JPH03277683A - Precision polishing composition - Google Patents

Precision polishing composition

Info

Publication number
JPH03277683A
JPH03277683A JP2079940A JP7994090A JPH03277683A JP H03277683 A JPH03277683 A JP H03277683A JP 2079940 A JP2079940 A JP 2079940A JP 7994090 A JP7994090 A JP 7994090A JP H03277683 A JPH03277683 A JP H03277683A
Authority
JP
Japan
Prior art keywords
polishing
alumina
polishing composition
composition
precision polishing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2079940A
Other languages
Japanese (ja)
Inventor
Hiroshi Umezaki
梅崎 博
Yoshiaki Takeuchi
美明 竹内
Koji Yamamoto
浩二 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2079940A priority Critical patent/JPH03277683A/en
Publication of JPH03277683A publication Critical patent/JPH03277683A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

PURPOSE:To obtain an aqueous polishing composition containing alumina, which gives a polished surface having low surface roughness and freed from surface defects at high polishing efficiency by incorporating an alumina powder having specified physical properties into an aqueous medium. CONSTITUTION:Alumina (preferably one obtained by calcining a hydrated alumina produced through the hydrolysis of an organoaluminum compound) having a mean primary particle diameter of 0.35mum or smaller, an alpha-phase content of 95% or higher and a rectangular shape is incorporated into an aqueous medium to give a precision polishing composition. This composition can realize the precision polishing of a magnetic disc base plate, a semiconductor substrate, metal, and ceramic material with low surface roughness and very few surface defects by merely using it between a work piece and a polishing pad in sliding contact with the surface thereof as in the conventional polishing.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、研磨用組成物に関する。更に詳細には、磁気
ディスク基板、StやGaAs等の半導体基板、薄M磁
気ヘッド基板、単結晶材料、金属、セラミツ゛クスガラ
ス、合成樹脂材料等の精密研磨に用いられる研磨用組成
物に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a polishing composition. More specifically, the present invention relates to a polishing composition used for precision polishing of magnetic disk substrates, semiconductor substrates such as St and GaAs, thin M magnetic head substrates, single crystal materials, metals, ceramic glasses, synthetic resin materials, and the like.

〈従来の技術) 現在、精密研磨、鏡面研磨が行なわれる材料は光学、エ
レクトロニクス、オプトエレクトロニクス等の産業の進
展に伴ない非常に多彩となり、半導体基板、酸化物単結
晶、ガラス、金属、合成樹脂等、その種類は多岐にわた
っている。
<Conventional technology> Currently, the materials that are subjected to precision polishing and mirror polishing have become extremely diverse due to the progress of industries such as optics, electronics, and optoelectronics, and include semiconductor substrates, oxide single crystals, glass, metals, and synthetic resins. There are a wide variety of types.

そして加工精度の要求も厳しくなり、ナノメーターオー
ダーの表面粗さや無歪の鏡面が要求される一方で、加工
能率や生産性、すなわち研磨速度の向上も求められてい
る。
Requirements for processing accuracy have also become stricter, requiring nanometer-order surface roughness and distortion-free mirror surfaces, while also requiring improvements in processing efficiency and productivity, that is, polishing speed.

遊離砥粒を用いるラッピング及びボリシング加工は、精
度の得られる加工法として古くから行なわれており、ア
ルミナ、シリカ、酸化セリウム、酸化ジルコニウム、酸
化鉄、酸化クロム、炭化ケイ素、ダイヤモンド等が砥粒
として用いられてきた。
Lapping and boring using free abrasive grains have been used for a long time as a processing method that provides precision, and alumina, silica, cerium oxide, zirconium oxide, iron oxide, chromium oxide, silicon carbide, diamond, etc. are used as abrasive grains. has been used.

なかでもアルミナは、硬度が高く優れた研磨能を有し、
また入手しやすい材料であることから、溶融アルミナ、
仮焼アルミナともに広く研磨材用砥粒として使用されて
きた。
Among them, alumina has high hardness and excellent polishing ability.
Also, since it is an easily available material, fused alumina,
Both calcined alumina and alumina have been widely used as abrasive grains for abrasive materials.

従来精密仕上げを目的とする研磨には、平均1次粒子径
が約111m以下のアルミナ粉末が用いられてきた。
Conventionally, alumina powder with an average primary particle diameter of about 111 m or less has been used for polishing for precision finishing.

しかしながら、これらアルミナ粉末は実質的には所望す
るよりも大きな凝集粒、粗大粒の混在が見られ、研磨面
にピットや深いスクラッチ等の表面欠陥を発生せしめる
との不都合があった。
However, these alumina powders are disadvantageous in that they contain a mixture of agglomerated grains and coarse grains that are substantially larger than desired, resulting in surface defects such as pits and deep scratches on the polished surface.

かかる不都合を改善するために、平均1次粒子径の小さ
な(一般に0.5μm以下)アルミナ粉末を用いて研磨
を行なうことが考えられるが、通常アルミナの粒径が小
さくなると、研磨力が下がり研磨に長時間を要する。
In order to improve this inconvenience, it may be possible to perform polishing using alumina powder with a small average primary particle size (generally 0.5 μm or less), but normally, as the alumina particle size becomes smaller, the polishing power decreases and the polishing becomes more difficult. It takes a long time.

また荒研磨の後、微粒子径アルミナを用いて仕上げ研磨
を行なうという二段階研磨も知られてはいるが、工程上
作業能率が低下するという不都合があった。
Furthermore, two-stage polishing in which rough polishing is followed by final polishing using alumina having a fine particle size is also known, but this method has the disadvantage of reducing work efficiency in the process.

かかる研磨面の仕上げ性の改良、研磨能率の向上の観点
から加工対象物に応じて、研摩促進剤を配合するとの発
明が提案されている。
From the viewpoint of improving the finish of the polished surface and improving the polishing efficiency, an invention has been proposed in which a polishing accelerator is added depending on the object to be processed.

例えば、特公昭53−3518号公報には硝酸アルミニ
ウム等の酸化性研磨促進剤を用いたプラスチック製品の
研磨用組成物、特公昭64−436号公轢には、硫酸ニ
ッケルを研磨促進剤に用いた中性ないし弱酸性の、プラ
スチック製品やメモリーハードデ、イスク用の研磨用組
成物、特開昭62−236669号公報には、硫酸、硝
酸、リン酸等の酸または酸性塩を添加した磁気ディスク
用サブストレート用の研磨剤、特開平1−121163
号公報には、トリエタノールアミンカルボン酸塩と、ト
リエタノールアミン塩酸塩の研磨促進剤からなる弱アル
カリ性のアルミ磁気ディスク研磨用組成物等が開示され
ている。
For example, Japanese Patent Publication No. 53-3518 discloses a composition for polishing plastic products using an oxidizing polishing accelerator such as aluminum nitrate, and Japanese Patent Publication No. 64-436 discloses a polishing composition using nickel sulfate as a polishing accelerator. JP-A-62-236669 discloses a neutral to weakly acidic polishing composition for plastic products, memory hard disks, and disks, and a polishing composition for magnetic disks to which acids or acid salts such as sulfuric acid, nitric acid, and phosphoric acid are added. Polishing agent for substrates, JP-A-1-121163
The publication discloses a weakly alkaline aluminum magnetic disk polishing composition comprising a triethanolamine carboxylate salt and a triethanolamine hydrochloride polishing accelerator.

しかしこれらの研磨促進剤は、限定された研磨対象物に
対してしか有効に作用せず、またそれぞれ酸性またはア
ルカリ性の促進剤であるため、研摩機や治具、また作業
者の手等を害したり、さらには廃水処理上の不都合をも
少なからず有しており、研磨材粉末自体の改善により研
磨面仕上げ性及び、研磨能率の向上が望まれていた。
However, these polishing accelerators only work effectively on a limited number of objects to be polished, and because they are acidic or alkaline accelerators, they can harm polishing machines, jigs, and workers' hands. Moreover, it also has some disadvantages in terms of wastewater treatment, and it has been desired to improve the polishing surface finish and polishing efficiency by improving the abrasive powder itself.

〈発明が解決しようとする課題) かかる事情に鑑み、本発明者等は研磨能率が高く、かつ
面粗度が小さく、表面欠陥のない、研磨面が得られるア
ルミナ含有、水性研摩組成物を得るべく鋭意検討した結
果、特定の物性を有するアルミナ粉末を使用した場合に
は、前記目的を全て満足した研磨組成物が得られること
を見出し、本発明を完成するに至った。
(Problems to be Solved by the Invention) In view of the above circumstances, the present inventors have obtained an alumina-containing aqueous polishing composition that has high polishing efficiency, has low surface roughness, and can provide a polished surface free of surface defects. As a result of extensive research, the inventors have discovered that a polishing composition that satisfies all of the above objectives can be obtained when alumina powder having specific physical properties is used, leading to the completion of the present invention.

く課題を解決するための手段) すなわち、本発明は、平均1次粒子径が0.35μm以
下、α相含有率が95%以上で、形状が角状であるアル
ミナを水性媒体中に含有してなる精密研磨用組成物を徒
供するにある。
In other words, the present invention contains alumina having an average primary particle diameter of 0.35 μm or less, an α phase content of 95% or more, and an angular shape in an aqueous medium. We are currently developing a precision polishing composition.

以下、本発明を更に詳細に説明する。The present invention will be explained in more detail below.

本発明において用いられるアルミナは、平均1次粒子径
が約0.35μm以下、α相含有率が約95%以上であ
り、形状が角状であるアルミナである。
The alumina used in the present invention has an average primary particle diameter of about 0.35 μm or less, an α phase content of about 95% or more, and is angular in shape.

アルミナ粉末の平均1次粒子径は、約0.35μm以下
が必須であり、好ましくは約0.05μm〜約0.30
μmである。
The average primary particle diameter of the alumina powder is essentially about 0.35 μm or less, preferably about 0.05 μm to about 0.30 μm.
It is μm.

平均1次粒子径が約0.35μmより太き(なると、研
磨面にマイクロスクラッチが発生しやすくなり、面粗度
が大きくなる。
If the average primary particle diameter is larger than about 0.35 μm, microscratches are likely to occur on the polished surface and the surface roughness increases.

また、粒子径があまり小さいと、水性媒体中での分散が
困難で、分散不十分となり、凝集粒子により、やはりマ
イクロスクラッチやオレンジピールが発生しやすくなる
Furthermore, if the particle size is too small, dispersion in an aqueous medium is difficult and insufficient, and microscratches and orange peels are likely to occur due to aggregated particles.

また、本発明において用いられるアルミナ粉末のα相含
有率は約95%以上が必須である。
Further, it is essential that the α phase content of the alumina powder used in the present invention is about 95% or more.

アルミナの結晶形には、硬度の高いα相の他に、一般に
表面積が大きく微粒子であるσ、δ、θ、p1χ、に相
等のいわゆる中間アルミナが存在する。
In the crystal form of alumina, in addition to the α phase, which has high hardness, there are generally so-called intermediate alumina phases such as σ, δ, θ, and p1χ phases, which are fine particles with a large surface area.

硬度の高いαアルミナの含有率が約95%より小さいと
、研磨速度が小さくなったり、また、微粒子である中間
アルミナは水性媒体中での分散が不良であるため、凝集
をおこしやすくオレンジビールを発生しやすくするとの
不都合を生じる。
If the content of α-alumina, which has high hardness, is less than about 95%, the polishing speed will be low, and intermediate alumina, which is a fine particle, has poor dispersion in an aqueous medium, so it tends to agglomerate, making it difficult to drink orange beer. This causes the inconvenience of making it more likely to occur.

本発明において用いられるアルミナ粉末の形状は、角状
であることが必須である。
It is essential that the alumina powder used in the present invention has an angular shape.

角状であることの定義は定置的でないが、透過電子WA
徽鏡等において粒子形状を観察した場合、粒子のエツジ
部分が明らかに角状に観察される状態を指すものである
The definition of angular is not fixed, but the transmission electron WA
This refers to a state in which when the particle shape is observed using a mirror or the like, the edge portion of the particle is clearly observed to be angular.

形状が角状であることにより、平均1次粒子径が0,3
5μm以下という微粒子でありながら、高い研磨力を有
することが可能になる。
Due to the angular shape, the average primary particle diameter is 0.3
It becomes possible to have high polishing power even though the particle size is 5 μm or less.

かかるアルミナは、アルミナ水和物や中間アルミナの仮
焼や、アルミニウム含有化合物の熱分解、あるいは水熱
合成等の公知の方法によって得ることができるが、特に
有機アルミニウムの加水分解によって得られたアルミナ
水和物を約り150℃〜約1300℃の均一な温度条件
下で仮焼したものが好適に使用される。
Such alumina can be obtained by known methods such as calcination of alumina hydrate or intermediate alumina, thermal decomposition of aluminum-containing compounds, or hydrothermal synthesis, but in particular alumina obtained by hydrolysis of organic aluminum A hydrate calcined under uniform temperature conditions of about 150°C to about 1300°C is preferably used.

本発明による研磨用組成物は、水、好ましくは純水に、
かかるアルミナを約2〜約30重量%分散、懸濁させた
スラリーであり、p H7〜10の中性または弱アルカ
リ性のスラリーである。
The polishing composition according to the present invention is prepared by adding water, preferably pure water, to
It is a slurry in which about 2 to about 30% by weight of such alumina is dispersed and suspended, and is a neutral or weakly alkaline slurry with a pH of 7 to 10.

研磨対象により、必要に応じてメカノケミカル研磨を促
進する研磨促進剤や、pH調節剤を添加することもでき
る。
Depending on the object to be polished, a polishing accelerator for accelerating mechanochemical polishing or a pH adjuster may be added as necessary.

〈発明の効果〉 以上詳述した本発明の研磨用組成物は、従来の研磨用組
成物を用いる場合と同様に、工作物とその表面を摺動す
る研磨バットの間に、本発明の研磨用組成物を用いるの
みで、面粗度が小さく、表面欠陥の極めて少ない磁気デ
ィスク基板、半導体基板、金属セラミック材料等の精密
研磨を可能ならしめたものでその工業的価偵は頗る大で
ある。
<Effects of the Invention> The polishing composition of the present invention described in detail above is similar to the case where conventional polishing compositions are used. It is possible to perform precision polishing of magnetic disk substrates, semiconductor substrates, metal ceramic materials, etc. with low surface roughness and extremely few surface defects simply by using a chemical composition, and its industrial value is extremely high. .

〈実施例) 以下に、本発明を実施例を用いて更に具体的に説明する
が、本発明はこの実施例に限定されるものではない。
<Examples> The present invention will be described in more detail below using Examples, but the present invention is not limited to these Examples.

尚、本発明において、分析は以下の方法によった。Incidentally, in the present invention, the analysis was performed according to the following method.

平均1次粒子径:アルミナ粉末の走査型電子!J微鏡写
真より粒径(長径 α相含有率 形状 表面粗さ 表面観察 と短径の平均)を読み、累 積度数分右図を作成、これ より中心粒径を求め、平均 1次粒子径とした。
Average primary particle size: scanning electron of alumina powder! Read the particle size (major axis α phase content, shape, surface roughness, surface observation, and average of short axis) from the J microphotograph, create the diagram on the right for the cumulative frequency, calculate the central particle size from this, and calculate the average primary particle size and did.

:α−A l * Oxのアルミナの 粉末X&?!回折測定により( 116)面回折線の積分強 度をあらかじめα−アルミ ナ含有量の規定されたθ /α−混合アルミナの回折 線の積分強度により、規格 化することにより求めた。: α-A l * Ox alumina Powder X&? ! By diffraction measurement ( 116) Integral strength of surface diffraction line α-Aluminum Specified θ of Na content /α-Diffraction of mixed alumina By the integrated intensity of the line, the standard It was calculated by .

:アルミナ粉末の透過型電子 顕微鏡写真(4万倍、10 万倍)により観察した。: Transmission electron of alumina powder Micrograph (40,000x, 10 Observation was made with a magnification of 10,000 times.

:小板研究所製 サーフコー ダー ET−30HKによ り、非接触式触針HIPO SSを用いて測定した。:Surfco made by Koita Research Institute By ET-30HK Non-contact stylus HIPO Measured using SS.

:研磨面を、微分干渉顕微鏡 によりマイクロスクラッチ、 オレンジピール、ピント、 モジュールの有無を観察( 100倍、400倍)した。: Polished surface, differential interference microscope Due to micro scratches, orange peel, pinto, Observe the presence or absence of the module ( 100 times, 400 times).

研磨速度   ;研磨前、研磨後の工作物の厚みをマイ
クロメーターに より測定し、研磨量を研磨 時間で除して研磨速度を求 めた。
Polishing rate: The thickness of the workpiece before and after polishing was measured using a micrometer, and the polishing rate was determined by dividing the amount of polishing by the polishing time.

目視観察   :研磨面を目視観察し、鏡面が生成して
いるがどうが判 定した。
Visual observation: The polished surface was visually observed and it was determined whether a mirror surface was formed or not.

実施例1 工作物として、外径3.5インチ、N1−P層の膜厚1
7μm、研磨前の表面粗さRaO,01#m、 RII
AI 0.08 pmの無電解Ni −Pメツキを施し
たアルミ磁気ディスク基板を、4ウ工イ式の両面ボリン
シングマシン(定盤径 640φ)を使用し、研磨パッ
ドには、スウエドタイプのパッド(ポリテックス)を用
い、下定盤回転数4Qrpm、加工圧カニ80g/cm
、スラリー供給量80m1/分の条件で10分間研磨し
た。
Example 1 The workpiece has an outer diameter of 3.5 inches and an N1-P layer thickness of 1.
7μm, surface roughness before polishing RaO, 01#m, RII
An aluminum magnetic disk substrate plated with electroless Ni-P with an AI of 0.08 pm was polished using a 4-way type double-sided boring machine (surface plate diameter 640φ), and a suede-type polishing pad ( Polytex), lower surface plate rotation speed 4Qrpm, processing pressure 80g/cm
Polishing was performed for 10 minutes at a slurry supply rate of 80 ml/min.

研磨材スラリーは、アルミナ研磨材として有機アルミニ
ウムの加水分解法により得た水酸化アルミニウムを焼成
して得た平均1次粒子径0゜25μm、α相含有率10
0%の角状アルミナ5重量部を、純水95重量部に懸濁
したものを用いた。
The abrasive slurry is an alumina abrasive obtained by firing aluminum hydroxide obtained by a hydrolysis method of organic aluminum, with an average primary particle diameter of 0°25 μm and an α phase content of 10.
A suspension of 5 parts by weight of 0% angular alumina in 95 parts by weight of pure water was used.

研磨後、研磨速度、研磨面の長面粗さ、マイクロスクラ
ッチ、オレンジビールの有無について調べた。
After polishing, the polishing speed, long surface roughness of the polished surface, microscratches, and the presence or absence of orange beer were examined.

その結果を第1表に示す。The results are shown in Table 1.

実施例2、比較例1−3 実施例1の方法において、アルミナ粉末を第1表に示す
物性のアルミナ粉末に代えた他は、実施例1と同様に、
無電解N1−Pメツキを施したアルミディスク基板の研
磨を行なった。
Example 2, Comparative Examples 1-3 Same as Example 1 except that the alumina powder was replaced with alumina powder having the physical properties shown in Table 1 in the method of Example 1.
An aluminum disk substrate with electroless N1-P plating was polished.

その結果を第1表に示す。The results are shown in Table 1.

実施例3 片面ポリッシングマシンに、スウエードタイブの研磨パ
ッドを装着し、シリコンウェハーの研磨を行なった。
Example 3 A suede type polishing pad was attached to a single-sided polishing machine, and a silicon wafer was polished.

加工圧力100g/csl、ウェハーと研磨バンドの相
対速度60m/分とし、研磨材スラリーとして平均1次
粒子径0.17μm、α相含有率100%の角状アルミ
ナ2重量部を、純水98重量部に懸濁したものを100
m1/分の速度で供給し、10分間研磨を行なった。
The processing pressure was 100 g/csl, the relative speed between the wafer and the polishing band was 60 m/min, and 2 parts by weight of angular alumina with an average primary particle diameter of 0.17 μm and 100% α phase content was added as an abrasive slurry to 98 parts by weight of pure water. 100 parts
Polishing was performed for 10 minutes by supplying at a rate of m1/min.

結果を第2表に示す。The results are shown in Table 2.

研磨面を目視観察したところ、高度な鏡面仕上がりを示
していた。
Visual observation of the polished surface revealed a highly mirror-like finish.

実施例4−6 実施例3の方法において、工作物を第2表に示すガリウ
ムヒ素化合物半導体基板、窒化アルミニウム基板、チタ
ン基板等に代えて研磨を行なった。
Examples 4-6 In the method of Example 3, polishing was performed using a gallium arsenide compound semiconductor substrate, an aluminum nitride substrate, a titanium substrate, etc. shown in Table 2 as the workpiece.

その結果を第2表に示す。The results are shown in Table 2.

Claims (2)

【特許請求の範囲】[Claims] (1)平均1次粒子径が0.35μm以下、α相含有率
が95%以上で、形状が角状であるアルミナを水性媒体
中に含有してなる精密研磨用組成物。
(1) A precision polishing composition comprising alumina having an average primary particle diameter of 0.35 μm or less, an α phase content of 95% or more, and a square shape in an aqueous medium.
(2)アルミナが、有機アルミニウム化合物の加水分解
によって得られたアルミナ水和物を仮焼して得られたア
ルミナであることを特徴とする特許請求の範囲第1項記
載の精密研磨用組成物。
(2) The precision polishing composition according to claim 1, wherein the alumina is alumina obtained by calcining an alumina hydrate obtained by hydrolyzing an organoaluminum compound. .
JP2079940A 1990-03-27 1990-03-27 Precision polishing composition Pending JPH03277683A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2079940A JPH03277683A (en) 1990-03-27 1990-03-27 Precision polishing composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2079940A JPH03277683A (en) 1990-03-27 1990-03-27 Precision polishing composition

Publications (1)

Publication Number Publication Date
JPH03277683A true JPH03277683A (en) 1991-12-09

Family

ID=13704320

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2079940A Pending JPH03277683A (en) 1990-03-27 1990-03-27 Precision polishing composition

Country Status (1)

Country Link
JP (1) JPH03277683A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5389194A (en) * 1993-02-05 1995-02-14 Lsi Logic Corporation Methods of cleaning semiconductor substrates after polishing
US5626715A (en) * 1993-02-05 1997-05-06 Lsi Logic Corporation Methods of polishing semiconductor substrates
JPH11268911A (en) * 1998-01-08 1999-10-05 Nissan Chem Ind Ltd Alumina powder, its production, and composition for polishing
US6007592A (en) * 1996-11-14 1999-12-28 Nissan Chemical Industries, Ltd. Polishing composition for aluminum disk and polishing process therewith
WO2009151120A1 (en) 2008-06-13 2009-12-17 株式会社 フジミインコーポレーテッド Aluminum oxide particle and polishing composition containing the same
EP2157052A2 (en) 2008-08-18 2010-02-24 Fujimi Incorporated Method for producing boehmite particles and method for producing alumina particles
WO2011136387A1 (en) * 2010-04-28 2011-11-03 株式会社バイコウスキージャパン Sapphire polishing slurry and sapphire polishing method

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5389194A (en) * 1993-02-05 1995-02-14 Lsi Logic Corporation Methods of cleaning semiconductor substrates after polishing
US5626715A (en) * 1993-02-05 1997-05-06 Lsi Logic Corporation Methods of polishing semiconductor substrates
US6007592A (en) * 1996-11-14 1999-12-28 Nissan Chemical Industries, Ltd. Polishing composition for aluminum disk and polishing process therewith
JPH11268911A (en) * 1998-01-08 1999-10-05 Nissan Chem Ind Ltd Alumina powder, its production, and composition for polishing
WO2009151120A1 (en) 2008-06-13 2009-12-17 株式会社 フジミインコーポレーテッド Aluminum oxide particle and polishing composition containing the same
EP2157052A2 (en) 2008-08-18 2010-02-24 Fujimi Incorporated Method for producing boehmite particles and method for producing alumina particles
US8226924B2 (en) 2008-08-18 2012-07-24 Fujimi Incorporated Method for producing boehmite particles and method for producing alumina particles
WO2011136387A1 (en) * 2010-04-28 2011-11-03 株式会社バイコウスキージャパン Sapphire polishing slurry and sapphire polishing method
CN102869478A (en) * 2010-04-28 2013-01-09 日本百考基株式会社 Sapphire polishing slurry and sapphire polishing method
JP5919189B2 (en) * 2010-04-28 2016-05-18 株式会社バイコウスキージャパン Sapphire polishing slurry and sapphire polishing method

Similar Documents

Publication Publication Date Title
US5114437A (en) Polishing composition for metallic material
US6007592A (en) Polishing composition for aluminum disk and polishing process therewith
JP4450142B2 (en) Polishing composition
US6117220A (en) Polishing composition and rinsing composition
JP4273475B2 (en) Polishing composition
TW555696B (en) Alumina powder, process for producing the same and polishing composition
US5228886A (en) Mechanochemical polishing abrasive
US5248318A (en) Lapping abrasive of alumina-zirconia system and method for producing the same
US6596042B1 (en) Method of forming particles for use in chemical-mechanical polishing slurries and the particles formed by the process
JP4090589B2 (en) Polishing composition
JPH04363385A (en) Abradant composition
JP5278631B1 (en) Composite particles for glass polishing
GB2354526A (en) Polishing compositions for magnetic disks
GB2338490A (en) Polishing Composition
US4929257A (en) Abrasive composition and process for polishing
JPH03277683A (en) Precision polishing composition
JPH11268911A (en) Alumina powder, its production, and composition for polishing
US4883502A (en) Abrasive composition and process for polishing
JP4557105B2 (en) Polishing composition
JP3831982B2 (en) Polishing composition for aluminum disc
CA2039998A1 (en) Mechanochemical polishing abrasive
JP3055060B2 (en) Abrasive composition
JPH10121034A (en) Composition for polishing magnetic disk substrate
JP3160820B2 (en) Abrasive composition
JP4099615B2 (en) Polishing composition