of filling the molten metal cavity were obtained. The pouring time was 7.07 seconds, and the molten metal pressure (product part) was 0.07 to 0.10 MPa.

(注湯時間が長すぎると、キャビティに完全に湯が入りきらないといった欠陥の発生が考えられる。シミュレーションの結果を基に、溶湯が入りやすい鋳造方案を立てることも可能である。)
2.凝固解析
キャビティに湯が入りきった状態(液体状態)から湯が凝固する(固体状態になる)までの時間である凝固時間は120秒であった。
(If the pouring time is too long, there may be a defect that the hot water does not completely enter the cavity. Based on the results of the simulation, it is possible to make a casting plan in which the molten metal can easily enter.)
2. The solidification time, which is the time from when the hot water has completely entered the solidification analysis cavity (liquid state) to when the hot water solidifies (becomes solid state), was 120 seconds.

ポロシティ量0.2%以上存在する箇所が湯道部に少し見られた。 A portion where the porosity amount was 0.2% or more was slightly seen in the runway.

(製品が最後に凝固する部分には引け巣等の欠陥が発生し易すくなり、また、ポロシティが存在すると製品強度に大きな影響を及ぼすので、それらの位置をシミュレーションにより特定する。また、欠陥が発生しにくい鋳造方案を立てることも可能である。)
3.変形解析
製品外周部の変異量が最も大きく、0.021mm歪んだ。
(Defects such as shrinkage cavities are more likely to occur in the part where the product solidifies at the end, and the presence of porosity greatly affects the product strength. It is also possible to make a casting plan that does not easily occur.)
3. The amount of variation in the outer periphery of the deformation analysis product was the largest and was distorted by 0.021 mm.

製品が凝固する過程で熱応力が発生し、製品が応力によって変形するが、シミュレーションにより製品がどの程度変形するか事前に把握できれば、変形量を見越した発泡模型成形金型を製作することが可能である。 Thermal stress is generated in the process of solidifying the product, and the product is deformed by the stress, but if it is possible to know in advance how much the product will be deformed by simulation, it is possible to produce a foam model mold that anticipates the amount of deformation. It is.

変形解析後のデータはシミュレーションソフトウェアによりSTLデータ(3次元CAD中間ファイルデータ)に変換される。   The data after the deformation analysis is converted into STL data (three-dimensional CAD intermediate file data) by simulation software.

上記変異量0.021mmは許容誤差の0.015mmを超えており、このことを考慮し、この誤差を小さくする(許容誤差範囲内に入る)ことができるような発泡製品模型の寸法を考える。そういった寸法は経験的に決定可能である。あるいは、発泡製品模型の寸法を変更し、及び/又は、コンピュータに入力するその他のパラメータを変更して、上記誤差が許容誤差範囲内に入るまで再度コンピュータシミュレーションを行うこととしても良い。このように、変異量が許容誤差範囲内に入るような発泡製品模型の三次元寸法を決め、決めた発泡製品模型の三次元寸法更に鋳物と発泡製品模型の関係の縮尺を考量して発泡製品模型の最終三次元寸法を決定する。   The variation amount of 0.021 mm exceeds the allowable error of 0.015 mm. Considering this, the dimensions of the foam product model that can reduce this error (within the allowable error range) are considered. Such dimensions can be determined empirically. Alternatively, the size of the foam product model may be changed and / or other parameters input to the computer may be changed, and the computer simulation may be performed again until the error falls within the allowable error range. In this way, the three-dimensional dimension of the foam product model is determined so that the variation amount falls within the allowable error range, and the three-dimensional dimension of the determined foam product model and the scale of the relationship between the casting and the foam product model are taken into consideration. Determine the final 3D dimensions of the model.

次に、最終三次元寸法を有する発泡製品模型の製作方法について説明する。   Next, a method for producing a foamed product model having the final three-dimensional dimensions will be described.

その1つの方法として、粒状の発泡材料ビーズを密閉容器内に入れ蒸気を吹き込んで適当な発泡倍率の発泡ブロックを成形し、この発泡ブロックを加工して、最終三次元寸法を有する発泡製品模型を製作する。   As one of the methods, a foamed product model having a final three-dimensional dimension is formed by putting granular foam material beads into a sealed container and blowing steam to form a foam block having an appropriate foaming ratio, and processing the foam block. To manufacture.

他の方法として、後に説明する発泡製品模型を成形する金型を製造する方法を用いて製造した発泡製品模型成形用金型を用いて発泡製品模型を成形することもできる。   As another method, the foamed product model can be molded using a foamed product model molding die manufactured by using a method for manufacturing a mold for molding a foamed product model, which will be described later.

次に、製作した発泡製品模型を使用して消失模型鋳造法により鋳物を製造することができる。   Next, a casting can be manufactured by the vanishing model casting method using the manufactured foamed product model.

ここで、本発明に従った発泡製品模型を成形する金型を製造する方法の態様について説明する。この態様は、目標寸法を有する鋳物を鋳造する消失模型鋳造法に用いる発泡製品模型を成形する金型を製造する方法であって、
(a)前記目標寸法に相当する前記発泡製品模型の三次元寸法に関するデータと、前記発泡製品の原料に関するデータと、湯口方案及び注湯法に関するデータとをコンピュータに入力し消失模型鋳造法による鋳物鋳造のシミュレーションを行う工程であって、前記シミュレーションは湯流れ、湯の凝固及び鋳物変形のシミュレーションを含む鋳物鋳造シミュレーション工程と、
(b)前記鋳物鋳造シミュレーション工程における前記鋳物変形と、鋳物と発泡製品模型の関係の伸尺を考慮して発泡製品模型の最終三次元寸法を決定する工程と、
(c)該最終三次元寸法の発泡製品模型を製作する工程と、
(d)前記製作した発泡製品模型を用いて消失模型鋳造法により鋳物を試作鋳造する工程と、
(e)前記試作鋳造した鋳物の三次元データを測定する工程と、
(f)前記測定された三次元データが前記目標寸法の許容誤差範囲内であるか否かを決定する工程と、
(g)前記測定された三次元データが前記目標寸法の許容誤差範囲内であるならば、前記最終三次元寸法のデータをNC工作機のコントローラに入力し前記NC工作機によって金型基材を切削加工して前記最終三次元寸法のキャビティを備える金型を製作する工程と、
(h)前記製作された金型を用いて発泡製品模型を成形する工程と、
(i)前記成形された発泡製品模型を用いて消失模型鋳造法により鋳物を鋳造する工程と、
(j)前記鋳造した鋳物の三次元データを測定する工程と、
(k)工程(j)において測定した三次元データが目標寸法の許容誤差範囲内であるか否かを決定する工程と、
(l)工程(k)において前記測定した三次元データが目標寸法の許容誤差範囲内にある場合は方法を終了し、前記許容誤差範囲内にない場合は、コントローラに入力する鋳物の三次元データを修正し、該修正した三次元データに基づき前記NC工作機により前記金型キャビティの前記最終三次元寸法を修正加工する工程と、
を含む金型製造方法である。
Here, the aspect of the method of manufacturing the metal mold | die which shape | molds the foamed product model according to this invention is demonstrated. This aspect is a method of manufacturing a mold for molding a foam product model used in a disappearance model casting method for casting a casting having a target dimension.
(A) Casting by the disappearance model casting method by inputting data relating to the three-dimensional dimensions of the foamed product model corresponding to the target size, data relating to the raw material of the foamed product, and data relating to the pouring plan and pouring methods to a computer. A casting simulation process, the simulation including a casting casting simulation process including simulation of molten metal flow, solidification of molten metal and casting deformation;
(B) determining the final three-dimensional dimensions of the foam product model in consideration of the casting deformation in the casting casting simulation process and the extension of the relationship between the casting and the foam product model;
(C) producing a foam product model of the final three-dimensional dimension;
(D) a step of trial casting a casting by a vanishing model casting method using the produced foamed product model;
(E) a step of measuring three-dimensional data of the prototype cast product,
(F) determining whether the measured three-dimensional data is within an allowable error range of the target dimension;
(G) If the measured three-dimensional data is within an allowable error range of the target dimension, the final three-dimensional data is input to the controller of the NC machine tool, and the mold base is moved by the NC machine tool. Cutting to produce a mold with the final three-dimensional cavity;
(H) forming a foamed product model using the manufactured mold;
(I) a step of casting a casting by a vanishing model casting method using the molded foam product model;
(J) measuring three-dimensional data of the cast casting;
(K) determining whether the three-dimensional data measured in step (j) is within an allowable error range of the target dimension;
(L) If the measured three-dimensional data in step (k) is within the allowable error range of the target dimension, the method is terminated. If not, the three-dimensional data of the casting is input to the controller. And correcting the final three-dimensional dimension of the mold cavity by the NC machine tool based on the corrected three-dimensional data;
A mold manufacturing method including

上記工程(a)及び(b)については、最初の実施の形態と同じであるので説明を省略する。   Since the steps (a) and (b) are the same as those in the first embodiment, description thereof is omitted.

上記工程(c)は、最初の実施の形態において説明したように発泡ブロックを加工して製作する。工程(c)の後に工程(d)(製作した発泡製品模型を用いて消失模型鋳造法により鋳物を試作鋳造)へ進み、更に工程(e)(試作鋳造した鋳物の三次元データを測定)へ進む。   In the step (c), the foam block is processed and manufactured as described in the first embodiment. After step (c), proceed to step (d) (prototype casting by vanishing model casting using the produced foamed product model), and further to step (e) (measure the three-dimensional data of the prototype cast) move on.

上記工程(e)において、鋳物の三次元データを三次元測定器により測定する。三次元測定器により測定した三次元データを前記変異量に関するSTLデータと参考のために比較することができる。工程(e)の後に工程(f)(測定された三次元データが前記目標寸法の許容誤差範囲内であるか否かを決定)に進み、さらに(g)へと進む。   In the step (e), the three-dimensional data of the casting is measured with a three-dimensional measuring device. The three-dimensional data measured by the three-dimensional measuring device can be compared with the STL data regarding the amount of mutation for reference. After step (e), the process proceeds to step (f) (determines whether the measured three-dimensional data is within the allowable error range of the target dimension), and then proceeds to (g).

工程(g)において、測定した三次元データが目標寸法の許容誤差範囲内にない場合は、何らかの欠陥があると思われ、その欠陥を調査し修正して、再度湯流れ、凝固及び変形のシミュレーションを行う。即ち、工程(a)に戻る。   In the step (g), if the measured three-dimensional data is not within the tolerance range of the target dimension, it is assumed that there is some defect. I do. That is, the process returns to step (a).

工程(j)において、鋳物の三次元データを三次元測定器により測定する。次に工程(k)に進む。ここでは、工程(j)において測定された三次元データが目標寸法の許容誤差範囲内であるか否かが決定される。   In step (j), the three-dimensional data of the casting is measured with a three-dimensional measuring device. Next, the process proceeds to step (k). Here, it is determined whether or not the three-dimensional data measured in the step (j) is within the allowable error range of the target dimension.

工程(k)において、測定した三次元データが目標寸法の許容誤差範囲内にある場合は、方法を終了する。一方、測定した三次元データが目標寸法の許容誤差範囲内にない場合は、方法は、工程(l)に進み、ここでは、コントローラに入力する鋳物の三次元データを修正し、該修正した三次元データに基づき前記NC工作機により前記金型キャビティの前記最終三次元寸法を修正加工して金型の最終加工を終えることになる。   In step (k), if the measured three-dimensional data is within the allowable error range of the target dimension, the method is terminated. On the other hand, if the measured three-dimensional data is not within the tolerance range of the target dimension, the method proceeds to step (l), where the three-dimensional data of the casting input to the controller is corrected, and the corrected tertiary Based on the original data, the NC machine tool corrects the final three-dimensional dimension of the mold cavity to finish the final process of the mold.

上で説明した、最終加工を終えた金型を用いて発泡製品模型を成形することができ、その成形された発泡製品模型を消失模型鋳造法に使用して鋳物を鋳造することができる。   The foamed product model can be molded using the mold described above, which has been finished, and the cast product can be cast using the molded foamed product model in the disappearance model casting method.

Claims (3)

発泡製品模型を用いる消失模型鋳造法により、目標寸法を有する鋳物を鋳造する方法であって、
(a)前記目標寸法に相当する前記発泡製品模型の三次元寸法に関するデータと、前記発泡製品模型の材料に関するデータと、湯口方案及び注湯法に関するデータとをコンピュータに入力し消失模型鋳造法による鋳物鋳造のシミュレーションを行う工程であって、前記シミュレーションは湯流れ、湯の凝固及び該凝固による鋳物変形のシミュレーションを含む鋳物鋳造シミュレーション工程と、
(b)前記鋳物鋳造シミュレーション工程における前記鋳物変形と、鋳物と発泡製品模型の関係の伸尺を考慮して発泡製品模型の最終三次元寸法を決定する工程と、
(c)該最終三次元寸法の発泡製品模型を製作する工程と、
(d)前記製作した発泡製品模型を用いて消失模型鋳造法により鋳物を鋳造する工程と、
を含む消失模型鋳造法による鋳物鋳造方法。
A method of casting a casting having a target dimension by a vanishing model casting method using a foam product model,
(A) Data relating to the three-dimensional dimensions of the foamed product model corresponding to the target dimensions, data relating to the material of the foamed product model, and data relating to the pouring gate method and the pouring method are input to a computer, and the disappearance model casting method is used. A casting casting simulation process including a simulation of casting flow, solidification of molten metal and casting deformation due to the solidification;
(B) determining the final three-dimensional dimensions of the foam product model in consideration of the casting deformation in the casting casting simulation process and the extension of the relationship between the casting and the foam product model;
(C) producing a foam product model of the final three-dimensional dimension;
(D) a step of casting a casting by a vanishing model casting method using the produced foamed product model;
Casting method by vanishing model casting method including
目標寸法を有する鋳物を鋳造する消失模型鋳造法に用いる発泡製品模型を成形する金型を製造する方法であって、
(a)前記目標寸法に相当する前記発泡製品模型の三次元寸法に関するデータと、前記発泡製品の原料に関するデータと、湯口方案及び注湯法に関するデータとをコンピュータに入力し消失模型鋳造法による鋳物鋳造のシミュレーションを行う工程であって、前記シミュレーションは湯流れ、湯の凝固及び鋳物変形のシミュレーションを含む鋳物鋳造シミュレーション工程と、
(b)前記鋳物鋳造シミュレーション工程における前記鋳物変形と、鋳物と発泡製品模型の関係の伸尺を考慮して発泡製品模型の最終三次元寸法を決定する工程と、
(c)該最終三次元寸法の発泡製品模型を製作する工程と、
(d)前記製作した発泡製品模型を用いて消失模型鋳造法により鋳物を試作鋳造する工程と、
(e)前記試作鋳造した鋳物の三次元データを測定する工程と、
(f)前記測定された三次元データが前記目標寸法の許容誤差範囲内であるか否かを決定する工程と、
(g)前記測定された三次元データが前記目標寸法の許容誤差範囲内であるならば、前記最終三次元寸法のデータをNC工作機のコントローラに入力し前記NC工作機によって金型基材を切削加工して前記最終三次元寸法のキャビティを備える金型を製作する工程と、
(h)前記製作された金型を用いて発泡製品模型を成形する工程と、
(i)前記成形された発泡製品模型を用いて消失模型鋳造法により鋳物を鋳造する工程と、
(j)前記鋳造した鋳物の三次元データを測定する工程と、
(k)工程(j)において測定した三次元データが目標寸法の許容誤差範囲内であるか否かを決定する工程と、
(l)工程(k)において前記測定した三次元データが目標寸法の許容誤差範囲内にある場合は方法を終了し、前記許容誤差範囲内にない場合は、コントローラに入力する鋳物の三次元データを修正し、該修正した三次元データに基づき前記NC工作機により前記金型キャビティの前記最終三次元寸法を修正加工する工程と、
を含む金型製造方法。
A method for producing a mold for molding a foam product model used in a disappearance model casting method for casting a casting having a target dimension,
(A) Casting by the disappearance model casting method by inputting data relating to the three-dimensional dimensions of the foamed product model corresponding to the target size, data relating to the raw material of the foamed product, and data relating to the pouring plan and pouring methods to a computer. A casting simulation process, the simulation including a casting casting simulation process including simulation of molten metal flow, solidification of molten metal and casting deformation;
(B) determining the final three-dimensional dimensions of the foam product model in consideration of the casting deformation in the casting casting simulation process and the extension of the relationship between the casting and the foam product model;
(C) producing a foam product model of the final three-dimensional dimension;
(D) a step of trial casting a casting by a vanishing model casting method using the produced foamed product model;
(E) a step of measuring three-dimensional data of the prototype cast product,
(F) determining whether the measured three-dimensional data is within an allowable error range of the target dimension;
(G) If the measured three-dimensional data is within an allowable error range of the target dimension, the final three-dimensional data is input to the controller of the NC machine tool, and the mold base is moved by the NC machine tool. Cutting to produce a mold with the final three-dimensional cavity;
(H) forming a foamed product model using the manufactured mold;
(I) a step of casting a casting by a vanishing model casting method using the molded foam product model;
(J) measuring three-dimensional data of the cast casting;
(K) determining whether the three-dimensional data measured in step (j) is within an allowable error range of the target dimension;
(L) If the measured three-dimensional data in step (k) is within the allowable error range of the target dimension, the method is terminated. If not, the three-dimensional data of the casting is input to the controller. And correcting the final three-dimensional dimension of the mold cavity by the NC machine tool based on the corrected three-dimensional data;
A mold manufacturing method including:
請求項2の方法により製造された金型を用いて発泡製品模型を成形する工程と、
前記成形された発泡製品模型を用いて消失模型鋳造法により鋳物を鋳造する工程と、
を含む鋳物鋳造方法。
Forming a foam product model using a mold produced by the method of claim 2;
Casting the casting by vanishing model casting using the molded foam product model;
A casting method comprising:
JP2005247371A 2005-08-29 2005-08-29 Method for casting cast product by evaporative pattern casting method, and method for manufacturing metallic mold for forming foamed product pattern Pending JP2007061826A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005247371A JP2007061826A (en) 2005-08-29 2005-08-29 Method for casting cast product by evaporative pattern casting method, and method for manufacturing metallic mold for forming foamed product pattern
PCT/JP2006/316234 WO2007026552A1 (en) 2005-08-29 2006-08-18 Casting method by sublimation pattern casting method and production method of metal mold for molding foamed product pattern

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005247371A JP2007061826A (en) 2005-08-29 2005-08-29 Method for casting cast product by evaporative pattern casting method, and method for manufacturing metallic mold for forming foamed product pattern

Publications (1)

Publication Number Publication Date
JP2007061826A true JP2007061826A (en) 2007-03-15

Family

ID=37808651

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005247371A Pending JP2007061826A (en) 2005-08-29 2005-08-29 Method for casting cast product by evaporative pattern casting method, and method for manufacturing metallic mold for forming foamed product pattern

Country Status (2)

Country Link
JP (1) JP2007061826A (en)
WO (1) WO2007026552A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012531311A (en) * 2009-07-03 2012-12-10 マグマ ギエッセレイテクノロジ ゲーエムベーハー Process simulation method and apparatus, and computer readable medium containing computer program code for performing the method

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103801654A (en) * 2012-11-06 2014-05-21 北汽福田汽车股份有限公司 Method used for manufacturing die foam full model
CN105069246A (en) * 2015-08-21 2015-11-18 广东富华铸锻有限公司 Method for rapidly improving primary development success rate of production line castings
EP3760341B1 (en) * 2019-07-05 2024-04-03 RTX Corporation Commercial scale casting process including optimization via multi-fidelity optimization
CN116638061B (en) * 2023-06-14 2023-11-21 广州市型腔模具制造有限公司 Die casting size deformation control method for new energy automobile

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0318450A (en) * 1989-06-15 1991-01-28 Honda Motor Co Ltd Manufacture of ceramic mold
JPH0327842A (en) * 1989-06-21 1991-02-06 Hitachi Metals Ltd Method for making casting plan in lost foam pattern casting
JPH0489154A (en) * 1990-07-31 1992-03-23 Nippon Piston Ring Co Ltd Method for forming lost foam pattern for hollow cam shaft
JPH08257683A (en) * 1995-03-22 1996-10-08 Ahresty Corp Manufacture of metallic mold for casting and forming
JPH10328781A (en) * 1997-06-04 1998-12-15 Sakurai Bijutsu Chuzo:Kk Precision casting method and trial manufacture of metallic product
JP2002373187A (en) * 2001-03-23 2002-12-26 Honda Motor Co Ltd Product designing device by computer support

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0318450A (en) * 1989-06-15 1991-01-28 Honda Motor Co Ltd Manufacture of ceramic mold
JPH0327842A (en) * 1989-06-21 1991-02-06 Hitachi Metals Ltd Method for making casting plan in lost foam pattern casting
JPH0489154A (en) * 1990-07-31 1992-03-23 Nippon Piston Ring Co Ltd Method for forming lost foam pattern for hollow cam shaft
JPH08257683A (en) * 1995-03-22 1996-10-08 Ahresty Corp Manufacture of metallic mold for casting and forming
JPH10328781A (en) * 1997-06-04 1998-12-15 Sakurai Bijutsu Chuzo:Kk Precision casting method and trial manufacture of metallic product
JP2002373187A (en) * 2001-03-23 2002-12-26 Honda Motor Co Ltd Product designing device by computer support

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012531311A (en) * 2009-07-03 2012-12-10 マグマ ギエッセレイテクノロジ ゲーエムベーハー Process simulation method and apparatus, and computer readable medium containing computer program code for performing the method

Also Published As

Publication number Publication date
WO2007026552A1 (en) 2007-03-08

Similar Documents

Publication Publication Date Title
Hodbe et al. Design and simulation of LM 25 sand casting for defect minimization
KR101663084B1 (en) Faucet manufacturing method
JP2007061826A (en) Method for casting cast product by evaporative pattern casting method, and method for manufacturing metallic mold for forming foamed product pattern
CN103433442A (en) Method for determining continuous casting crystallizer inner cavity taper
Rodríguez-González et al. Comparative study of aluminum alloy casting obtained by sand casting method and additive manufacturing technology
JP2010052019A (en) Simulation method for sand mold casting
JP4582067B2 (en) Shape prediction apparatus, shape prediction method, and computer program therefor
Kumar et al. A framework for developing a hybrid investment casting process
Nyembwe et al. Assessment of surface finish and dimensional accuracy of tools manufactured by metal casting in rapid prototyping sand moulds: general article
Hebsur et al. Casting simulation for sand casting of Flywheel
JP2007054841A (en) Method for manufacturing die for forming foam product model to be used in disposable model casting process
Panchal et al. Design and analysis of gating and Risering system for casting of ball valves
Lin et al. Improved contact lens injection molding production by 3D printed conformal cooling channels
Peters et al. Effect of mould expansion on pattern allowances in sand casting of steel
JP2004174512A (en) Casting method
Hock et al. Experimental studies on the accuracy of wax patterns used in investment casting
GORSKI et al. APPLICATION OF POLYSTYRENE PROTOTYPES MANUFACTURED BY FDM TECHNOLOGY FOR EVAPORATIVE CASTING METHOD.
Kamble et al. Optimized Design of Risering System for Casted Component by Using Web Based Online Simulation E-Tool
Tho et al. Application of topology optimization technique in sand casting process of a complex product based on FDM 3D printing technology
Richard The Relationship Between Lattice Structure Topology and Rapid Investment Casting Performance
Prajapati et al. Defect analysis of hand wheel casting using computer aided casting simulation
Atwood et al. Rapid prototyping: A paradigm shift in investment casting
Liu Optimized design of gating/riser system in casting based on CAD and simulation technology
Anggono et al. Casting design, simulation and manufacturing validation of air compressor fan blade
Natarajan et al. Analysis and Reduction of Casting Defects in Handwheel through Numerical Simulation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091201

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100406