JP2825429B2 - Measurement method and device - Google Patents

Measurement method and device

Info

Publication number
JP2825429B2
JP2825429B2 JP6029560A JP2956094A JP2825429B2 JP 2825429 B2 JP2825429 B2 JP 2825429B2 JP 6029560 A JP6029560 A JP 6029560A JP 2956094 A JP2956094 A JP 2956094A JP 2825429 B2 JP2825429 B2 JP 2825429B2
Authority
JP
Japan
Prior art keywords
measurement
displacement
measured
measuring head
detection type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP6029560A
Other languages
Japanese (ja)
Other versions
JPH07239228A (en
Inventor
敬三 内海
邦夫 原
康浩 倉橋
雄三 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Makino Milling Machine Co Ltd
Original Assignee
Makino Milling Machine Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Makino Milling Machine Co Ltd filed Critical Makino Milling Machine Co Ltd
Priority to JP6029560A priority Critical patent/JP2825429B2/en
Publication of JPH07239228A publication Critical patent/JPH07239228A/en
Application granted granted Critical
Publication of JP2825429B2 publication Critical patent/JP2825429B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、主に三次元座標系にお
いて立体形状を有する被測定物の形状測定や寸法測定を
行う測定方法と測定装置に関し、特に、単一の変位検出
形測定ヘッドを用いて被測定物の表面座標値の読み取り
データから演算して形状測定する場合と、同変位検出形
測定ヘッドの測定子が被測定物に接触、変位した際の該
測定子の計測中心の座標値を求め、求めた値から所定の
数式に従って演算することにより、同被測定物に形成し
た孔の径寸法や孔位置寸法又は被加工部分の幅寸法等の
種々の寸法を測定する場合とに分類して測定を自動遂行
するのに用いることが可能な測定方法と装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a measuring method and a measuring apparatus for measuring the shape and dimension of an object having a three-dimensional shape in a three-dimensional coordinate system, and more particularly to a single displacement detecting type measuring head. When the shape is measured by calculating from the read data of the surface coordinate value of the measured object, and when the measuring element of the same displacement detection type measuring head comes into contact with the measured object and is displaced, By calculating coordinate values and calculating according to a predetermined mathematical formula from the obtained values, various dimensions such as a diameter dimension and a hole position dimension of a hole formed in the object to be measured or a width dimension of a part to be processed are measured. The present invention relates to a measuring method and an apparatus which can be used for automatically performing a measurement by classifying the measurement into a method.

【0002】[0002]

【従来の技術】測定ヘッドがその先端に球形状を有した
測定子(フィーラ)を備える共に、その測定子が被測定
対象物に接触した場合のX,Y,Z軸方向における変位
データを検出することが可能な変位検出形測定ヘッドは
既に従来から多用されている。この種の変位検出形測定
ヘッドを用いた測定方法としては、特公昭53−393
5号公報に開示された、被測定対象物の表面の測定すべ
き位置に測定子の先端球部を押圧、接触により相対変位
させ、その場合の球部半径Rと、X,Y,Z軸方向の各
軸方向に発生した変位量I,J,Kの合成変位量(E=
√(I2 +J2+K2 )即ち、(I2 +J2 +K2 )の
平方根)とが等しくなったときの測定ヘッドのX,Y,
Z軸座標の読みを測定点の座標であるとする方法があ
る。
2. Description of the Related Art A measuring head is provided with a measuring element (feeler) having a spherical shape at its tip, and detects displacement data in the X, Y, and Z-axis directions when the measuring element contacts an object to be measured. A displacement detection type measuring head capable of performing the measurement has already been widely used. As a measuring method using such a displacement detecting type measuring head, there is known a method disclosed in Japanese Patent Publication No. 53-393.
The tip sphere of the tracing stylus is relatively displaced by pressing and contacting to the position to be measured on the surface of the object to be measured, which is disclosed in Japanese Patent Application Laid-Open No. 5-205, and the sphere radius R in that case and the X, Y, Z axes Of the displacements I, J, K generated in each axial direction (E =
X (I 2 + J 2 + K 2 ), that is, the square root of (I 2 + J 2 + K 2 )), the X, Y,
There is a method in which the reading of the Z-axis coordinate is regarded as the coordinate of the measurement point.

【0003】更に、特公昭58−4962号公報に開示
された公知の方法は、被測定物の表面のある点から距離
Fだけ外方にオフセットした点の座標値を求める場合
に、被測定物と測定ヘッドとの相対移動過程で、被測定
物の表面上のある点に、変位検出形測定ヘッドの測定子
の先端球部を押付けて球部の半径Rと同球部のX,Y,
Z軸方向の各軸方向における変位量I,J,Kの合成変
位(E=√(I2 +J2+K2 )即ち、(I2 +J2
2 )の平方根)とが等しく成ったときの合成変位をE
0 として定義し、そのときの測定ヘッドにおけるX,
Y,Z軸座標の読みを被測定物の表面のある点の座標と
して測定し、次に、そこから上述のオフセット量Fだけ
オフセットした点の座標は、(X+F・I/E0 ,Y+
F・J/E0,Z+K/E0 )と演算して求める方法で
ある。つまり、上述した公知の両方法では、変位検出形
測定ヘッドの測定子の先端球部の合成変位が常に同球部
の半径に等しくなるようにフィードバック制御する方法
で測定子を被測定物に押し付けるようにしなければなら
ないと言う制限があった。
Further, a known method disclosed in Japanese Patent Publication No. 58-4962 discloses a method for obtaining a coordinate value of a point offset outward by a distance F from a point on the surface of the object. In the process of relative movement between the measuring head and the measuring head, the tip spherical portion of the measuring element of the displacement detecting type measuring head is pressed against a point on the surface of the object to be measured, and the radius R of the spherical portion and the X, Y,
The resultant displacement (E = √ (I 2 + J 2 + K 2 )) of the displacement amounts I, J, K in the respective Z-axis directions, ie, (I 2 + J 2 +
K 2 ) is equal to the square root of E 2.
0 , and X,
The reading of the Y and Z axis coordinates is measured as the coordinates of a certain point on the surface of the object to be measured, and the coordinates of the point offset therefrom by the above-described offset amount F are (X + FI / E 0 , Y +
F · J / E 0 , Z + K / E 0 ). In other words, in both of the known methods described above, the probe is pressed against the DUT by a feedback control method such that the combined displacement of the tip ball of the probe of the displacement detection type measurement head is always equal to the radius of the ball. There was a restriction that we had to do it.

【0004】[0004]

【発明が解決しようとする課題】この結果、合成変位の
演算に時間がかかるので、被測定物と測定ヘッドとの相
対移動における送り速度を遅速化しなければ正確な位置
で測定子を被測定物の表面の所望の各点に位置決めでき
ないと言う問題があった。特に、被測定物と測定ヘッド
との相対移動をNC装置等の制御の下に自動的に遂行す
る場合には、合成変位の演算の実行に必要な時間に制限
されて、自ずから被測定物における間隔の開いた複数点
位置でしか測定を実行し得ないと言う問題もあった。
As a result, it takes a long time to calculate the resultant displacement. Therefore, unless the feed speed in the relative movement between the workpiece and the measuring head is reduced, the tracing stylus is moved at an accurate position to the workpiece. There is a problem that it cannot be positioned at desired points on the surface. In particular, when the relative movement between the object to be measured and the measuring head is automatically performed under the control of an NC device or the like, the time required to execute the calculation of the resultant displacement is limited, and the movement of the object to be measured naturally occurs. There is also a problem that the measurement can be performed only at a plurality of spaced positions.

【0005】また、被測定物と測定ヘッドとの相対移動
における相対送り速度が速いと、測定子の球部半径Rと
合成変位E0 とが等しくなる点位置で位置決めができ
ず、その結果、測定誤差が大きくなると言う問題点もあ
った。
If the relative feed speed in the relative movement between the object to be measured and the measuring head is high, positioning cannot be performed at a point where the radius R of the ball of the tracing stylus and the resultant displacement E 0 are equal. There is also a problem that a measurement error increases.

【0006】依って、上述の諸問題点に鑑みて、本発明
の目的は、変位検出形測定ヘッドを用いた被測定物の測
定に当たり、測定子先端の球部半径と合成変位とが一致
しなくても、測定すべき位置の座標値を精度良く、しか
も能率良く測定でき、また、立体形状を有する被測定物
と変位検出形測定ヘッドとの間でX,Y,Z軸方向の相
対移動を行い、被測定物に同測定ヘッドの測定子を接触
させてその接触点、または被測定物の表面からオフセッ
トした位置の座標値を測定するとき、測定子球部の半径
値を単に既知データとして演算処理に用いることによっ
て測定を実行可能な測定方法と装置とを提供せんとする
ものである。
Accordingly, in view of the above-mentioned problems, an object of the present invention is to measure the object to be measured using a displacement detection type measuring head, in which the radius of the spherical portion at the tip of the tracing stylus coincides with the resultant displacement. Without this, the coordinate value of the position to be measured can be measured accurately and efficiently, and the relative movement in the X, Y, and Z-axis directions between the object having a three-dimensional shape and the displacement detection type measurement head. When the contact point of the measuring head is brought into contact with the DUT and the coordinate value of the contact point or the position offset from the surface of the DUT is measured, the radius value of the measuring element sphere is simply known data. It is intended to provide a measuring method and a device capable of executing a measurement by using the same in arithmetic processing.

【0007】[0007]

【課題を解決するための手段】上述の目的に鑑みて、本
発明は、測定ヘッドとして三次元座標系におけるX,
Y,Z軸方向に発生した変位を検出可能な変位検出手段
と、同ヘッドにX,Y,Z軸の方向に変位可能な測定子
を備えた変位検出形測定ヘッドを用い、被測定物と同変
位検出形測定ヘッドとの相対移動によって該測定ヘッド
の測定子を被測定物の表面に、押圧、接触させ、このと
き、測定子に発生した各軸方向の変位を変位検出手段で
検出し、その検出データから所定の演算式に従って演算
を実行して合成変位量を求め、この合成変位量の演算値
と予め既知量として認識されている測定子の球部の半径
データとから、被測定物と測定子との接触点の座標値ま
たは接触点から所定のオフセット量だけオフセットした
位置の座標値の何ずれかを所要に応じて演算して求める
ようにしたものである。
DISCLOSURE OF THE INVENTION In view of the above-mentioned object, the present invention provides a measuring head having a X, a three-dimensional coordinate system.
Displacement detecting means capable of detecting the displacement generated in the Y and Z axis directions, and a displacement detection type measuring head having a measuring element displaceable in the X, Y and Z axis directions, and The measuring element of the measuring head is pressed against and brought into contact with the surface of the object to be measured by relative movement with the same displacement detecting type measuring head. At this time, displacements in the respective axial directions generated on the measuring element are detected by displacement detecting means. From the detected data, an operation is performed in accordance with a predetermined arithmetic expression to obtain a combined displacement amount, and the measured value is calculated from the calculated value of the combined displacement amount and the radius data of the ball portion of the tracing stylus which is recognized in advance as a known amount. Some of the coordinate values of the contact point between the object and the tracing stylus or the coordinate value of the position offset from the contact point by a predetermined offset amount are calculated and obtained as required.

【0008】即ち、本発明によれば、立体形状を有する
被測定物と測定ヘッドとの間でX,Y,Z軸方向の相対
移動を行い、前記被測定物に前記測定ヘッドの測定子を
接触させてその接触点及び前記被加工物の表面からオフ
セットした位置の座標値を測定する測定方法において、
前記測定ヘッドとして、先端に球部を有し前記被測定物
の表面に接触するとその表面に対して略法線方向に変位
するよう支持された測定子を備え、該測定子のX,Y,
Z軸方向の各変位を検出可能な変位検出形測定ヘッドを
用い、測定すべき項目が前記被測定物の表面の座標を求
めるステップを必要とする第1測定モードか、前記被測
定物の表面から所定量オフセットした点の座標を求める
ステップを必要とする第2測定モードかを判別し、前記
第1測定モードと判別した測定項目については、前記変
位検出形測定ヘッドのX,Y,Z軸方向の各位置データ
を読み取り、前記被測定物の表面に前記変位検出形測定
ヘッドの測定子を接触させたときの該接触点の座標値
(U,V,W)を、 U=X−(R−E)・I/E ・・・・・・・・・(1) V=Y−(R−E)・J/E ・・・・・・・・・(2) W=Z−(R−E)・K/E ・・・・・・・・・(3) この場合に、Rは測定子の先端球部半径で既知の値、
I,J,Kは変位検出形測定ヘッドで検出したX,Y,
Z軸方向の各変位、Eは、測定子の合成変位量でE=√
(I2 +J2 +K2 )、つまり、Eの値は(I2 +J2
+K2 )の平方根に等しい、X,Y,Zは、接触して変
位を検出したときの変位検出形測定ヘッドの各位置デー
タ、で表される(1)〜(3)式に従って求め、前記第
2測定モードと判別した測定項目については、前記変位
検出形測定ヘッドのX,Y,Z軸方向の各位置データを
読み取り、前記被測定物の表面に前記変位検出形測定ヘ
ッドの測定子を接触させたときの該接触点から所定量オ
フセットした位置の座標値(x,y,z)を、 x=X+(E−E0 )・I/E ・・・・・・・(4) y=Y+(E−E0 )・J/E ・・・・・・・(5) z=Z+(E−E0 )・K/E ・・・・・・・(6) この場合に、E0 は予め設定された基準変位量で、測定
子の先端球部の半径Rから所定のオフセット量r0 を引
いた量、I,J,Kは変位検出形測定ヘッドで検出した
X,Y,Z軸方向の各変位、Eは測定子の合成変位量で
E=√(I2 +J2 +K2 )、つまりEの値は(I2
2 +K2 )の平方根に等しい、X,Y,Zは、接触し
て変位を検出したときの変位検出形測定ヘッドの各位置
データ、の(4)〜(6)式に従って求める、ようにす
る測定方法が提供される。
That is, according to the present invention, relative movement in the X, Y, and Z-axis directions is performed between the measurement object having a three-dimensional shape and the measurement head, and the measurement element of the measurement head is moved to the measurement object. In a measuring method for measuring the coordinate value of a position offset from the contact point and the surface of the workpiece by contacting,
The measuring head includes a tracing stylus having a spherical portion at a tip and supported to be displaced in a substantially normal direction with respect to the surface of the object to be measured when the measuring head comes into contact with the surface of the measuring object.
Using a displacement detection type measuring head capable of detecting each displacement in the Z-axis direction, the item to be measured needs to be in the first measurement mode which requires a step of obtaining coordinates of the surface of the object to be measured, or the surface of the object to be measured It is determined whether the second measurement mode requires a step of obtaining coordinates of a point offset by a predetermined amount from the first measurement mode. For the measurement items determined as the first measurement mode, the X, Y, and Z axes of the displacement detection type measurement head are determined. Each position data in the direction is read, and the coordinate value (U, V, W) of the contact point when the tracing stylus of the displacement detection type measuring head is brought into contact with the surface of the object to be measured is expressed by U = X− ( R−E) · I / E (1) V = Y− (RE) · J / E (2) W = Z− ( R−E) · K / E (3) In this case, R is a known value of the radius of the tip sphere of the tracing stylus. ,
I, J, K are X, Y,
Each displacement, E, in the Z-axis direction is a combined displacement of the tracing stylus, and E = √
(I 2 + J 2 + K 2 ), that is, the value of E is (I 2 + J 2
X, Y and Z, which are equal to the square root of + K 2 ), are obtained according to the equations (1) to (3) expressed by the respective position data of the displacement detection type measuring head when the displacement is detected by contact. For the measurement item determined as the second measurement mode, the position data of the displacement detection type measurement head in the X, Y, and Z-axis directions is read, and the measuring element of the displacement detection type measurement head is placed on the surface of the workpiece. The coordinate value (x, y, z) at a position offset by a predetermined amount from the contact point at the time of contact is represented by: x = X + (E−E 0 ) · I / E (4) y = Y + (E−E 0 ) · J / E (5) z = Z + (E−E 0 ) · K / E (6) In this case, E 0 is a reference displacement amount set in advance, an amount of the radius R of the end ball portion of the probe by subtracting the predetermined offset amount r 0, I, J, K displacement test X detected in the form measuring head, Y, the displacement in the Z-axis direction, E is E = √ synthetic displacement of the measuring element (I 2 + J 2 + K 2), i.e. the value of E is (I 2 +
X, Y, and Z, which are equal to the square root of J 2 + K 2 ), are obtained according to the equations (4) to (6) of each position data of the displacement detection type measuring head when the displacement is detected by contact. A measurement method is provided.

【0009】また、本発明によれば、立体形状を有する
被測定物と測定ヘッドとの間でX,Y,Z軸方向の相対
移動を行い、前記被測定物に前記測定ヘッドの測定子を
接触させて座標値や寸法を測定する測定装置において、
前記測定ヘッドは、先端に球部を有し前記被測定物の表
面に接触するとその表面に対して略法線方向に変位する
ように支持された測定子を備え、該測定子のX,Y,Z
軸方向の各変位を検出可能な変位検出形測定ヘッドとし
て形成され、前記変位検出形測定ヘッドのX,Y,Z軸
方向の各位置データを読み取る位置読取り手段と、前記
被測定物の表面に前記変位検出形測定ヘッドの測定子を
接触させたときの該接触点の座標値(U,V,W)を、 U=X−(R−E)・I/E ・・・・・・・・・(1) V=Y−(R−E)・J/E ・・・・・・・・・(2) W=Z−(R−E)・K/E ・・・・・・・・・(3) ただし、Rは測定子の先端球部半径で既知の値、I,
J,Kは変位検出形測定ヘッドで検出したX,Y,Z軸
方向の各変位、Eは、測定子の合成変位量でE=√(I
2 +J2 +K2 )、つまり、Eの値は(I2 +J2 +K
2 )の平方根に等しい、X,Y,Zは、接触して変位を
検出したときの変位検出形測定ヘッドの各位置データ、
の(1)〜(3)式に従って求める表面座標演算手段
と、前記被測定物の表面に前記変位検出形測定ヘッドの
測定子を接触させたときの該接触点から所定量オフセッ
トした位置の座標値(x,y,z)を、 x=X+(E−E0 )・I/E ・・・・・・・(4) y=Y+(E−E0 )・J/E ・・・・・・・(5) z=Z+(E−E0 )・K/E ・・・・・・・(6) ただし、E0 は予め設定された基準変位量で、測定子の
先端球部の半径Rから所定のオフセット量r0 を引いた
量、I,J,Kは変位検出形測定ヘッドで検出したX,
Y,Z軸方向の各変位、Eは測定子の合成変位量でE=
√(I2 +J2 +K2 )、つまりEの値は(I2 +J2
+K2 )の平方根に等しい、X,Y,Zは、接触して変
位を検出したときの変位検出形測定ヘッドの各位置デー
タ、の(4)〜(6)式に従って求めるオフセット座標
演算手段と、前記被測定物と前記変位検出形測定ヘッド
とのX,Y,Z軸方向の相対移動を制御するNC装置
と、測定すべき項目が前記被測定物の表面座標を求める
ステップを必要とする第1測定モードか、前記被測定物
の表面から所定量オフセットした点の座標を求めるステ
ップを必要とする第2測定モードかを判別する測定モー
ド判別手段と、前記判別手段が第1測定モードと判別し
た測定項目については前記表面座標演算手段の出力を用
いて測定値を求め、前記判別手段が第2測定モードと判
別した測定項目については前記オフセット座標演算手段
の出力を用いて測定値を求める測定値演算手段と、を具
備する測定装置が提供される。
Further, according to the present invention, relative movement in the X, Y, and Z-axis directions is performed between the measurement object having a three-dimensional shape and the measurement head, and the measurement element of the measurement head is attached to the measurement object. In a measuring device that measures coordinate values and dimensions by contacting
The measuring head includes a tracing stylus having a spherical portion at the tip and supported so as to be displaced in a substantially normal direction with respect to the surface of the measuring object when it comes into contact with the surface of the measuring object. , Z
Position reading means formed as a displacement detection type measurement head capable of detecting each displacement in the axial direction, reading position data of the displacement detection type measurement head in the X, Y, and Z directions; The coordinate value (U, V, W) of the contact point when the probe of the displacement detection type measurement head is brought into contact is expressed as follows: U = X− (RE) · I / E .. (1) V = Y− (RE) · J / E (2) W = Z− (RE) · K / E・ ・ (3) where R is a known value of the radius of the tip sphere of the tracing stylus.
J and K are the displacements in the X, Y and Z-axis directions detected by the displacement detection type measuring head, and E is the combined displacement of the tracing stylus, and E = √ (I
2 + J 2 + K 2 ), that is, the value of E is (I 2 + J 2 + K
2 ) X, Y, and Z, which are equal to the square root of, are each position data of the displacement detection type measuring head when contact is detected and displacement is detected;
Surface coordinate calculating means obtained according to the equations (1) to (3), and coordinates of a position offset by a predetermined amount from the contact point when the measuring element of the displacement detection type measuring head is brought into contact with the surface of the object to be measured. The value (x, y, z) is expressed as follows: x = X + (E−E 0 ) · I / E (4) y = Y + (E−E 0 ) · J / E .. (5) z = Z + (E−E 0 ) · K / E (6) where E 0 is a preset reference displacement amount, and The amount obtained by subtracting a predetermined offset amount r 0 from the radius R, I, J, and K are X, X detected by the displacement detection type measuring head.
Each displacement in the Y and Z axis directions, E is the combined displacement of the tracing stylus and E =
√ (I 2 + J 2 + K 2 ), that is, the value of E is (I 2 + J 2
X, Y, and Z, which are equal to the square root of + K 2 ) are offset coordinate calculation means obtained according to equations (4) to (6) of each position data of the displacement detection type measuring head when contact is detected and displacement. An NC device for controlling the relative movement of the object to be measured and the displacement detection type measurement head in the X, Y, and Z-axis directions, and a step of determining the surface coordinates of the object to be measured requires an item to be measured. Measuring mode determining means for determining whether the measurement mode is the first measuring mode or the second measuring mode which requires a step of obtaining coordinates of a point offset by a predetermined amount from the surface of the device under test; For the determined measurement item, a measurement value is obtained using the output of the surface coordinate calculation means, and for the measurement item determined to be in the second measurement mode by the determination means, measurement is performed using the output of the offset coordinate calculation means. Comprising a measurement value calculating means for obtaining a measurement device is provided.

【0010】[0010]

【作用】上述した構成によれば、演算式(1)〜(6)
を駆使することにより、被測定立体形状物の表面座標値
を測定して形状測定を行うことも、オフセット演算によ
り測定子の計測中心の座標値を求めることにより寸法測
定を行うことも可能であり、更には、被測定項目が形状
測定の場合と寸法測定の場合とを2つの測定モードとし
て同じ被測定物に対して必要とする測定項目が何ずれの
測定モードであるかを判別しながら所要の測定モードを
逐次、実行することもできるのである。
According to the above construction, the arithmetic expressions (1) to (6)
By making full use of, it is possible to measure the shape by measuring the surface coordinate value of the three-dimensional object to be measured, or to measure the dimension by obtaining the coordinate value of the measurement center of the measuring element by offset calculation. Further, when the measurement target is a shape measurement and a dimension measurement, the two measurement modes are set as two measurement modes. Can be sequentially executed.

【0011】[0011]

【実施例】以下、本発明を添付図面に示す実施例に基づ
いて、更に詳細に説明する。図1は、三次元座標系にお
いて立体形状を有する被測定物の表面に変位検出形測定
ヘッドの同表面に対して略法線方向に変位するように支
持された測定子を押し当てたときの接触点の座標値を測
定するための原理図、図2は、同じく立体形状の被測定
物の表面に変位検出形測定ヘッドの測定子を押し当てた
ときの接触点から法線方向に距離r0 だけオフセットし
た点S(通常は、球形測定子内部の点である)の座標値
を測定する原理図、図3は、被測定物と変位検出形測定
ヘッドとの間の相対移動を制御しながら同変位検出形測
定ヘッドから図1または図2に示す原理に従って被測定
物の接触点座標値またはオフセット点Sの座標値を測定
し、これらを2つの測定モードに分類しながら、所望の
モードの測定を自動遂行可能にする測定装置の構成を示
したブロック図、図4は、被測定物の表面のある点の座
標値を測定する場合の測定点と測定子との関係を二次元
座標系で略示した図、図5は、同じく被測定物が有する
表面上の2直線の交点と同交点における2直線の成す角
度を求めるための測定方法を説明する略示図、図6は、
被測定物の例えば、2つの面の間の距離寸法を測定する
場合を二次元座標系の2つの直線間の距離寸法に置き換
えて測定する方法を説明する略示図、図7は、被測定物
の球面の半径測定に適用可能な円弧測定を二次元座標系
で説明する略示説明図、図8は被測定物に穿設された多
数の孔のピッチ寸法の測定に適用する場合の測定方法を
二次元座標系で簡略化して説明するための略示図、図9
は、被測定体に穿設された円孔の中心と同被測定体の別
の面との距離測定に適用する場合の測定方法を二次元座
標系で説明するための略示図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in more detail with reference to the embodiments shown in the accompanying drawings. FIG. 1 shows a state in which a tracing stylus supported so as to be displaced in a substantially normal direction with respect to the same surface of a displacement detection type measuring head is pressed against the surface of an object to be measured having a three-dimensional shape in a three-dimensional coordinate system. FIG. 2 is a principle diagram for measuring coordinate values of a contact point, and FIG. 2 shows a distance r in the normal direction from the contact point when the measuring element of the displacement detection type measuring head is pressed against the surface of the object having the same three-dimensional shape. FIG. 3 is a principle diagram for measuring a coordinate value of a point S (usually a point inside a spherical tracing stylus) offset by 0 , and FIG. 3 controls a relative movement between an object to be measured and a displacement detection type measuring head. While measuring the coordinate value of the contact point or the coordinate value of the offset point S of the object to be measured from the same displacement detection type measuring head according to the principle shown in FIG. 1 or FIG. Of measurement equipment that enables automatic measurement of FIG. 4 is a block diagram showing the configuration, FIG. 4 is a diagram schematically showing the relationship between a measurement point and a probe when measuring the coordinate value of a certain point on the surface of the object to be measured in a two-dimensional coordinate system, and FIG. FIG. 6 is a schematic diagram illustrating a measurement method for determining an intersection between two straight lines on the surface of the object to be measured and an angle formed by the two straight lines at the same intersection.
FIG. 7 is a schematic diagram for explaining a method of measuring a distance between two surfaces of an object to be measured by replacing the distance with two straight lines in a two-dimensional coordinate system. FIG. 8 is a schematic explanatory view illustrating an arc measurement applicable to the radius measurement of a spherical surface of an object in a two-dimensional coordinate system. FIG. 8 shows a measurement applied to a measurement of a pitch dimension of a large number of holes formed in an object to be measured. FIG. 9 is a schematic diagram for simplifying and explaining the method in a two-dimensional coordinate system.
FIG. 3 is a schematic diagram for describing, in a two-dimensional coordinate system, a measurement method when applied to a distance measurement between a center of a circular hole formed in a measured object and another surface of the measured object.

【0012】さて、図1を参照すると、図示、明示され
ていない変位検出形測定ヘッド10へ支持軸12を介し
て支持された球状測定子14(半径R)を、被測定物W
pの表面Wsに押し当てたときの接触点Pの三次元座標
系における座標値P(U,V,W)を同変位検出形測定
ヘッド10で測定する状態を示している。同測定ヘッド
10の測定子14は、被測定物Wpとの間で相対移動す
ることにより、支持軸12と共に一点鎖線で示す位置ま
で機械的に移動した場合でも、面Wsとの接触により押
し戻され、実際の支持軸12と測定子14とは実線で示
す位置に達し、測定子14の中心Tの位置が測定子14
の位置と認識される。このとき、変位検出手段を内蔵し
た変位検出形測定ヘッド10の検出軸(図示なし)は、
測定子14を、あたかも一点鎖線の位置までめり込ませ
た位置(中心Qの位置)に達している。この中心Qの三
次元座標系における位置座標(X,Y,Z)は、測定ヘ
ッド10の検出軸のX,Y,Z軸方向における各位置デ
ータにほかならない。故に、被測定物Wpと測定ヘッド
10との間の相対移動における送り軸系に具備された光
学式リニアスケール又は送り軸モータのロータリーエン
コーダ等の位置検出手段の出力データとして上記の位置
座標Q(X,Y,Z)を得ることができる。
Referring to FIG. 1, a spherical measuring element 14 (radius R) supported via a support shaft 12 to a displacement detecting type measuring head 10 not shown or shown is attached to a workpiece W.
This figure shows a state where the coordinate value P (U, V, W) of the contact point P in the three-dimensional coordinate system when pressed against the surface Ws of p is measured by the displacement detection type measuring head 10. The tracing stylus 14 of the measuring head 10 is pushed back by the contact with the surface Ws even when the tracing stylus 14 is moved relative to the object to be measured Wp and mechanically moved to a position indicated by a dashed line together with the support shaft 12. The actual support shaft 12 and the tracing stylus 14 reach the position shown by the solid line, and the position of the center T of the tracing stylus 14 is
Is recognized. At this time, the detection axis (not shown) of the displacement detection type measuring head 10 incorporating the displacement detection means is
The tracing stylus 14 has reached a position (the position of the center Q) as if it was sunk into the position of the dashed line. The position coordinates (X, Y, Z) of the center Q in the three-dimensional coordinate system are nothing but the respective position data in the X, Y, Z axis directions of the detection axis of the measuring head 10. Therefore, the position coordinates Q () are output as output data of position detecting means such as an optical linear scale or a rotary encoder of a feed shaft motor provided in the feed shaft system in the relative movement between the workpiece Wp and the measurement head 10. X, Y, Z) can be obtained.

【0013】他方、測定子14が被測定物Wpの面Ws
と接触し、押し当てられることにより測定子14の球部
の中心は実際には三次元座標系で同面Wsに対して略法
線方向に変位が発生している。この発生変位量Eは、測
定ヘッド10が有する変位検出手段によりX,Y,Z軸
方向の変位成分(I,J,K)として検出される。よっ
て被測定物Wpの表面Wsの接触点Pにおける座標値
(U,V,W)は図示より明らかなように、次の演算式
(1)〜(3)によって定義される。
On the other hand, the tracing stylus 14 is connected to the surface Ws of the workpiece Wp.
As a result, the center of the spherical portion of the tracing stylus 14 is actually displaced in a substantially normal direction with respect to the same plane Ws in the three-dimensional coordinate system. The generated displacement amount E is detected as displacement components (I, J, K) in the X, Y, and Z axis directions by the displacement detecting means of the measuring head 10. Therefore, the coordinate values (U, V, W) at the contact point P of the surface Ws of the workpiece Wp are defined by the following arithmetic expressions (1) to (3) as is clear from the drawing.

【0014】 U=X−(R−E)・I/E ・・・・(1) V=Y−(R−E)・J/E ・・・・(2) W=Z−(R−E)・K/E ・・・・(2) つまり、従来の変位検出形測定ヘッドを用いた測定方法
と装置では、測定子の球部の半径と発生変位とが常に一
致すると言う条件下(基準変位量E0 を設定する)で測
定が行われたが、本実施例では、R=Eなる点で測定し
なくても任意の発生変位量Eだけ測定子14を被加工物
Wpの表面に押し当て、内方へ押し込んだ場合に発生す
る変位データEと測定ヘッド10の検出軸の位置データ
とから正確な表面座標Pの座標値(U,V,W)を得る
ことができるのである。なお、上記の演算式(1)〜
(3)による演算は、例えば、被測定物Wpと測定ヘッ
ド10との間に相対移動を実行させる駆動系の制御装
置、例えばNC装置に備えられた演算手段で行い得るも
のであり、また、適宜の演算手段を備えることによって
達成することもできる。
U = X− (RE) · I / E (1) V = Y− (RE) · J / E (2) W = Z− (R−) E) · K / E (2) In other words, in the measuring method and the apparatus using the conventional displacement detection type measuring head, the condition that the radius of the spherical portion of the tracing stylus always coincides with the generated displacement ( Although setting a reference displacement amount E 0) on measurements performed, in the present embodiment, R = the surface of the workpiece Wp measuring element 14 by an arbitrary generating displacement E without measured at a point which is E , And accurate coordinate values (U, V, W) of the surface coordinates P can be obtained from the displacement data E generated when the body is pushed inward and the position data of the detection axis of the measuring head 10. . In addition, the above arithmetic expressions (1) to
The calculation according to (3) can be performed by, for example, a control device of a drive system that performs relative movement between the workpiece Wp and the measurement head 10, for example, a calculation unit provided in an NC device. It can also be achieved by providing appropriate arithmetic means.

【0015】次に図2を参照すると、この場合は、被測
定物Wpに変位検出形測定ヘッド10の測定子14を押
し当てたときの接触点から同被測定物Wpの表面Wsに
対して略法線方向に距離r0 だけオフセットした点Sの
三次元座標系における座標値(x,y,z)を測定する
測定方法の原理である。この点Sの位置は、必ずしも測
定子14の球部の中心位置で無いことは言うまでもな
い。
Referring now to FIG. 2, in this case, the contact point when the tracing stylus 14 of the displacement detection type measuring head 10 is pressed against the measured object Wp is applied to the surface Ws of the measured object Wp. This is a principle of a measuring method for measuring coordinate values (x, y, z) in a three-dimensional coordinate system of a point S offset by a distance r 0 in a substantially normal direction. Needless to say, the position of this point S is not necessarily the center position of the spherical portion of the tracing stylus 14.

【0016】例えば、測定ヘッド10の測定子14の中
心Q(X,Y,Z)を、基準変位量E0 だけ被測定物W
pに押し込もうとしたが、実際には合成変位量E(各
X,Y,Z軸方向の変位成分はI,J,K)を発生した
位置Tまで押し込まれている様子が表されている。この
場合に、オフセット距離(量)r0 は、図2から明らか
なように、(R−E0 )であり、予め設定された量であ
る。
For example, the center Q (X, Y, Z) of the tracing stylus 14 of the measuring head 10 is moved by the reference displacement E 0
Although it is attempted to push the actuator into the position p, it is actually shown that the actuator is pushed to the position T where the combined displacement E (the displacement components in the X, Y, and Z directions are I, J, and K) is generated. I have. In this case, the offset distance (amount) r 0 is (R−E 0 ), as is clear from FIG. 2, and is a preset amount.

【0017】この場合のオフセット点Sの座標値(x,
y,z)は次の演算式(4)〜(6)から得られるので
ある。 x=X+(E−E0 )・I/E ・・・・(4) y=Y+(E−E0 )・J/E ・・・・(5) z=Z+(E−E0 )・K/E ・・・・(6) 実際に上記演算式(4)〜(6)を実行する演算手段
は、前述と同じく、被測定物Wpと測定ヘッド10との
間の相対移動の送り機構を制御するNC装置等の制御装
置に具備された演算手段によって形成すれば良い。
In this case, the coordinate value (x,
(y, z) is obtained from the following arithmetic expressions (4) to (6). x = X + (E−E 0 ) · I / E (4) y = Y + (E−E 0 ) · J / E (5) z = Z + (E−E 0 ) · K / E (6) The arithmetic means for actually executing the arithmetic expressions (4) to (6) is a feed mechanism for the relative movement between the workpiece Wp and the measuring head 10 as described above. May be formed by an arithmetic means provided in a control device such as an NC device for controlling the control.

【0018】上述した演算を実行することにより、従来
のように、測定子14の球部の半径と基準変位E0 とを
一致させる、つまり、図2のシステムではR=E0 とな
る点で測定しなくても、任意量Eだけ測定子14を被加
工物Wpの表面Wsに向けて押し込んだ状態の変位デー
タと位置データとから、正確に表面Wsに対してオフセ
ット距離r0 だけオフセットした位置の座標を求めるこ
とができるのである。
By executing the above-described calculation, the radius of the spherical portion of the tracing stylus 14 and the reference displacement E 0 are made to coincide with each other, that is, in the system of FIG. 2, at the point where R = E 0. Even if measurement is not performed, the displacement data and the position data in a state where the tracing stylus 14 is pushed toward the surface Ws of the workpiece Wp by an arbitrary amount E are accurately offset by the offset distance r 0 with respect to the surface Ws. The coordinates of the position can be determined.

【0019】次に、このようにして得られる測定ヘッド
10、測定子14を用いた測定の応用に就いて、以下に
説明する。上述した被測定物Wpを変位検出形測定ヘッ
ド10の測定子14の接触、押圧で測定する過程におい
て、測定子14のオフセットした位置Sの座標(x,
y,z)として得られるデータは、どのように利用々途
があるかを、先ず、考察すると、例えば、図6〜図9に
おける図6に示すように、被測定物の複数点位置でオフ
セット位置Sの座標値データを得れば、被測定物Wpの
面Wsに沿った点位置l1 とl 2とを結ぶ直線に対する
別の面Wsに沿う点位置l3 からの距離hを測定してオ
フセット距離r0 を加算すれば両面間の距離測定データ
を得ることができる。
Next, an application of the measurement using the measuring head 10 and the tracing stylus 14 thus obtained will be described below. In the above-described process of measuring the workpiece Wp by contacting and pressing the measuring element 14 of the displacement detection measuring head 10, the coordinates (x, x) of the offset position S of the measuring element 14 are measured.
First, considering how the data obtained as (y, z) can be used, for example, as shown in FIG. 6 in FIG. 6 to FIG. if you get the coordinate value data of the position S, to measure the distance h from the position l 3 points along the other side Ws for the straight line connecting the position l 1 and l 2 points along the surface Ws of the object Wp If the offset distance r 0 is added, distance measurement data between both surfaces can be obtained.

【0020】また、被測定物Wpが有する球面Wsに対
応した円弧沿いの点位置l1,l2,l3 を測定して、オフ
セット距離r0 を加算すれば円弧の中心位置と半径とを
求める測定を実施することができるのである(図7)。
更に、被測定物Wpに穿設した複数の孔の中心間距離、
即ち、ピッチ距離をX,Y,Z軸方向(図示ではX,Y
軸と簡略図示している)の各成分量で測定することがで
きる(図8)。すなわち、同図8に示すように、異なる
円孔に就いて、夫々複数点、l1,l2,l3 とl4,l5,l
6 とから各円孔の中心位置データを求め、その求めた中
心位置データから、ピッチ距離の演算測定が実施でき
る。
Further, the point positions l 1 , l 2 , l 3 along the arc corresponding to the spherical surface Ws of the DUT Wp are measured, and the offset distance r 0 is added to determine the center position and radius of the arc. The required measurement can be performed (FIG. 7).
Further, the distance between the centers of a plurality of holes formed in the object to be measured Wp,
That is, the pitch distance is set in the X, Y, Z axis directions (X, Y in the drawing).
(Indicated on the axis and the simplified diagram) can be measured (FIG. 8). That is, as shown in FIG. 8, for different circular holes, a plurality of points, l 1 , l 2 , l 3 and l 4 , l 5 , l
From 6 , the center position data of each circular hole is obtained, and from the obtained center position data, the calculation and measurement of the pitch distance can be performed.

【0021】他方、図9は、被測定物Wpに穿設された
円孔の中心位置から別の面Wsに沿う直線までの距離を
演算測定する場合である。この場合にも、円孔の中心位
置を測定点l1,l2,l3 から求め、他方、別の面に沿う
直線位置を点l4,l5 から求め、両者から距離hを求め
る場合である。すなわち、図6〜図9は、一般的に被測
定物Wpに関する寸法測定を行う場合であり、被測定物
Wpの表面Wsの座標値をいちいち求めなくとも、被測
定物Wpの表面から所定距離だけオフセットした点l1
〜l6 の座標値データを測定することで、被測定物Wp
に関する寸法データの測定が結果的に演算、測定するこ
とができるのである。
On the other hand, FIG. 9 shows a case where the distance from the center position of a circular hole formed in the workpiece Wp to a straight line along another surface Ws is calculated and measured. Also in this case, the center position of the circular hole is determined from the measurement points l 1 , l 2 , l 3 , while the linear position along another plane is determined from the points l 4 , l 5 , and the distance h is determined from both. It is. That is, FIGS. 6 to 9 show a case in which the dimension measurement of the object Wp is generally performed, and a predetermined distance from the surface of the object Wp can be obtained without obtaining the coordinate value of the surface Ws of the object Wp. point only was offset l 1
By measuring the coordinate value data of ~ l 6, the measured object Wp
As a result, the measurement of the dimension data can be calculated and measured.

【0022】図4、図5は、被測定物Wpの表面Wsと
測定ヘッドの測定子14との接触点の座標値データを図
1に示した測定原理に従って求める応用例を示し、図4
は球面や円弧に沿う点の測定を行う場合、図5は2つの
面に沿う2つの直線の交点と、同交点における成す角度
θとを求める場合である。以上の説明から明らかなよう
に、本発明によれば、変位検出形測定ヘッド10の測定
子14を被測定物Wpに対して相対移動させ、その間に
測定子14と被測定物表面との接触状態から接触点の座
標測定を行う場合と接触点からオフセットした位置の座
標値とを演算、測定する測定方法が、従来の如く、基準
変位量E0に捕らわれることなく、任意の発生変位Eに
基づいて実行し得るが、後者の図2に示した測定原理
が、前者の図1に示した測定原理よりも優れている点を
以下に説明する。
FIGS. 4 and 5 show an application example in which the coordinate value data of the contact point between the surface Ws of the workpiece Wp and the tracing stylus 14 of the measuring head is obtained according to the measuring principle shown in FIG.
FIG. 5 shows a case where a point along a spherical surface or an arc is measured, and FIG. 5 shows a case where an intersection point of two straight lines along two surfaces and an angle θ formed at the intersection point are obtained. As is clear from the above description, according to the present invention, the tracing stylus 14 of the displacement detection type measuring head 10 is relatively moved with respect to the measured object Wp, during which the contact between the tracing stylus 14 and the surface of the measured object is caused. In the case where the coordinate measurement of the contact point is performed from the state and the coordinate value of the position offset from the contact point is calculated and measured, as in the related art, the arbitrary displacement E can be obtained without being caught by the reference displacement E 0. The fact that the measurement principle shown in FIG. 2 is superior to the measurement principle shown in FIG. 1 will be described below.

【0023】すなわち、変位検出形測定ヘッド10の測
定子14と被測定物Wpとの摩擦によって測定子14の
変位ベクトルの方向に若干の誤差θが発生した場合に、
図1の測定原理では、表面座標の測定値にRtanθ
(R:測定子半径)の誤差が発生し、Rが大きい程、又
Eが小さい程、誤差が拡大する傾向がある。他方、図2
の測定原理では、測定子14の半径Rを用いずに、前述
した演算式(4)〜(6)から明らかなように、合成変
位と基準変位との差値(E−E0 )なる数値を用いてい
る。つまり、EはE0 になるように、測定子14を被測
定物Wpに押し込み、実測したらE0 より若干、異なる
Eの位置で止まるケースが多いので、上記の値(E−E
0 )は非常に小さい値である。このように、図2は、測
定子14の先端球部の半径Rには関係しないことから、
先端球部の寸法値データの精度に左右されることがな
く、より高精度な測定を行い得る点で優れているのであ
る。
That is, when a slight error θ occurs in the direction of the displacement vector of the tracing stylus 14 due to the friction between the tracing stylus 14 of the displacement detecting type measuring head 10 and the workpiece Wp,
According to the measurement principle of FIG. 1, the measured value of the surface coordinates is Rtanθ.
(R: tracing stylus radius) error occurs, and the error tends to increase as R increases and E decreases. On the other hand, FIG.
According to the measurement principle described above, the value of the difference value (E−E 0 ) between the combined displacement and the reference displacement can be obtained without using the radius R of the tracing stylus 14 as is clear from the above-described arithmetic expressions (4) to (6). Is used. That is, in many cases, the tracing stylus 14 is pushed into the measured object Wp so that E becomes E 0 , and after actual measurement, it stops at a position of E slightly different from E 0 in many cases.
0 ) is a very small value. As described above, since FIG. 2 is not related to the radius R of the tip spherical portion of the tracing stylus 14,
This is excellent in that higher-precision measurement can be performed without being affected by the accuracy of the dimension value data of the tip spherical portion.

【0024】従って、被測定物Wpの実際の測定過程で
は、測定すべき項目が、図1の測定原理によるべきか、
図2の測定原理によるべきかの判別をしてから、測定す
る必要が生ずる。すなわち、図4、図5に示した適用例
では、図1の測定原理(表面座標の演算手段を用いて演
算式(1)〜(3)を実行する演算ステップ)に従う方
法が有効である。
Therefore, in the actual measurement process of the measured object Wp, whether the item to be measured should be based on the measurement principle of FIG.
After determining whether to use the measurement principle shown in FIG. 2, it is necessary to perform measurement. That is, in the application examples shown in FIGS. 4 and 5, a method according to the measurement principle of FIG. 1 (operation steps for executing the arithmetic expressions (1) to (3) using the surface coordinate operation means) is effective.

【0025】他方、図6〜図9の適用では、図2の測定
原理(オフセット座標の演算手段を用いて演算式(4)
〜(6)を実行する演算ステップ)に従う方法が有効で
あると言えるのである。さて、ここで図3を参照する
と、本願の請求項5に記載した発明に対応した測定装置
が示されている。
On the other hand, in the application of FIG. 6 to FIG. 9, the measurement principle of FIG.
It can be said that a method according to (operation steps for executing (6)) is effective. Now, referring to FIG. 3, there is shown a measuring apparatus corresponding to the invention described in claim 5 of the present application.

【0026】図3において、被測定物Wpは、例えば三
次元測定装置として知られた装置に取り付けられて測定
が行われる。同装置は、固定ベッド20と、同ベッド2
0上に立設されて図示のY軸方向に移動可能な立設コラ
ム22と、同コラム22に対して同Y軸に対して直交し
たX軸方向に左右動可能なテーブル24と、上述のココ
ラム22の前面に上記のX,Y軸に対して直交したZ軸
方向に摺動可能に支持された主軸頭26と、同主軸頭2
6の先端部位に取着された変位検出形測定ヘッド10と
を有して構成され、測定ヘッド10の先端には既述した
測定子14が装脱自在に取付けられている。
In FIG. 3, the object to be measured Wp is mounted on, for example, a device known as a three-dimensional measuring device to perform measurement. The device comprises a fixed bed 20 and a bed 2
0, an upright column 22 movable in the Y-axis direction shown in the figure, a table 24 movable left and right in the X-axis direction orthogonal to the Y-axis with respect to the column 22, A spindle head 26 supported on the front surface of the co-column 22 so as to be slidable in a Z-axis direction orthogonal to the X and Y axes, and a spindle head 2;
6 and a displacement detection type measuring head 10 attached to the distal end portion, and the above-described measuring element 14 is detachably attached to the distal end of the measuring head 10.

【0027】そして、被測定物Wpは、上記のテーブル
24上に搭載、保持され、コラム22、テーブル24、
主軸頭26の相対移動から、測定ヘッド10の測定子1
4を被測定物Wpの表面に接触させることができる構成
となっている。このとき、上記のコラム22、テーブル
24、主軸頭26による相対移動量は、夫々、例えば、
光学式スケール等から成るX,Y,Z軸スケール30、
32、34を介して検出可能であり、また、これらの移
動は、制御装置を形成するNC装置36からの指令に応
じて作動する図示されていないボールねじ機構等の周知
の送り機構に依って遂行される構成を有している。
The object to be measured Wp is mounted and held on the table 24, and the column 22, the table 24,
Due to the relative movement of the spindle head 26, the tracing stylus 1 of the measuring head 10
4 can be brought into contact with the surface of the workpiece Wp. At this time, the relative movement amounts of the column 22, the table 24, and the spindle head 26 are, for example,
X, Y, and Z axis scales 30 including optical scales and the like,
32 and 34, and these movements are performed by a well-known feed mechanism such as a ball screw mechanism (not shown) which operates in response to a command from the NC device 36 forming the control device. It has a configuration that is performed.

【0028】上述したX,Y,Z軸スケール30〜34
の検出データ、変位検出形測定ヘッド10の変位検出デ
ータ(I,J,K)は、位置読み取り手段38に送出さ
れ、この位置読み取り手段38から、更に表面座標演算
手段40とオフセット座標演算手段42へ送出されてい
る。なお、図示例では説明を容易にするために、これら
の両演算手段40、42を分離図示したが、これらは、
例えば、NC装置36に内蔵した演算手段を用いるよう
に構成することもできる。また、両演算手段40、42
は、既述した演算式(1)〜(6)で用いる諸パラメー
タを予め記憶するパラメータ記憶手段44に接続され、
演算過程で所要のパラメータを読み出し得るようにして
いる。
The above-described X, Y, and Z axis scales 30 to 34
, And the displacement detection data (I, J, K) of the displacement detection type measuring head 10 are sent to a position reading means 38, which further outputs a surface coordinate calculating means 40 and an offset coordinate calculating means 42. Has been sent to. In the illustrated example, for the sake of simplicity of explanation, these two arithmetic means 40 and 42 are shown separately, but these are
For example, it is also possible to use an arithmetic unit built in the NC device 36. Further, both calculation means 40 and 42
Is connected to a parameter storage unit 44 that stores in advance the parameters used in the above-described arithmetic expressions (1) to (6),
Required parameters can be read out in the calculation process.

【0029】他方、上記の表面座標演算手段40とオフ
セット座標演算手段42とは、既述したように必要に応
じて表面座標位置の測定モードとオフセット位置の測定
モードとの使い分けを可能にする測定モード判別手段4
6に接続され、この測定モード判別手段46はNC装置
36からの指令で所望の測定モードを判別することが可
能に接続されている。
On the other hand, the surface coordinate calculating means 40 and the offset coordinate calculating means 42 perform the measurement for enabling the use of the surface coordinate position measurement mode and the offset position measurement mode as necessary, as described above. Mode determination means 4
The measuring mode discriminating means 46 is connected so as to be able to discriminate a desired measuring mode in accordance with a command from the NC device 36.

【0030】また、測定モード判別手段46は、測定モ
ードに応じて最終的に必要とする測定値を測定する測定
値演算手段48に接続され、この測定値演算手段48の
演算結果が、例えば、ディスプレイ装置やプリンタ等か
ら成る周知の出力手段50へ出力される構成を有してい
る。次に、上述した測定装置による測定プロセスを説明
する。
The measuring mode determining means 46 is connected to a measuring value calculating means 48 for measuring a finally required measuring value in accordance with the measuring mode. It is configured to output to a well-known output unit 50 such as a display device or a printer. Next, a measurement process by the above-described measurement device will be described.

【0031】測定する手順を指令するNCプログラムを
NC装置36に与え、測定を開始する。被測定物Wpと
測定ヘッド10の測定子14との相対移動が遂行され、
第1の測定点で合成変位量がE0 となったことが位置読
み取り手段38で読み取られると、送り軸停止指令(ス
キップ信号)が、同位置読み取り手段38からNC装置
36へ送出される。停止した位置におけるX,Y,Z座
標値と発生変位量Eの各軸成分(I,J,K)とをX,
Y,Z軸スケール30〜34と測定ヘッド10とから送
られる検出データとして位置読み取り手段38で取り込
み、表面座標演算手段40又はオフセット座標演算手段
42へ送出する。
An NC program for instructing a measurement procedure is given to the NC device 36, and measurement is started. The relative movement between the workpiece Wp and the tracing stylus 14 of the measuring head 10 is performed,
When the position reading means 38 reads that the combined displacement amount has reached E 0 at the first measurement point, a feed axis stop command (skip signal) is sent from the position reading means 38 to the NC device 36. X, Y, and Z coordinate values at the stopped position and each axis component (I, J, K) of the generated displacement amount E are represented by X,
The position reading means 38 takes in the detection data sent from the Y and Z axis scales 30 to 34 and the measuring head 10 and sends them to the surface coordinate calculating means 40 or the offset coordinate calculating means 42.

【0032】そのとき、既知の数値(測定子球部半径R
や基準変位量E0 )はパラメータ記憶手段44に予め格
納されており、このパラメータ記憶手段44から随時に
読み出して演算に使用する。測定モード判別手段46
は、NC装置36から現在行っている測定が図4〜図9
の何ずれの測定項目であるかの情報を得て、それが形状
測定モードか寸法測定モードかを判別する。
At this time, a known numerical value (measurement element sphere radius R
And the reference displacement amount E 0 ) are stored in the parameter storage unit 44 in advance, and are read out from the parameter storage unit 44 as needed and used for calculation. Measurement mode determination means 46
Indicate that the measurements currently performed from the NC device 36 are shown in FIGS.
The information on the deviation of the measurement item is obtained, and it is determined whether the measurement item is the shape measurement mode or the dimension measurement mode.

【0033】このとき、形状測定モードの場合は、表面
座標演算手段40からの演算の結果を用い、他方、寸法
測定モードの場合は、オフセット座標演算手段42から
の演算結果を用い、それぞれの測定項目に適合した測定
値演算を測定値演算手段48で遂行し、その演算結果を
表示データまたは記録データの形として出力手段50へ
出力する。
At this time, in the case of the shape measurement mode, the calculation result from the surface coordinate calculation means 40 is used, and in the case of the dimension measurement mode, the calculation result from the offset coordinate calculation means 42 is used. The measurement value calculation suitable for the item is performed by the measurement value calculation means 48, and the calculation result is output to the output means 50 in the form of display data or record data.

【0034】以上の説明から明らかなように、図3に図
示した実施例の測定装置を用いれば被測定物に就いて所
要とする測定が形状測定であるか、円孔の径寸法、深さ
寸法、隙間や空間を隔てた2面間の幅などの幅寸法等を
求める寸法測定であるかに応じた測定モードに従って切
換えることにより、所要の測定を高精度に、かつ自動的
に遂行し得るのである。
As is clear from the above description, if the measuring apparatus of the embodiment shown in FIG. 3 is used, the required measurement for the object to be measured is the shape measurement, or the diameter and the depth of the circular hole. The required measurement can be performed with high accuracy and automatically by switching according to the measurement mode according to whether the measurement is a dimension measurement for obtaining a dimension such as a dimension, a gap or a width between two surfaces separated by a space. It is.

【0035】[0035]

【発明の効果】以上の説明から理解できるように、本発
明によれば、被測定物を変位検出形測定ヘッドを用い、
かつ所定の演算式に従って演算、測定を遂行する測定方
法と同方法を直接、実施する測定装置が提供され、この
とき、測定ヘッドの測定子球部の半径と合成変位量とを
一致させないで、測定できるように成ったので、測定過
程で測定子を被測定物の測定点に対して位置決めを厳密
に行う必要がなく、相対送り速度を速めて能率の良い測
定を遂行することが可能となったのである。
As can be understood from the above description, according to the present invention, an object to be measured is measured by using a displacement detecting type measuring head.
In addition, a measurement device that directly performs the same method as the measurement method of performing the calculation and measurement according to a predetermined calculation formula is provided.At this time, the radius of the tracing stylus of the measurement head does not match the combined displacement amount, Since measurement is now possible, it is not necessary to precisely position the probe with respect to the measurement point of the workpiece during the measurement process, and it is possible to perform efficient measurement by increasing the relative feed speed. It was.

【0036】更に、測定子球部の半径と合成変位量とが
一致していなくても表面座標やオフセット位置の座標が
演算によって正確に、かつ自動的にも求められるように
なった。しかも、被測定物の測定条件、測定項目に合っ
た演算手段を測定過程で適切に選択しつつ演算結果を順
次に得て、最終の測定値を演算、測定できるので、測定
結果の精度を向上させることができ、ひいては、加工物
の加工精度の向上等に反映させることもできるのであ
る。
Further, even if the radius of the tracing stylus does not match the resultant displacement, the coordinates of the surface coordinates and the offset position can be obtained accurately and automatically by calculation. Moreover, since the calculation results can be obtained sequentially and the final measurement value can be calculated and measured while appropriately selecting the calculation means that matches the measurement conditions and measurement items of the DUT, the accuracy of the measurement results is improved. This can be reflected in the improvement of the processing accuracy of the workpiece.

【図面の簡単な説明】[Brief description of the drawings]

【図1】三次元座標系において立体形状を有する被測定
物の表面に変位検出形測定ヘッドの同表面に対して略法
線方向に変位するように支持された測定子を押し当てた
ときの接触点の座標値を測定するための原理図である。
FIG. 1 shows a state in which a stylus supported so as to be displaced in a substantially normal direction against the same surface of a displacement detection type measuring head is pressed against the surface of an object having a three-dimensional shape in a three-dimensional coordinate system. It is a principle diagram for measuring the coordinate value of a contact point.

【図2】同じく立体形状の被測定物の表面に変位検出形
測定ヘッドの測定子を押し当てたときの接触点から法線
方向に距離r0 だけオフセットした点S(通常は、球形
測定子内部の点である)の座標値を測定する原理図であ
る。
FIG. 2 shows a point S (usually a spherical measuring element) that is offset by a distance r 0 in the normal direction from a contact point when the measuring element of the displacement detection measuring head is pressed against the surface of the object having the three-dimensional shape. FIG. 6 is a principle diagram for measuring coordinate values of (internal points).

【図3】被測定物と変位検出形測定ヘッドとの間の相対
移動を制御しながら同変位検出形測定ヘッドから図1ま
たは図2に示す原理に従って被測定物の接触点座標値ま
たはオフセット点Sの座標値を測定し、これらを2つの
測定モードに分類しながら、所望のモードの測定を自動
遂行可能にする測定装置の構成を示したブロック図であ
る。
FIG. 3 shows coordinate values of a contact point or an offset point of an object to be measured according to the principle shown in FIG. 1 or FIG. 2 while controlling relative movement between the object to be measured and the displacement detection type measurement head; FIG. 3 is a block diagram showing a configuration of a measuring apparatus that measures the coordinate values of S and classifies them into two measurement modes and automatically performs measurement in a desired mode.

【図4】被測定物の表面のある点の座標値を測定する場
合の測定点と測定子との関係を二次元座標系で略示した
図である。
FIG. 4 is a diagram schematically illustrating a relationship between a measuring point and a tracing stylus in a two-dimensional coordinate system when measuring a coordinate value of a certain point on the surface of the object to be measured.

【図5】同じく被測定物が有する表面上の2直線の交点
と同交点における2直線の成す角度を求めるための測定
方法を説明する略示図である。
FIG. 5 is a schematic diagram for explaining a measurement method for obtaining an intersection between two straight lines on the surface of the object to be measured and an angle formed by the two straight lines at the same intersection.

【図6】被測定物の例えば、2つの面の間の距離寸法を
測定する場合を二次元座標系の2つの直線間の距離寸法
に置き換えて測定する方法を説明する略示図である。
FIG. 6 is a schematic diagram illustrating a method of measuring a distance between two surfaces of an object to be measured by replacing the distance with a distance between two straight lines in a two-dimensional coordinate system.

【図7】被測定物の球面の半径測定に適用可能な円弧測
定を二次元座標系で説明する略示説明図である。
FIG. 7 is a schematic explanatory diagram illustrating a circular arc measurement applicable to a radius measurement of a spherical surface of a measurement object in a two-dimensional coordinate system.

【図8】被測定物に穿設された多数の孔のピッチ寸法の
測定に適用する場合の測定方法を二次元座標系で簡略化
して説明するための略示図である。
FIG. 8 is a schematic diagram for simply describing a measurement method in a two-dimensional coordinate system when applied to measurement of a pitch dimension of a large number of holes formed in an object to be measured.

【図9】被測定体に穿設された円孔の中心と同被測定体
の別の面との距離測定に適用する場合の測定方法を二次
元座標系で説明するための略示図である。
FIG. 9 is a schematic diagram for explaining a measurement method when applied to the distance measurement between the center of a circular hole formed in a measured object and another surface of the measured object in a two-dimensional coordinate system. is there.

【符号の説明】[Explanation of symbols]

10…変位検出形測定ヘッド 12…支持軸 14…測定子 20…固定ベース 24…テーブル 26…主軸頭 36…NC装置 38…位置読取り手段 40…表面座標演算手段 42…オフセット座標演算手段 46…測定モード判別手段 48…測定値演算手段 DESCRIPTION OF SYMBOLS 10 ... Displacement detection type measuring head 12 ... Support shaft 14 ... Measuring element 20 ... Fixed base 24 ... Table 26 ... Spindle head 36 ... NC device 38 ... Position reading means 40 ... Surface coordinate calculating means 42 ... Offset coordinate calculating means 46 ... Measurement Mode discriminating means 48: Measured value calculating means

───────────────────────────────────────────────────── フロントページの続き (72)発明者 竹内 雄三 神奈川県愛甲郡愛川町三増359番地の3 株式会社牧野フライス製作所内 (56)参考文献 特開 昭57−127805(JP,A) 特開 平2−220106(JP,A) (58)調査した分野(Int.Cl.6,DB名) G01B 21/00 - 21/32 B23Q 17/20 G05B 19/408──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Yuzo Takeuchi 359 3-3, Masu, Aikawa-cho, Aiko-gun, Kanagawa Prefecture Inside Makino Milling Machinery Co., Ltd. Hei 2-220106 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) G01B 21/00-21/32 B23Q 17/20 G05B 19/408

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 立体形状を有する被測定物と測定ヘッド
との間でX,Y,Z軸方向の相対移動を行い、前記被測
定物に前記測定ヘッドの測定子を接触させてその接触点
及び前記被加工物の表面からオフセットした位置の座標
値を測定する測定方法において、 前記測定ヘッドとして、先端に球部を有し前記被測定物
の表面に接触するとその表面に対して略法線方向に変位
するよう支持された測定子を備え、該測定子のX,Y,
Z軸方向の各変位を検出可能な変位検出形測定ヘッドを
用い、測定すべき項目が前記被測定物の表面の座標を求めるス
テップを必要とする第1測定モードか、前記被測定物の
表面から所定量オフセットした点の座標を求めるステッ
プを必要とする第2測定モードかを判別し、 前記第1測定モードと判別した測定項目については、前
記変位検出形測定ヘッドのX,Y,Z軸方向の各位置デ
ータを読み取り、 前記被測定物の表面に前記変位検出形測定ヘッドの測定
子を接触させたときの該接触点の座標値(U,V,W)
、 U=X−(R−E)・I/E ・・・・・・・・・(1) V=Y−(R−E)・J/E ・・・・・・・・・(2) W=Z−(R−E)・K/E ・・・・・・・・・(3) この場合に、Rは測定子の先端球部半径で既知の値、 I,J,Kは変位検出形測定ヘッドで検出したX,Y,
Z軸方向の各変位、 Eは、測定子の合成変位量でE=√(I2 +J2
2 )、つまり、Eの値は(I2 +J2 +K2 )の平方
根に等しい、 X,Y,Zは、接触して変位を検出したときの変位検出
形測定ヘッドの各位置データ、 で表される(1)〜(3)式に従って求め 前記第2測定モードと判別した測定項目については前記変位検出形測定ヘッドのX,Y,Z軸方向の各位置
データを読み取り、 前記被測定物の表面に前記変位検出形測定ヘッドの測定
子を接触させたときの該接触点から所定量オフセットし
た位置の座標値(x,y,z)を、 x=X+(E−E 0 )・I/E ・・・・・・・(4) y=Y+(E−E 0 )・J/E ・・・・・・・(5) z=Z+(E−E 0 )・K/E ・・・・・・・(6) この場合に、E 0 は予め設定された基準変位量で、測定
子の先端球部の半径R から所定のオフセット量r 0 を引
いた量、 I,J,Kは変位検出形測定ヘッドで検出したX,Y,
Z軸方向 の各変位、 Eは測定子の合成変位量でE=√(I 2 +J 2
2 )、つまり Eの値は(I 2 +J 2 +K 2 )の平方根
に等しい、 X,Y,Zは、接触して変位を検出したときの変位検出
形測定ヘ ッドの各位置データ、 の(4)〜(6)式に従って求める 、 ようにすることを特徴とした測定方法。
1. A relative movement in the X, Y, and Z-axis directions is performed between an object having a three-dimensional shape and a measurement head, and a contact point of the measurement element of the measurement head is brought into contact with the object to be measured.
And a measuring method for measuring a coordinate value of a position offset from a surface of the workpiece , wherein the measuring head has a spherical portion at a tip and is substantially normal to the surface when the surface comes into contact with the surface of the workpiece. A probe supported to be displaced in the direction, and the X, Y, and
Using a displacement detection type measuring head capable of detecting each displacement in the Z-axis direction, an item to be measured determines a coordinate of the surface of the object to be measured.
In the first measurement mode that requires a step,
Step for finding the coordinates of a point offset by a predetermined amount from the surface
Determines second measurement mode that requires flop, said for the first measurement mode and the measurement item is determined, before
The position data of the displacement detection type measuring head in the X, Y,
And the coordinate value (U, V, W) of the contact point when the measuring element of the displacement detection type measuring head is brought into contact with the surface of the object to be measured.
The, U = X- (R-E ) · I / E ········· (1) V = Y- (R-E) · J / E ········· ( 2) W = Z− (RE) · K / E (3) In this case, R is a known value of the radius of the tip sphere of the tracing stylus, I, J, K Are X, Y,
Each displacement in the Z-axis direction, E is the combined displacement of the tracing stylus and E = √ (I 2 + J 2 +
K 2 ), that is, the value of E is equal to the square root of (I 2 + J 2 + K 2 ). X, Y, and Z are the respective position data of the displacement detection type measuring head when the displacement is detected upon contact. determined according represented by (1) to (3), wherein for the second measurement mode and the measurement item is determined, X of the displacement detection type measuring head, Y, each position in the Z axis direction
Read the data and measure the displacement detection type measuring head on the surface of the object to be measured.
Offset by a predetermined amount from the point of contact when the
Coordinate value of the position (x, y, z) and, x = X + (E- E 0) · I / E ······· (4) y = Y + (E-E 0) · J / E (5) z = Z + (E−E 0 ) · K / E (6) In this case, E 0 is a preset reference displacement and is measured.
The predetermined offset amount r 0 is subtracted from the radius R of the tip ball portion of the child.
The amounts I, J, and K are X, Y, and
Each displacement in the Z-axis direction , E is a combined displacement of the tracing stylus, and E = √ (I 2 + J 2 +
K 2 ), the value of E is the square root of (I 2 + J 2 + K 2 )
Equal to, X, Y, Z is the displacement detection when detecting a contact with the displacement
Measurement method, characterized in that each position data in the form measuring F head, determined in accordance with (4) - (6), so as to.
【請求項2】 立体形状を有する被測定物と測定ヘッド
との間でX,Y,Z軸方向の相対移動を行い、前記被測
定物に前記測定ヘッドの測定子を接触させて座標値や寸
法を測定する測定装置において、 前記測定ヘッドは、先端に球部を有し前記被測定物の表
面に接触するとその表面に対して略法線方向に変位する
ように支持された測定子を備え、該測定子のX,Y,Z
軸方向の各変位を検出可能な変位検出形測定ヘッドとし
て形成され、 前記変位検出形測定ヘッドのX,Y,Z軸方向の各位置
データを読み取る位置読取り手段と、 前記被測定物の表面に前記変位検出形測定ヘッドの測定
子を接触させたときの該接触点の座標値(U,V,W)
を、 U=X−(R−E)・I/E ・・・・・・・・・(1) V=Y−(R−E)・J/E ・・・・・・・・・(2) W=Z−(R−E)・K/E ・・・・・・・・・(3) ただし、Rは測定子の先端球部半径で既知の値、 I,J,Kは変位検出形測定ヘッドで検出したX,Y,
Z軸方向の各変位、 Eは、測定子の合成変位量でE=√(I2 +J2
2 )、つまり、Eの値は(I2 +J2 +K2 )の平方
根に等しい、 X,Y,Zは、接触して変位を検出したときの変位検出
形測定ヘッドの各位置データ、 の(1)〜(3)式に従って求める表面座標演算手段
と、 前記被測定物の表面に前記変位検出形測定ヘッドの測定
子を接触させたときの該接触点から所定量オフセットし
た位置の座標値(x,y,z)を、 x=X+(E−E0 )・I/E ・・・・・・・(4) y=Y+(E−E0 )・J/E ・・・・・・・(5) z=Z+(E−E0 )・K/E ・・・・・・・(6) ただし、E0 は予め設定された基準変位量で、測定子の
先端球部の半径Rから所定のオフセット量r0 を引いた
量、 I,J,Kは変位検出形測定ヘッドで検出したX,Y,
Z軸方向の各変位、 Eは測定子の合成変位量でE=√(I2 +J2
2 )、つまりEの値は(I2 +J2 +K2 )の平方根
に等しい、 X,Y,Zは、接触して変位を検出したときの変位検出
形測定ヘッドの各位置データ、 の(4)〜(6)式に従って求めるオフセット座標演算
手段と、 前記被測定物と前記変位検出形測定ヘッドとのX,Y,
Z軸方向の相対移動を制御するNC装置と、 測定すべき項目が前記被測定物の表面座標を求めるステ
ップを必要とする第1測定モードか、前記被測定物の表
面から所定量オフセットした点の座標を求めるステップ
を必要とする第2測定モードかを判別する測定モード判
別手段と、 前記判別手段が第1測定モードと判別した測定項目につ
いては前記表面座標演算手段の出力を用いて測定値を求
め、前記判別手段が第2測定モードと判別した測定項目
については前記オフセット座標演算手段の出力を用いて
測定値を求める測定値演算手段と、 を具備することを特徴とした測定装置。
2. A relative movement in the X, Y, and Z-axis directions is performed between an object having a three-dimensional shape and a measuring head, and a measuring element of the measuring head is brought into contact with the object to measure a coordinate value or a coordinate value. In a measuring apparatus for measuring dimensions, the measuring head includes a measuring element having a spherical portion at a tip and supported to be displaced in a substantially normal direction with respect to the surface of the object to be measured when the surface comes into contact with the surface. , X, Y, Z of the probe
Position reading means formed as a displacement detection type measuring head capable of detecting each displacement in the axial direction, reading position data in the X, Y, and Z directions of the displacement detection type measuring head; Coordinate values (U, V, W) of the contact point when the probe of the displacement detection type measuring head is brought into contact
U = X− (RE) · I / E (1) V = Y− (RE) · J / E (1) 2) W = Z− (RE) · K / E (3) where R is a known value of the radius of the tip sphere of the tracing stylus, and I, J, and K are displacements X, Y, detected by the detection type measuring head
Each displacement in the Z-axis direction, E is the combined displacement of the tracing stylus and E = √ (I 2 + J 2 +
K 2 ), that is, the value of E is equal to the square root of (I 2 + J 2 + K 2 ). X, Y, and Z are the respective position data of the displacement detection type measuring head when contact is detected. (1) to (3) surface coordinate calculating means; and a coordinate value of a position offset by a predetermined amount from the contact point when the tracing stylus of the displacement detection type measuring head is brought into contact with the surface of the workpiece. (X, y, z) is calculated as follows: x = X + (E−E 0 ) · I / E (4) y = Y + (E−E 0 ) · J / E .. (5) z = Z + (E−E 0 ) · K / E (6) where E 0 is a preset reference displacement amount and the radius of the tip spherical portion of the tracing stylus. An amount obtained by subtracting a predetermined offset amount r 0 from R, I, J, and K are X, Y, and X detected by the displacement detection type measuring head.
Each displacement in the Z-axis direction, E is a combined displacement of the tracing stylus, and E = √ (I 2 + J 2 +
K 2 ), that is, the value of E is equal to the square root of (I 2 + J 2 + K 2 ). X, Y, and Z are the respective position data of the displacement detection type measuring head when the displacement is detected upon contact. 4) to (6), an offset coordinate calculating means, and X, Y, and X values of the object to be measured and the displacement detection type measuring head.
An NC device for controlling the relative movement in the Z-axis direction, and an item to be measured in a first measurement mode which requires a step of obtaining surface coordinates of the object to be measured, or a point offset by a predetermined amount from the surface of the object to be measured. Measurement mode discrimination means for discriminating a second measurement mode which requires a step of obtaining coordinates of the first and second measurement modes; and for a measurement item determined by the discrimination means to be the first measurement mode, a measurement value is obtained using an output of the surface coordinate calculation means. look, the determining means measuring device for measurement items is determined that the second measurement mode is characterized by comprising a measurement value calculating means for obtaining a measured value by using an output of the offset coordinates calculation means.
JP6029560A 1994-02-28 1994-02-28 Measurement method and device Expired - Fee Related JP2825429B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6029560A JP2825429B2 (en) 1994-02-28 1994-02-28 Measurement method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6029560A JP2825429B2 (en) 1994-02-28 1994-02-28 Measurement method and device

Publications (2)

Publication Number Publication Date
JPH07239228A JPH07239228A (en) 1995-09-12
JP2825429B2 true JP2825429B2 (en) 1998-11-18

Family

ID=12279531

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6029560A Expired - Fee Related JP2825429B2 (en) 1994-02-28 1994-02-28 Measurement method and device

Country Status (1)

Country Link
JP (1) JP2825429B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100413126B1 (en) * 2001-10-30 2003-12-31 최명일 How to determine the machining range of a workpiece in an automatic engraving machine

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57127805A (en) * 1981-01-31 1982-08-09 Osaka Kiko Co Ltd Device for measuring three-dimensional shape
JPH02220106A (en) * 1989-02-22 1990-09-03 Okuma Mach Works Ltd Digitization controller containing measuring function

Also Published As

Publication number Publication date
JPH07239228A (en) 1995-09-12

Similar Documents

Publication Publication Date Title
US6973738B2 (en) Measuring method and device, machine tool having such device, and work processing method
US5501096A (en) Calibration method for determining and compensating differences of measuring forces in different coordinate directions in a multi-coordinate scanning system
JP3396409B2 (en) Method and apparatus for measuring shape and size of work
JP5235284B2 (en) Measuring method and machine tool
US11486696B2 (en) On-machine measurement device, machine tool, and on-machine measurement method
EP0599513A1 (en) A method of measuring workpieces using a surface contacting measuring probe
JP5201871B2 (en) Shape measuring method and apparatus
JP2831610B2 (en) measuring device
JPH033760A (en) Degitizing control device
JP4799472B2 (en) Measuring method and apparatus for tool edge position, workpiece processing method and machine tool
WO1992020996A1 (en) A method of measuring workpieces using a surface contacting measuring probe
JP2825429B2 (en) Measurement method and device
JP3126327B2 (en) Method and apparatus for measuring shape and size of work in machine tool
JP2002267438A (en) Free curved surface shape measuring method
JPH0410568B2 (en)
JP2000292156A (en) Method for measuring effective screw hole depth
JP3776526B2 (en) Measuring method
JP2000039302A (en) Profile measuring instrument
JP6933603B2 (en) Machine tool measurement capability evaluation method and program
JP2002039743A (en) Measuring instrument
JPH01202611A (en) Three-dimensional measurement method and apparatus
JP2579726B2 (en) Contact probe
JP7458579B2 (en) A three-dimensional measuring machine and a measuring method using a three-dimensional measuring machine,
JPH07159147A (en) Three-dimensional measuring system
KR100228242B1 (en) Tooling ball with air hole

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080911

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080911

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090911

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090911

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100911

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110911

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110911

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120911

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120911

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130911

Year of fee payment: 15

LAPS Cancellation because of no payment of annual fees