JPH03277449A - Numerical control device with measurement function - Google Patents

Numerical control device with measurement function

Info

Publication number
JPH03277449A
JPH03277449A JP7629090A JP7629090A JPH03277449A JP H03277449 A JPH03277449 A JP H03277449A JP 7629090 A JP7629090 A JP 7629090A JP 7629090 A JP7629090 A JP 7629090A JP H03277449 A JPH03277449 A JP H03277449A
Authority
JP
Japan
Prior art keywords
shaft
main
control
touch probe
indexing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7629090A
Other languages
Japanese (ja)
Inventor
Shoji Kawada
河田 昌治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okuma Corp
Original Assignee
Okuma Machinery Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okuma Machinery Works Ltd filed Critical Okuma Machinery Works Ltd
Priority to JP7629090A priority Critical patent/JPH03277449A/en
Publication of JPH03277449A publication Critical patent/JPH03277449A/en
Pending legal-status Critical Current

Links

Landscapes

  • Machine Tool Sensing Apparatuses (AREA)

Abstract

PURPOSE:To make a measurement with high accuracy by determining the angle of a main shaft turning-direction indexing so that the contact part of an appropriate touch probe can be always the same point corresponding to the shift direction of the control shaft of the touch probe, and positioning the main shaft beforehand. CONSTITUTION:A main control part 1 outputs the angle command of a main- shaft turning-direction indexing (to be called main-shaft indexing hereafter) to a main-shaft indexing control 2, which output is based on a control shaft shifting direction when a touch probe is brought in contact with a measurement piece. The main-shaft indexing control 2, on receiving the command, gives a main-shaft indexing command to a main-shaft driving part 3, which acts based on a main-shaft motor indexing. A shaft control process part 4, to which a tough signal is input, immediately memories the control shaft position at this time as a latch position, and at the same time, send the information to the main control part, stopping the control shaft shift. The main control part 1 recognizes the latch position to be a contact position of the touch probe and finishes measuring one direction.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、主軸割出しを行なうことにより被測定物の計
測を行なう計測機能を備えた数値制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a numerical control device having a measurement function for measuring an object to be measured by indexing a spindle.

(従来の技術) 従来、タッチプローブなどの計測機器を用いて被測定物
の計測を行なう場合の測定方法は、主軸にタッチプロー
ブを装着し、主軸の回転方向の割出し角度(主軸にタッ
チプローブを芸者するときの角度)を一定にして被測定
物の測定を行なっていた。そのため、タッチプローブの
接触部(以下、計測環と称す)が被測定物の面と当接す
る点は、測定方向(X軸+方向、X軸一方向、Y11j
k+方向、Y軸一方向)によりそれぞれ異なっていた。
(Prior art) Conventionally, when measuring a measured object using a measuring instrument such as a touch probe, the measurement method is to attach the touch probe to the spindle, and index the angle in the rotational direction of the spindle (by attaching the touch probe to the spindle). The object to be measured was measured at a constant angle. Therefore, the point where the contact part of the touch probe (hereinafter referred to as the measurement ring) comes into contact with the surface of the object to be measured is in the measurement direction (X-axis + direction, X-axis one direction, Y11j
(k+ direction, Y-axis direction).

したがって、タッチプローブの径補正としては、X軸+
方向、X軸一方向、Y軸+方向及びY軸一方向の4方向
からの径補正が必要であった。
Therefore, to correct the diameter of the touch probe, the X-axis +
It was necessary to perform diameter correction from four directions: one direction along the X axis, one direction along the Y axis, and one direction along the Y axis.

第6図は、従来における計測機能を備えた数値制御装置
の構成ブロック図である。同図において、数値制御装置
全体の制御を行なう主制御部1は、計測指令を軸制8処
理部4°に送る。計測指令を受けた軸制御処理部4°は
、計測する方向の制御軸移動指令をサーボモータ制御処
理部5に対して送る。この制御軸移動指令を入力したサ
ーボモータ制御処理部5は、制御軸サーボモータ(図示
せず)の駆動制御を行なう、一方、計測時の制御軸移動
中に被測定物にタッチプローブ7が当接すると、タッチ
プローブ7から出力されたタッチ信号がタッチプローブ
制御装置6に人力され、さらに軸制御処理部4“ に送
られる。このタッチ信号を入力した軸制御処理部4゛は
、直ちにその時点での制御軸位置をラッチ位置として記
憶すると共にその情報を主i!lJN部1゛に送り、ざ
らに制御軸移動を停止させる。主制御部1′は、そのラ
ッチ位置をタッチプローブの当接位置と認識して一方向
の計測を終了する。残りの他の方向についても同様の計
測方法にて行なう。
FIG. 6 is a block diagram of a conventional numerical control device with a measurement function. In the figure, a main control section 1 that controls the entire numerical control device sends measurement commands to an axis control 8 processing section 4°. The axis control processing unit 4° that has received the measurement command sends a control axis movement command in the measurement direction to the servo motor control processing unit 5. The servo motor control processing unit 5 that receives this control axis movement command performs drive control of a control axis servo motor (not shown), while the touch probe 7 touches the object to be measured while the control axis is moving during measurement. When touched, the touch signal output from the touch probe 7 is inputted to the touch probe control device 6 and further sent to the axis control processing section 4''.The axis control processing section 4'' that inputs this touch signal immediately The main controller 1' stores the control axis position as the latch position and sends that information to the main i!lJN unit 1' to roughly stop the control axis movement. Once the position is recognized, the measurement in one direction is completed.The same measurement method is used for the remaining directions.

(発明が解決しようとするil!!!りところで、前述
のように従来においては、タッチプローブを装着した主
軸の回転方向の割出し角度が常に一定であるため、タッ
チプローブ自身の径補正をX−Y座標4方向について測
定する必要があった。しかしながら、その測定には一般
的に基準ワークを用いているものの、その作業は非常に
熟練を要し、またタッチプローブ計測環の基準ワークに
対する接触部(当接部)が各測定方向により変わフてし
まうため、測定誤差が生じて高精度の計測ができないと
いう問題点があった。
(The problem that the invention is trying to solve!!!) However, as mentioned above, in the conventional system, the index angle in the rotational direction of the spindle to which the touch probe is attached is always constant, so the diameter correction of the touch probe itself is -It was necessary to measure in the four directions of the Y coordinate.However, although a reference workpiece is generally used for this measurement, this work requires great skill, and the touch probe measurement ring does not touch the reference workpiece. Since the portion (contact portion) changes depending on each measurement direction, there is a problem in that a measurement error occurs and highly accurate measurement cannot be performed.

本発明は上述のような事情から成されたものであり、本
発明の目的は、タッチプローブにより被測定物の測定を
行なう際に高精度にその計測を行なうことができる計測
機能を備えた数値制御装置をI供することにある。
The present invention was made in view of the above-mentioned circumstances, and an object of the present invention is to provide a numerical value device with a measurement function that enables highly accurate measurement of an object to be measured using a touch probe. The purpose is to provide a control device.

(課題を解決するための手段) 本発明は、主軸割出しを行なうことにより被測定物の計
測を行なう計測機能を備えた数値制御装置に関するもの
であり、本発明の上記目的は、主軸にタッチプローブを
装着し、当該タッチプローブを被測定物に当接させるこ
とにより当該被測定物の寸法を測定することが可能な計
測機能を備えた数値制御装置において、前記タッチプロ
ーブを前記被測定物に当接させる際、当該タッチプロー
ブの制御軸の移動方向に応して当該タッチプローブの当
接部が常に同一点となるように前記主軸の回転方向の割
出し角度を決定して予め前記主軸の位置決めを行なう主
軸制御手段を備えることによって達成される。
(Means for Solving the Problems) The present invention relates to a numerical control device equipped with a measurement function that measures a workpiece by indexing the spindle. In a numerical control device equipped with a measurement function capable of measuring the dimensions of an object to be measured by attaching a probe and bringing the touch probe into contact with the object, the touch probe is attached to the object to be measured. When making contact, the index angle in the rotational direction of the main shaft is determined in advance so that the contact part of the touch probe is always at the same point according to the moving direction of the control shaft of the touch probe. This is achieved by providing a spindle control means for positioning.

(作用) 本発明にあフては、タッチプローブを被測定物に当接さ
せてその寸法を測定する際、制御軸の移動方向に応じて
主軸の回転方向の割出し角度を決定して予めその位置決
めを行なうことにより、タッチプローブの当接点が常に
同一点となる。
(Function) According to the present invention, when the touch probe is brought into contact with the object to be measured and its dimensions are measured, the indexing angle in the rotational direction of the main shaft is determined in accordance with the moving direction of the control axis. By performing this positioning, the contact point of the touch probe is always at the same point.

(実施例) 以下、図面に基づいて本発明の実施例について詳細に説
明する。
(Example) Hereinafter, an example of the present invention will be described in detail based on the drawings.

第1図は、本発明の計測機能を備えた数値制御装置にお
ける〜実施例の構成ブロック図である。
FIG. 1 is a block diagram of a numerical control device having a measurement function according to an embodiment of the present invention.

同図において、数値制御装置全体の制御を行なう主制御
部1は、主軸の回転方向の割出し角度指令及び計測等の
指令を行ない、計測サイクル動作の制御を行なう。主軸
割出し制御部2は、主制御部1からの主軸割出し指令に
基づいて主軸の回転方向の割出し角度の制御を行なう。
In the figure, a main control section 1 that controls the entire numerical control device issues indexing angle commands in the rotational direction of the main shaft, commands for measurement, etc., and controls measurement cycle operations. The spindle indexing control section 2 controls the indexing angle of the spindle in the rotational direction based on a spindle indexing command from the main control section 1 .

一方、軸制御処理部4は、主制御部1からの計測指令に
基づいてサーボモータ制御処理部5に対して制御軸移動
の指令を行ない、また計測時の1」間軸移動中に、被測
定物にタッチプローブ7が当接したときの制御軸位置を
記憶して主制御部1に送る役割をする。
On the other hand, the axis control processing section 4 instructs the servo motor control processing section 5 to move the controlled axis based on the measurement command from the main control section 1, and also instructs the servo motor control processing section 5 to move the controlled axis during measurement. It serves to store the control axis position when the touch probe 7 contacts the object to be measured and send it to the main control section 1.

サーボモータ副脚処理部5は、制御軸子−タ(図示せず
)の駆動制御を行なう。タッチプローブ$り御装置6は
、タッチプローブ7からのタッチ信号を入力して軸制8
処理部4に送る。タッチプローブ7は、被測定物と当接
してタッチ信号を発する。
The servo motor sub-leg processing unit 5 controls the drive of a control shaft (not shown). The touch probe controller 6 inputs the touch signal from the touch probe 7 and controls the axis 8.
It is sent to the processing section 4. The touch probe 7 makes contact with the object to be measured and emits a touch signal.

′M2図は、計測機器であるタッチプローブ7の外観図
である。タッチプローブ本体7】の下端にセンサ部のス
タイラス72が付いており、その先端は実際にワークに
接触させて計測する部分である計測環73となっている
'M2 is an external view of the touch probe 7, which is a measuring device. A stylus 72, which is a sensor part, is attached to the lower end of the touch probe body 7, and its tip serves as a measuring ring 73, which is the part that actually makes contact with the workpiece to measure it.

次に、%1図及び第2図に基づいて本発明における計測
の動作を説明する。まず、計測機能全体の制御を行なう
主制御部1は、タッチプローブを被測定物に当接させる
際の制御軸移動方向に基づいて、主軸の回転方向の割出
しく以下、主軸割出しと称す)角度指令を主軸割出し制
m部2に出力する。指令を受けた主軸割出し制御部2は
主軸駆動部3に対して主軸の割出し指令を行ない、その
割出し指令を受けた主軸駆動部3は主軸モータの割出し
動作を行なう、主軸モータの割出し角度位置決め動作が
完了した後、主軸制御部lは軸制御処理部4に対して計
測指令を送り、その計測指令を受けた軸制御処理部4は
、計測する方向の制御軸移動指令をサーボモータ制御処
理部5に出力する。この指令を受けたサーボモータ制御
処理部Sは、制御軸サーボモータの駆動制御を行なう、
そこで、計測時の上記制御軸移動中に被測定物にタッチ
プローブ7が当接すると、タッチプローブ7から出力さ
れたタッチ信号がタッチプローブ制御装置6に入力され
、さらに軸剥all処理1i1S4に送られる。このタ
ッチ信号を入力した軸制御処理部4は、直ちにその時点
での制御軸位置をラッチ位置として記憶すると共にその
情報を主制御部1に送り、さらに制御軸移動を停止させ
る。主制御部1は、そのラッチ位置をタッチプローブの
当接位置と2識して一方向の計測を終了する。
Next, the measurement operation in the present invention will be explained based on Figure 1 and Figure 2. First, the main control unit 1, which controls the entire measurement function, determines the rotational direction of the spindle based on the direction of movement of the control axis when bringing the touch probe into contact with the object to be measured. ) An angle command is output to the spindle indexing control section m2. The spindle indexing control unit 2 that received the command issues a spindle indexing command to the spindle drive unit 3, and the spindle drive unit 3 that received the indexing command performs an indexing operation of the spindle motor. After the index angle positioning operation is completed, the spindle control unit 1 sends a measurement command to the axis control processing unit 4, and the axis control processing unit 4, which has received the measurement command, issues a control axis movement command in the direction of measurement. It is output to the servo motor control processing section 5. The servo motor control processing unit S that receives this command performs drive control of the control axis servo motor.
Therefore, when the touch probe 7 comes into contact with the object to be measured during movement of the control axis during measurement, the touch signal output from the touch probe 7 is input to the touch probe control device 6, and further sent to the axis peeling process 1i1S4. It will be done. The axis control processing unit 4 that receives this touch signal immediately stores the current control axis position as a latch position, sends the information to the main control unit 1, and further stops the control axis movement. The main control unit 1 recognizes the latch position as the contact position of the touch probe and ends the one-way measurement.

第3図(^)及び(Bl は、X−Y座標系加工ワーク
の穴の中心を内径計測にて測定する場合の説明図である
。第4図は、第3図(A)及び(B)における測定の計
測サイクルを示すフローチャートである。以下、第3図
及び第4図に基づいて、ワーク計測時、主軸の割出し角
度を自動釣に任意の角度に変更することにより、タッチ
プローブがワークに当接する際のタッチプローブの当接
部分を常に同一点とする具体例を説明する。
Figures 3 (^) and (Bl) are explanatory diagrams when measuring the center of a hole in a workpiece processed using an X-Y coordinate system by internal diameter measurement. Figures 4 and 3 (A) and (B ) is a flowchart showing a measurement cycle of measurement in ).Hereinafter, based on FIGS. 3 and 4, when measuring a workpiece, by changing the indexing angle of the spindle to an arbitrary angle to automatic adjustment, A specific example will be described in which the contact portion of the touch probe is always the same point when contacting the workpiece.

まず、X軸+(プラス)方向計測指令に基づいて主軸の
割出し角度(割出し角度0°)指令が出力され(ステッ
プSt) 、主軸モータは割出し角度0°に位置決めす
る(ステップS2)、第5図(^)は、そのときのタッ
チプローブ計測環の座標上の状さを示す図である0割出
し角度の位置決めが完了するとX軸が+(プラス)方向
に移動しくステップS3)、タッチプローブ計測環が加
工ワークに当接することによりX軸の+(プラス)方向
移動動作が停止する(ステップ54)1次に、X軸−(
マイナス)方向計測指令に基づいて主軸の割出し角度(
割出し角度180°)指令が出力され(ステップS5)
、主軸モータは割出し角度180°に位置決めする(ス
テップS6)、第5図(B)は、そのときのタッチプロ
ーブ計測環の座標上の状、態を示す図である0割出し角
度の位置決めが完了するとX軸が−(マイナス)方向に
移動しくステップS7)、タッチプローブ計測環が加工
ワークに当接することによりX軸の−(マイナス)方向
移動動作が停止する(ステップ58)1次にY軸+(プ
ラス)方向計測指令に基づいて主軸の割出し角度(割出
し角度90°)指令が出力され(ステップS9)、主軸
モータは割出し角度90°に位置決めする(ステップ5
10)、第5図(C)は、そのときのタッチプローブ計
測環の座標上の状態を示す図である0割出し角度の位置
決めが完了するとY軸が+(プラス)方向に移動しくス
テップ511)、タッチプローブ計測環か加工ワークに
当接することによりY軸の+(プラス)方向移動動作が
停止する(ステップ512)。さらに、Y軸−(マイナ
ス)方向計測指令に基づいて主軸の割出し角度(割出し
角度270°)指令が出力され(ステップ513)、主
軸モータは割出し角度270°に位置決めする(ステッ
プ514)、第5図(0)は、そのときのタッチプロー
ブ計測環のFfA標上の状態を示す図である0割出し角
度の位置決めが完了するとY軸が−(マイナス)方向に
移動しくステップ515)、タッチプローブ計測環が加
工ワークに当接することによりY軸の−(マイナス)方
内移!I]動作が停止する(ステップ51B)−以上の
ようなX、Y軸の計測が−通り終了すると、再度X軸+
、−(プラス、マイナス)方向の計測を実行する(ステ
ップ517)、全ての計測が終了すると、主制御部1が
加工ワーク穴Q中心座標を求める(ステップ518)。
First, a spindle indexing angle (indexing angle 0°) command is output based on the X-axis + (plus) direction measurement command (step St), and the spindle motor is positioned at an indexing angle of 0° (step S2). , FIG. 5 (^) is a diagram showing the state of the touch probe measurement ring on the coordinates at that time. When the positioning of the 0 index angle is completed, the X axis moves in the + (plus) direction (step S3). , when the touch probe measurement ring comes into contact with the workpiece, the movement in the + (plus) direction of the X axis stops (step 54).
The indexing angle of the spindle (minus) based on the direction measurement command (
An indexing angle of 180°) command is output (step S5).
, the main shaft motor is positioned at an indexing angle of 180° (step S6). FIG. 5(B) is a diagram showing the coordinate state of the touch probe measurement ring at that time. Positioning at an indexing angle of 0 When this is completed, the X-axis moves in the - (minus) direction (step S7), and the touch probe measurement ring comes into contact with the workpiece, stopping the movement in the - (minus) direction of the X-axis (step 58). Based on the Y-axis + (plus) direction measurement command, a spindle indexing angle (indexing angle 90°) command is output (step S9), and the spindle motor is positioned at an indexing angle of 90° (step 5
10), FIG. 5(C) is a diagram showing the coordinate state of the touch probe measurement ring at that time. When the positioning of the 0 index angle is completed, the Y axis moves in the + (plus) direction. Step 511 ), when the touch probe measurement ring comes into contact with the workpiece, the + (plus) direction movement of the Y axis is stopped (step 512). Furthermore, a spindle indexing angle (indexing angle 270°) command is output based on the Y-axis - (minus) direction measurement command (step 513), and the spindle motor is positioned at an indexing angle of 270° (step 514). , FIG. 5 (0) is a diagram showing the state of the touch probe measurement ring above the FfA standard at that time. When the positioning of the 0 index angle is completed, the Y axis moves in the - (minus) direction (step 515). , when the touch probe measurement ring comes into contact with the workpiece, it moves in the - (minus) direction of the Y axis! I] The operation stops (step 51B) - When the above-mentioned X and Y axis measurements have been completed, the X axis +
, - (plus, minus) directions are executed (step 517). When all measurements are completed, the main control unit 1 determines the center coordinates of the hole Q of the workpiece (step 518).

最後に、加工ワーク穴の中心にタッチプローブ計側床を
位置決めさせて(ステップ519)、計測かに了する。
Finally, the touch probe meter side floor is positioned at the center of the workpiece hole (step 519), and the measurement is completed.

(発明の効果) 以上のように本発明の計測機能を備えた数値制御装置に
よれば、タッチプローブを被測定物に当接させてその寸
法を測定する際、その当接点が常に同一点となるので、
タッチプローブ自身の径補正については一方向のみの補
正データを扱うだけでよく、それにより高精度な計測が
可能となる。
(Effects of the Invention) As described above, according to the numerical control device with the measurement function of the present invention, when the touch probe is brought into contact with the object to be measured to measure its dimensions, the contact point is always at the same point. So,
Regarding diameter correction of the touch probe itself, it is only necessary to handle correction data in one direction, which enables highly accurate measurement.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の計測機能を備えた数値制御装置におけ
る一実施例の構成ブロック図、第2図は計測機器である
タッチプローブの外観図、第3図(^)及びCB)はX
−Y座標系加工ワークの穴の中心を内径計測にて測定す
る場合の説明図、第4図は第3図における測定の計測サ
イクルを示すフローチャート、第5図(^) 、 (B
) 、 (C)及び(0)はそれぞれタッチプローブ計
測環の座標上の状態を示す図、第6図は従来における計
測機能を備えた数値制御装置の構成ブロック図である。 1.1’・・・主制御部、2・・・主軸割出し制御部、
3・・・主軸駆動部、4.4′・・・軸利a処理部、5
・・・サーボモータ制838理部、6・・・タッチプロ
ーブ制御装置、7・・・タッチプローブ。
Fig. 1 is a block diagram of an embodiment of a numerical control device with a measurement function according to the present invention, Fig. 2 is an external view of a touch probe that is a measuring device, and Fig. 3 (^) and CB) are X
-Y coordinate system An explanatory diagram when measuring the center of a hole in a processed workpiece by internal diameter measurement, Figure 4 is a flowchart showing the measurement cycle of the measurement in Figure 3, Figure 5 (^), (B
), (C) and (0) are diagrams showing the coordinate states of the touch probe measurement ring, respectively, and FIG. 6 is a block diagram of a conventional numerical control device with a measurement function. 1.1'... Main control section, 2... Spindle indexing control section,
3... Main shaft drive section, 4.4'... Axial interest a processing section, 5
... Servo motor system 838 science department, 6... Touch probe control device, 7... Touch probe.

Claims (1)

【特許請求の範囲】[Claims] 1、主軸にタッチプローブを装着し、当該タッチプロー
ブを被測定物に当接させることにより当該被測定物の寸
法を測定することが可能な計測機能を備えた数値制御装
置において、前記タッチプローブを前記被測定物に当接
させる際、当該タッチプローブの制御軸の移動方向に応
じて当該タッチプローブの当接部が常に同一点となるよ
うに前記主軸の回転方向の割出し角度を決定して予め前
記主軸の位置決めを行なう主軸制御手段を備えるように
したことを特徴とする計測機能を備えた数値制御装置。
1. In a numerical control device equipped with a measurement function that can measure the dimensions of an object to be measured by attaching a touch probe to the main shaft and bringing the touch probe into contact with the object, the touch probe is When bringing the touch probe into contact with the object to be measured, an index angle in the rotational direction of the main shaft is determined so that the contact portion of the touch probe is always at the same point according to the moving direction of the control shaft of the touch probe. A numerical control device equipped with a measurement function, characterized in that it includes a spindle control means for positioning the spindle in advance.
JP7629090A 1990-03-26 1990-03-26 Numerical control device with measurement function Pending JPH03277449A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7629090A JPH03277449A (en) 1990-03-26 1990-03-26 Numerical control device with measurement function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7629090A JPH03277449A (en) 1990-03-26 1990-03-26 Numerical control device with measurement function

Publications (1)

Publication Number Publication Date
JPH03277449A true JPH03277449A (en) 1991-12-09

Family

ID=13601202

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7629090A Pending JPH03277449A (en) 1990-03-26 1990-03-26 Numerical control device with measurement function

Country Status (1)

Country Link
JP (1) JPH03277449A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012110983A (en) * 2010-11-22 2012-06-14 Howa Mach Ltd Instruction method of stopping main shaft at fixed stopping position and workpiece measuring method
JP2019007762A (en) * 2017-06-21 2019-01-17 中村留精密工業株式会社 Measurement method using touch probe
JP2021074807A (en) * 2019-11-06 2021-05-20 オークマ株式会社 Error-compensating method of machine tool and machine tool
JP2021086370A (en) * 2019-11-27 2021-06-03 オークマ株式会社 Inversion error measuring method of machine tool

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6374555A (en) * 1986-09-16 1988-04-05 Toyoda Mach Works Ltd Numerically controlled machine tool having measuring function

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6374555A (en) * 1986-09-16 1988-04-05 Toyoda Mach Works Ltd Numerically controlled machine tool having measuring function

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012110983A (en) * 2010-11-22 2012-06-14 Howa Mach Ltd Instruction method of stopping main shaft at fixed stopping position and workpiece measuring method
JP2019007762A (en) * 2017-06-21 2019-01-17 中村留精密工業株式会社 Measurement method using touch probe
JP2021074807A (en) * 2019-11-06 2021-05-20 オークマ株式会社 Error-compensating method of machine tool and machine tool
JP2021086370A (en) * 2019-11-27 2021-06-03 オークマ株式会社 Inversion error measuring method of machine tool

Similar Documents

Publication Publication Date Title
JP2527996B2 (en) Workpiece inspection method and device
CN101249618A (en) Machine tool having workpiece reference position setting function by contact detection
WO2002032620A1 (en) Measuring method and device, machine tool having such device, and work processing method
TWI704028B (en) Tool path location compensation system based on offset of fixture
EP0242869B1 (en) Numerical control equipment
JPH07266194A (en) Tool cutting edge measurement compensator
CN110977612B (en) CNC (computer numerical control) machining online measurement error correction method and system
JPH03277449A (en) Numerical control device with measurement function
US4736325A (en) Method and apparatus for searching for a fiducial point of machining relating to C-axis
JPH0726809B2 (en) Workpiece position coordinate correction method
JPH0410568B2 (en)
JPS6299060A (en) Tool presetter
JPH07210228A (en) Control method for measuring system using nc machine tool
JPS61108907A (en) Numerical control device having automatic measuring function
JPH0740269A (en) Industrial robot origin adjusting method and device therefor
JPS62152647A (en) Tool tip measurement
JPS59140510A (en) Numerical controller
JPH04171161A (en) Reference hole position measuring method by touch sensor
JPH0771933A (en) Method and device for measuring shape
JP2825429B2 (en) Measurement method and device
JPS62152645A (en) Machine tool coordinate correction device
JPH0265950A (en) Measuring method for dimension correspondable to multi-kind work
JPS61260966A (en) Machine tool with automatic measuring function
JP2022017057A (en) Method for calibrating touch probe of machine tool and method for identifying geometric error
JPH0783653A (en) Method and system for measuring shape