JPH03276775A - Immersion apparatus of superconducting coil - Google Patents

Immersion apparatus of superconducting coil

Info

Publication number
JPH03276775A
JPH03276775A JP2075480A JP7548090A JPH03276775A JP H03276775 A JPH03276775 A JP H03276775A JP 2075480 A JP2075480 A JP 2075480A JP 7548090 A JP7548090 A JP 7548090A JP H03276775 A JPH03276775 A JP H03276775A
Authority
JP
Japan
Prior art keywords
superconducting coil
liquid
nitrogen
dewar
low temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2075480A
Other languages
Japanese (ja)
Inventor
Shiori Akaike
赤池 志織
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP2075480A priority Critical patent/JPH03276775A/en
Publication of JPH03276775A publication Critical patent/JPH03276775A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To cool a superconducting coil down to a very low temperature in a short time and to eliminate that it is quenched by a method wherein the superconducting coil is immersed in a liquid fluid whose thermal conductivity is good, the liquid fluid is cooled down to a freezing point or lower together with the superconducting coil and the superconducting coil is fixed by a frozen body. CONSTITUTION:Liquid nitrogen of a prescribed quantity flows into from a liquid inflow pipe 13e; the liquid nitrogen is collected inside a Dewar vessel 14; a superconducting coil 15 is precooled. Then, liquid helium flows into from the liquid inflow pipe 13e. Thereby, the Dewar vessel 14 and the like are cooled. When the Dewar vessel 14 is cooled down to 63K or lower, i.e., a freezing point or lower of nitrogen, the liquid nitrogen in frozen and is transformed into a frozen body. Thereby, a wire material constituting the superconducting coil 15 is fixed. The superconducting coil 15 is cooled down to a very low temperature. e.g. down to 4K via the Dewar vessel 14 and the nitrogen frozen body. In the case of nitrogen, the thermal conductivity at a temperature of 4K is more then 50 times as good as that of an epoxy resin. The superconducting coil can be cooled down to the very low temperature in a short time; it is not quenched.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は超電導コイルの含浸装置に関し、特に、超電導
コイルを固定する装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a superconducting coil impregnation device, and more particularly to a device for fixing a superconducting coil.

(従来の技術) 一般に、超電導コイルに用いられる線材としてNbT 
iあるいはNb3 Snが知られており、この超電導コ
イルは極低温下で運転される。
(Prior art) Generally, NbT is used as a wire material for superconducting coils.
i or Nb3Sn is known, and this superconducting coil is operated at extremely low temperatures.

このように、極低温下で運転される超電導コイルに機械
的外力が加わると、摩擦熱が生じてクエンチを引き起こ
す場合がある。
In this way, when an external mechanical force is applied to a superconducting coil operated at extremely low temperatures, frictional heat may be generated and cause quenching.

さらに、Nb3 Snが線材の場合には機械的外力に極
めて弱い。
Furthermore, when Nb3Sn is a wire rod, it is extremely susceptible to external mechanical forces.

従来、上述のクエンチ等を防止するため、一般的に線材
を密に巻くとともに線間にエポキシ樹脂を含浸して超電
導コイルを固定している。
Conventionally, in order to prevent the above-mentioned quenching and the like, superconducting coils are generally fixed by tightly winding wires and impregnating the spaces between the wires with epoxy resin.

(発明が解決しようとする課題) しかしながら、エポキシ樹脂は熱伝導性があまりよくな
いので、超電導コイルを極低温に冷却するのに時間がか
かってしまう。
(Problems to be Solved by the Invention) However, since epoxy resin does not have very good thermal conductivity, it takes time to cool the superconducting coil to an extremely low temperature.

例えば、「低温技術」 (東京大学出版会発行)の第5
6頁に示されているようにスタイキャスト]266の場
合、低温になるほど熱伝導率が低下し超電導コイルを極
低温に冷却するのに時間がかかってしまう。しかし現状
では他に超電導コイルを固定するのに都合のよい材料が
ない。
For example, see Volume 5 of “Cryogenic Technology” (published by the University of Tokyo Press).
As shown on page 6, in the case of [Stycast] 266, the thermal conductivity decreases as the temperature decreases, and it takes time to cool the superconducting coil to an extremely low temperature. However, currently there are no other suitable materials for fixing superconducting coils.

本発明の目的は超電導コイルを短時間で極低温に冷却す
ることができ、しかも超電導コイルにクエンチが生ずる
ことのない含浸装置を提供することにある。
An object of the present invention is to provide an impregnating device that can cool a superconducting coil to an extremely low temperature in a short time and does not cause quenching of the superconducting coil.

(課題を解決するための手段) 本発明によれば、超電導コイルが配置されるデユワ−と
、該デユワ−に液状流体を供給する供給手段と、前記液
状流体を前記超電導コイルとともに該流体の凝固点以下
に冷却する冷却手段とを有し、前記液状流体を凝固体に
凝固させて前記超電導コイルを前記凝固体中に含浸させ
るようにしたことを特徴とする超電導コイルの含浸装置
が得られる。この場合、液状流体として液体窒素を用い
ることが望ましい。
(Means for Solving the Problems) According to the present invention, a dewar in which a superconducting coil is disposed, a supply means for supplying a liquid fluid to the dewar, and a supply means for supplying the liquid fluid to the superconducting coil together with the freezing point of the fluid. A superconducting coil impregnation device is obtained, characterized in that the superconducting coil has a cooling means for cooling the liquid fluid into a solidified body and the superconducting coil is impregnated into the solidified body. In this case, it is desirable to use liquid nitrogen as the liquid fluid.

(作用) 本発明では、デユワ−中に超電導コイルを配置してデユ
ワ−中に例えば、液体窒素を供給する。
(Function) In the present invention, a superconducting coil is arranged in a dewar, and liquid nitrogen, for example, is supplied into the dewar.

そして、例えば、液体ヘリウムを用いて液体窒素を超電
導コイルとともに63に以下に冷却して液体窒素を凝固
させる。これによって超電導コイルを極低温に冷却する
とともに固定する。このように、超電導コイルを極低温
に冷却するとともに固定している点から短時間で超電導
コイルを極低温まで冷却することができ、クエンチ等が
生ずることもない。
Then, for example, liquid nitrogen is cooled together with the superconducting coil to a temperature below 63 using liquid helium to solidify the liquid nitrogen. This cools the superconducting coil to an extremely low temperature and fixes it. In this way, since the superconducting coil is cooled to an extremely low temperature and fixed, the superconducting coil can be cooled to an extremely low temperature in a short time, and quenching and the like do not occur.

(実施例) 以下本発明について実施例によって説明する。(Example) The present invention will be explained below with reference to Examples.

第1図を参照して、クライオスタット11内には真空に
保たれたシールド容器12が配置され、さらにシールド
容器12内には真空に保たれたヘリウム容器13が配設
されている。ヘリウム容器13の側壁外面にはフランジ
部13a及び13bが取り付けられており、このフラン
ジ部13a及び13bにはそれぞれ上方に延びる支持棒
13c及び13dの一端が取り付けられ、これら支持棒
13c及び13dの他端はシールド容器12を貫通して
クライオスタット11の土壁内面に固定されている。こ
れによって、クライオスタット11にヘリウム容器13
が支持されている。ヘリウム容器13に流体流入管13
eが備えられており、この流体流入管13eはクライオ
スタット11の外に延びている。
Referring to FIG. 1, a shield container 12 kept in a vacuum is disposed within a cryostat 11, and a helium container 13 kept in a vacuum is disposed within the shield container 12. Flange portions 13a and 13b are attached to the outer surface of the side wall of the helium container 13, and one ends of support rods 13c and 13d extending upward are attached to the flange portions 13a and 13b, respectively. The end passes through the shield container 12 and is fixed to the inner surface of the earthen wall of the cryostat 11. As a result, the helium container 13 is placed in the cryostat 11.
is supported. Fluid inlet pipe 13 to helium container 13
e is provided, and this fluid inlet pipe 13e extends outside the cryostat 11.

ヘリウム容器13内には内部が真空断熱された銅製のデ
ユワ−14が配置され、支持棒14aから14dによっ
てヘリウム容器13に支持されている。そして、デユワ
−14には、例えばNbTi (又はN b 3 S 
n )線キイが巻かれた超電導コイル15が配置されて
いる。なお、図示のように流体流入管13eの出口はデ
ユワ−14の上方に位置している。
A copper dewar 14 whose interior is vacuum insulated is disposed within the helium container 13, and is supported by the helium container 13 by support rods 14a to 14d. The dewar 14 is made of, for example, NbTi (or Nb3S
n) A superconducting coil 15 around which a wire key is wound is arranged. Note that, as shown in the figure, the outlet of the fluid inflow pipe 13e is located above the dewar 14.

まず、流体流入管13eから液体窒素が所定量流入され
、デユワ−14内に液体窒素が溜まる。
First, a predetermined amount of liquid nitrogen flows in from the fluid inflow pipe 13e, and the liquid nitrogen accumulates in the dewar 14.

そして、この液体窒素によって超電導コイル15が予冷
される。次に、流体流入管13eから液体ヘリウムが流
入され、これによって、デユワ−14等が冷却される。
Then, the superconducting coil 15 is precooled by this liquid nitrogen. Next, liquid helium flows in from the fluid inflow pipe 13e, thereby cooling the dewar 14 and the like.

デユワ−14が冷却されて63に以下、つまり、窒素の
凝固点以下となると液体窒素は凝固して凝固体となる。
When the dewar 14 is cooled to a temperature below 63, that is, below the freezing point of nitrogen, the liquid nitrogen solidifies into a solidified body.

これによって超電導コイル15を構成する線材は固定さ
れる。
As a result, the wires constituting the superconducting coil 15 are fixed.

そして、超電導コイル15はデユワ−14及び窒素凝固
体を介して極低温、例えば4Kまで冷却される。
Then, the superconducting coil 15 is cooled to an extremely low temperature, for example 4K, via the dewar 14 and the nitrogen solidified body.

ここで、第2図に窒素の熱伝導率と温度との関係を示す
。第2図に示すように窒素は温度低下するにつれて熱伝
導率が高くなり、温度4Kにおいて熱伝導率は56 m
 W / cm Kである。一方、エポキシ樹脂の一種
であるスタイキャスト1266の場合温度4にで約1 
rn W / cm Kである。従って、窒素の場合、
温度4Kにおける熱伝導率はエポキシ樹脂に比べて50
倍以上良いことがわかる。
Here, FIG. 2 shows the relationship between the thermal conductivity of nitrogen and temperature. As shown in Figure 2, the thermal conductivity of nitrogen increases as the temperature decreases, and at a temperature of 4K, the thermal conductivity is 56 m
W/cmK. On the other hand, in the case of Stycast 1266, which is a type of epoxy resin, at a temperature of 4.
rn W/cm K. Therefore, for nitrogen,
Thermal conductivity at a temperature of 4K is 50% higher than that of epoxy resin.
It turns out it's more than twice as good.

(発明の効果) 以上説明したように本発明では、熱伝導率の良好な液状
流体で超電導コイルを浸し、超電導コイルとともに液状
流体を凝固点以下に冷却しているから、超電導コイルを
凝固体で固定することができるとともに短時間で超電導
コイルを極低温に冷却できる。従って、クエンチを防止
することができるばかりでなく超電導コイルの冷却効率
を極めて良くすることができる。
(Effects of the Invention) As explained above, in the present invention, the superconducting coil is immersed in a liquid fluid with good thermal conductivity, and the liquid fluid is cooled together with the superconducting coil to below the freezing point, so the superconducting coil is fixed with the solidified body. The superconducting coil can be cooled down to extremely low temperatures in a short time. Therefore, not only can quenching be prevented, but also the cooling efficiency of the superconducting coil can be extremely improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による超電導コイルの含浸装置の一実施
例を示す断面図、第2図は窒素の温度と熱伝導率との関
係を示す図である。 11・・・クライオスタット、12・・・シールド容器
、13・・・ヘリウム容器、14・・・デユワ−1も・
・・超電導コイル。 \ す 温度(に) 4 2図 熱伝導率(mW/Cmに) 6
FIG. 1 is a sectional view showing an embodiment of a superconducting coil impregnation apparatus according to the present invention, and FIG. 2 is a diagram showing the relationship between nitrogen temperature and thermal conductivity. 11... Cryostat, 12... Shield container, 13... Helium container, 14... Dewar-1 also...
...Superconducting coil. \ Temperature (in) 4 Figure 2 Thermal conductivity (in mW/Cm) 6

Claims (1)

【特許請求の範囲】 1、超電導コイルが配置されるデュワーと、該デュワー
に液状流体を供給する供給手段と、前記液状流体を前記
超電導コイルとともに該流体の凝固点以下に冷却する冷
却手段とを有し、前記液状流体を凝固体に凝固させて前
記超電導コイルを前記凝固体中に含浸させるようにした
ことを特徴とする超電導コイルの含浸装置。 2、特許請求の範囲第1項に記載された超電導コイルの
含浸装置において、前記液状流体は液体窒素であること
を特徴とする超電導コイルの含浸装置。
[Claims] 1. A dewar in which a superconducting coil is disposed, a supply means for supplying a liquid fluid to the dewar, and a cooling means for cooling the liquid fluid together with the superconducting coil to a temperature below the freezing point of the fluid. A superconducting coil impregnation apparatus characterized in that the liquid fluid is solidified into a solidified body and the superconducting coil is impregnated into the solidified body. 2. The superconducting coil impregnation apparatus as set forth in claim 1, wherein the liquid fluid is liquid nitrogen.
JP2075480A 1990-03-27 1990-03-27 Immersion apparatus of superconducting coil Pending JPH03276775A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2075480A JPH03276775A (en) 1990-03-27 1990-03-27 Immersion apparatus of superconducting coil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2075480A JPH03276775A (en) 1990-03-27 1990-03-27 Immersion apparatus of superconducting coil

Publications (1)

Publication Number Publication Date
JPH03276775A true JPH03276775A (en) 1991-12-06

Family

ID=13577499

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2075480A Pending JPH03276775A (en) 1990-03-27 1990-03-27 Immersion apparatus of superconducting coil

Country Status (1)

Country Link
JP (1) JPH03276775A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999062127A1 (en) * 1998-05-22 1999-12-02 Sumitomo Electric Industries, Ltd. Method and device for cooling superconductor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999062127A1 (en) * 1998-05-22 1999-12-02 Sumitomo Electric Industries, Ltd. Method and device for cooling superconductor
US6354087B1 (en) 1998-05-22 2002-03-12 Sumitomo Electric Industries, Ltd Method and apparatus for cooling superconductor
AU746563B2 (en) * 1998-05-22 2002-05-02 Sumitomo Electric Industries, Ltd. Method and device for cooling superconductor

Similar Documents

Publication Publication Date Title
US6354087B1 (en) Method and apparatus for cooling superconductor
EP0209134B1 (en) Forced flow cooling-type superconducting coil apparatus
GB2422654A (en) Cooling a superconducting magnet
US20080246567A1 (en) Magnetic field generator
JPH08168235A (en) Superconductive rotor
EP1087187A1 (en) Cryogenic container and magnetism measuring apparatus using it
US5113165A (en) Superconductive magnet with thermal diode
WO1992022077A1 (en) Method and apparatus for cooling oxide superconductor coil
JPH10335137A (en) Cooling method and conducting method for superconductor
US3940643A (en) Cryogen-cooled synchronous compensator
US4486800A (en) Thermal method for making a fast transition of a superconducting winding from the superconducting into the normal-conducting state, and apparatus for carrying out the method
JPH03276775A (en) Immersion apparatus of superconducting coil
US6996994B2 (en) Vacuum retention method and superconducting machine with vacuum retention
JPH0950910A (en) Superconducting coil cooling device
CN106710778A (en) Direct cooling superconducting coil and cooling method
JPS61179508A (en) Forced cooling superconductive coil device
JP4132130B2 (en) Cooling device for high-temperature superconducting magnetic shield
JP2635165B2 (en) Forced cooling superconducting coil device
JPH03188602A (en) Forcedly cooled superconducting magnet
AU774967B2 (en) Method and device for cooling superconductor
JPH04192314A (en) Superconducting magnet
JP2001066354A (en) Cryogenic container for superconducting quantum interference device storage
JPH0584650B2 (en)
Lounasmaa The Pursuit of Absolute Zero
JPH06314615A (en) Superconducting device