JPH03276717A - Vapor growth apparatus - Google Patents

Vapor growth apparatus

Info

Publication number
JPH03276717A
JPH03276717A JP7550390A JP7550390A JPH03276717A JP H03276717 A JPH03276717 A JP H03276717A JP 7550390 A JP7550390 A JP 7550390A JP 7550390 A JP7550390 A JP 7550390A JP H03276717 A JPH03276717 A JP H03276717A
Authority
JP
Japan
Prior art keywords
crystal substrate
reaction tube
wall
susceptor
wall surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7550390A
Other languages
Japanese (ja)
Inventor
Keiichi Akagawa
赤川 慶一
Hirosuke Sato
裕輔 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP7550390A priority Critical patent/JPH03276717A/en
Publication of JPH03276717A publication Critical patent/JPH03276717A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)

Abstract

PURPOSE:To prevent the defective vapor growth of a crystal substrate by making rougher the surface of the inner wall of a reacting tube located at least at the upstream side of the crystal substrate mounted on a susceptor than other parts, forming a minute irregular surface, and decreasing the fall of dust on the crystal substrate. CONSTITUTION:A part of an inner wall surface 1d of a reacting tube 1 higher than a crystal substrate 4 is etched with, e.g. hydrofluoric acid, and the surface of the inner wall is made rough. Thus, a minute irregular surface 8 is formed. The surface of area of this part is made sufficiently large. The temperature of the inner wall surface 1d which is located higher than a susceptor 3 in the reacting pipe 1 becomes high. Therefore, crystals are grown even on the inner surface wall 1d, and reaction products 7 are deposited. Since the minute irregular surface 8 is formed on the inner wall surface 1d, the reaction products 7 are deposited on the minute irregular surface 8. The surface area of the inner wall surface 1d becomes large owing to the minute irregular surface 8. Therefore, the reaction products 7 are rigidly attached to the minute irregular surface 8. Thus, the peeling of a part of the reaction products 7 and the falling of the dust on the crystal substrate 4 are decreased to a large extent.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、例えばペテロ構造の化合物半導体等の製造に
用いられる気相成長装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a vapor phase growth apparatus used for manufacturing, for example, petrostructure compound semiconductors.

(従来の技術) 結晶基板上に化合物半導体の膜を気相成長させて化合物
半導体を製造する従来の気相成長装置は、例えば第3図
に示すように構成されている。
(Prior Art) A conventional vapor phase growth apparatus for manufacturing a compound semiconductor by vapor phase growing a compound semiconductor film on a crystal substrate is configured as shown in FIG. 3, for example.

この図に示すように、従来の気相成長装置は、石英から
成る反応管1内に、支持棒2に固定されたサセプタ3が
配設され、サセプタ3上には結晶基板4が載置されてい
る。反応管1は、フランジ部1aで0リング5を介在し
て気密状態で着脱自在に連結されており、フランジ部1
aで分割される反応管1の上部側にはガス(成長ガス、
キャリヤガス、不活性ガス等)を供給する給気口]bが
形成され、フランジ部1aて分割される反応管1の下部
側には反応管1内の未反応ガスの排気及び内部の圧力を
一定に調整する排気口1cが形成されている。また、反
応管1の外側には、サセプタ3(結晶基板4)を加熱す
る高周波コイル6が配設されており、反応管1の内壁面
1dは表面精度が良好で透明状態である。
As shown in this figure, in the conventional vapor phase growth apparatus, a susceptor 3 fixed to a support rod 2 is disposed in a reaction tube 1 made of quartz, and a crystal substrate 4 is placed on the susceptor 3. ing. The reaction tubes 1 are removably connected to each other in an airtight manner via an O-ring 5 at the flange portion 1a.
Gas (growth gas,
An air supply port]b for supplying carrier gas, inert gas, etc.) is formed on the lower side of the reaction tube 1, which is divided by the flange 1a. An exhaust port 1c is formed for constant adjustment. Furthermore, a high frequency coil 6 for heating the susceptor 3 (crystal substrate 4) is disposed outside the reaction tube 1, and the inner wall surface 1d of the reaction tube 1 has good surface precision and is transparent.

従来の気相成長装置は上記のように構成されており、サ
セプタ3上に結晶基板4を載置して反応管1のフランジ
部1aを気密状態で連結した後、高周波コイル6に通電
して反応管1内のサセプタ3を加熱し、結晶基板4を所
定温度に上昇させる。
The conventional vapor phase growth apparatus is constructed as described above, and after placing the crystal substrate 4 on the susceptor 3 and connecting the flange portion 1a of the reaction tube 1 in an airtight state, the high frequency coil 6 is energized. The susceptor 3 in the reaction tube 1 is heated to raise the temperature of the crystal substrate 4 to a predetermined temperature.

そして、給気口1bから反応管1内に成長ガス(例えば
、アルシン(ASH3)、)リメチルガリウム(TMG
)、トリメチルアルミニウム)等と共にキャリヤガス(
例えば、■2等)を導入し、結晶基板4上に化合物半導
体の膜を気相成長させる。
Then, a growth gas (for example, arsine (ASH3),) trimethyl gallium (TMG) is introduced into the reaction tube 1 from the air supply port 1b.
), trimethylaluminum), etc. together with carrier gas (
For example, (2) is introduced to grow a compound semiconductor film on the crystal substrate 4 in a vapor phase.

この際、反応管1の結晶基板4の上方に位置する内壁面
1dも同時に高温となるので、給気口1bから成長ガス
等を導入した時に、反応管1の内壁面1dでも結晶成長
して堆積し、成長回数を重ねるごとに厚くなって反応生
成物7が堆積する。
At this time, the inner wall surface 1d of the reaction tube 1 located above the crystal substrate 4 also becomes high temperature at the same time, so when the growth gas etc. is introduced from the air supply port 1b, crystals grow on the inner wall surface 1d of the reaction tube 1 as well. The reaction product 7 is deposited and becomes thicker each time the growth is repeated.

そして、反応管1の内壁面1dに堆積した反応生成物7
は、ついにはその一部が剥離し、粉塵7aとなって気相
成長中の結晶基板4上に落下する。
Then, the reaction product 7 deposited on the inner wall surface 1d of the reaction tube 1
Finally, a part of it peels off, turns into dust 7a, and falls onto the crystal substrate 4 during vapor phase growth.

即ち、高周波コイル6で反応管1が加熱され、結晶成長
後に加熱が停止されると反応管]と反応生酸物7の熱膨
張率が大きく異なっているので、反応管1の内壁面1d
と反応生成物7との間に隙間が生じて反応生成物7の一
部が剥離し、粉塵7aとなって結晶基板4上に落下する
。結晶基板4は、上方から反応生成物7の粉塵7aが付
着されることによって、結晶成長膜が不均一となったり
、組成が変わったりして不良品となってしまう。
That is, when the reaction tube 1 is heated by the high-frequency coil 6 and the heating is stopped after crystal growth, the coefficient of thermal expansion of the reaction tube] and the reaction product 7 are greatly different, so that the inner wall surface 1d of the reaction tube 1
A gap is created between the reaction product 7 and the reaction product 7, and a part of the reaction product 7 peels off and falls onto the crystal substrate 4 as dust 7a. When the dust 7a of the reaction product 7 adheres to the crystal substrate 4 from above, the crystal growth film becomes non-uniform or the composition changes, resulting in a defective product.

このため、反応管1を所定の気相成長時間ごとにフラン
ジ部1aから切り離して反応管1の内壁面1dを洗浄し
、堆積した反応生成物7を除去する必要があり効率が悪
かった。
For this reason, it was necessary to separate the reaction tube 1 from the flange portion 1a every predetermined vapor phase growth time and clean the inner wall surface 1d of the reaction tube 1 to remove the accumulated reaction product 7, which was inefficient.

また、成長ガスは一般に危険有害なガスが多く、しかも
反応管1の内壁面1dを洗浄する際も危険有害な薬品を
用いるので、反応管1.の内壁面1dの洗浄には十分な
注意を払う必要があった。
In addition, the growth gas generally contains many hazardous gases, and hazardous chemicals are also used when cleaning the inner wall surface 1d of the reaction tube 1. It was necessary to pay sufficient attention to cleaning the inner wall surface 1d.

(発明が解決しようとする課題) 前記したように従来の気相成長装置では、反応管1の内
壁面1dに堆積した反応生成物7の粉塵7aが結晶成長
中の結晶基板4上に落下して付着することにより、結晶
基板4が不良品となってしまうので、反応管1の内壁面
1dを頻繁に洗浄して堆積した反応生成物7を除去する
必要があり効率が悪かった。
(Problems to be Solved by the Invention) As described above, in the conventional vapor phase growth apparatus, the dust 7a of the reaction product 7 deposited on the inner wall surface 1d of the reaction tube 1 falls onto the crystal substrate 4 during crystal growth. As a result, the crystal substrate 4 becomes a defective product. Therefore, it is necessary to frequently clean the inner wall surface 1d of the reaction tube 1 to remove the deposited reaction product 7, which is inefficient.

本発明は上記した課題を解決する目的でなされた、反応
管の内壁面に堆積する反応生成物の粉塵が結晶基板上に
落下するのを低減させて、結晶基板の気相成長不良を防
止することができる気相成長装置を提供しようとするも
のである。
The present invention was made for the purpose of solving the above-mentioned problems, and is intended to reduce the fall of reaction product dust deposited on the inner wall surface of a reaction tube onto a crystal substrate, thereby preventing defects in vapor phase growth of the crystal substrate. The purpose is to provide a vapor phase growth apparatus that can achieve this.

[発明の構成] (課題を解決するための手段) 前記した課題を解決するために本発明は、反応管内に設
けたサセプタ上に結晶基板を載置し、前記反応管のサセ
プタより上流側から成長ガスを導入して前記結晶基板上
に気相成長させる気相成長装置において、少なくとも前
記サセプタ上に載置される結晶基板より上流側に位置す
る前記反応管の内壁面の表面を他の部分より粗くして微
小凹凸面を形成したことを特徴とする。
[Structure of the Invention] (Means for Solving the Problems) In order to solve the above-mentioned problems, the present invention includes a method in which a crystal substrate is placed on a susceptor provided in a reaction tube, and a crystal substrate is placed on a susceptor of the reaction tube from the upstream side of the susceptor. In a vapor phase growth apparatus that introduces a growth gas to perform vapor phase growth on the crystal substrate, at least the surface of the inner wall surface of the reaction tube located upstream of the crystal substrate placed on the susceptor is removed from other parts. It is characterized in that it is made rougher to form a finely uneven surface.

(作用) 本発明によれば、反応管の内壁面の表面を粗くして微小
凹凸面を形成して内壁面の表面積を大きくしたことによ
り、反応生成物が内壁面に形成した微小凹凸面に強固に
付着するので、反応生成物の粉塵が結晶基板上に落下す
るのを大幅に低減することができる。
(Function) According to the present invention, the surface of the inner wall of the reaction tube is roughened to form a finely uneven surface to increase the surface area of the inner wall, so that reaction products can be spread onto the finely uneven surface formed on the inner wall. Since it adheres firmly, it is possible to significantly reduce the fall of reaction product dust onto the crystal substrate.

(実施例) 以下、本発明を図示の一実施例に基づいて詳細に説明す
る。尚、従来と同一部材には同一符号を付して説明する
(Example) Hereinafter, the present invention will be described in detail based on an illustrated example. In addition, the same reference numerals are attached to the same members as in the conventional case for explanation.

第1図は、本発明に係る気相成長装置を示す断面図であ
る。この図に示すように、石英から成る反応管1内には
、結晶基板4を載置する円板状のサセプタ3と、サセプ
タ3を着脱自在に支持する支持棒2が配設されている。
FIG. 1 is a sectional view showing a vapor phase growth apparatus according to the present invention. As shown in this figure, a disk-shaped susceptor 3 on which a crystal substrate 4 is placed, and a support rod 2 that detachably supports the susceptor 3 are arranged in a reaction tube 1 made of quartz.

反応管1は、上部に反応管1内にガス(成長ガス、キャ
リヤガス、不活性ガス等)を供給する給気口1bが形成
され、下部には反応管1内の未反応ガスの排気及び内部
の圧力を一定に調整する排気口]Cが形成されており、
反応管1の上部と下部は、Oリング5を介在したフラン
ジ部1aて気密状態で着脱自在に連結されている。また
、反応管1の外側には、サセプタ3の周囲に沿ってサセ
プタ3(結晶基板4)を加熱する高周波コイル6が配設
されている。これらの構成は第3図に示した従来の気相
成長装置と同様である。
The reaction tube 1 has an air supply port 1b formed in the upper part for supplying gas (growth gas, carrier gas, inert gas, etc.) into the reaction tube 1, and a lower part for exhausting unreacted gas in the reaction tube 1. An exhaust port]C is formed to adjust the internal pressure to a constant level,
The upper and lower parts of the reaction tube 1 are removably connected in an airtight manner through a flange portion 1a with an O-ring 5 interposed therebetween. Further, on the outside of the reaction tube 1, a high frequency coil 6 for heating the susceptor 3 (crystal substrate 4) is arranged along the periphery of the susceptor 3. These structures are similar to the conventional vapor phase growth apparatus shown in FIG.

そして、本発明に係る気相成長装置では、反応管]の内
壁面1dの結晶基板4より上方側を、例えば弗化水素酸
でエツチングを施して内壁面1dの表面を粗くして微小
凹凸面8を形成しく斜線部分)、この部分の表面積を大
きくする。
In the vapor phase growth apparatus according to the present invention, the inner wall surface 1d of the reaction tube above the crystal substrate 4 is etched with, for example, hydrofluoric acid to roughen the surface of the inner wall surface 1d to create a fine uneven surface. 8 (shaded area), the surface area of this area is increased.

そして、結晶基板4を載置したサセプタ3を、高周波コ
イル6に通電することによって加熱して結晶基板4を所
定温度に上昇させ、給気口1bから反応管1内に成長ガ
ス(対えば、アルシン(As H3) 、)リメチルガ
リウム(TMG)、トリメチルアルミニウム)等と共に
キャリヤガス(例えば、H2等)を導入し、結晶基板4
上に化合物半導体の膜を気相成長させる。
Then, the susceptor 3 on which the crystal substrate 4 is placed is heated by energizing the high frequency coil 6 to raise the crystal substrate 4 to a predetermined temperature, and the growth gas (for example, A carrier gas (for example, H2, etc.) is introduced together with arsine (As H3), trimethylgallium (TMG), trimethylaluminum), etc., and the crystal substrate 4 is
A compound semiconductor film is grown in vapor phase on top.

この時、反応管1のサセプタ3より上方に位置する内壁
面1dも高温になるので、この内壁面1dでも結晶成長
して反応生成物7が堆積するが、この内壁面1dには微
小凹凸面8が形成されているので反応生成物7は微小凹
凸面8上に堆積する。
At this time, the inner wall surface 1d of the reaction tube 1 located above the susceptor 3 also becomes high temperature, so crystals grow on this inner wall surface 1d and reaction products 7 are deposited. 8 is formed, the reaction product 7 is deposited on the finely uneven surface 8.

そして、内壁面1dは微小凹凸面8によってその表面積
が大きくなっているので、この微小凹凸面8に反応生成
物7が強固に付着されることによって、反応生成物7の
一部が剥離して粉塵が結晶基板4上に落下することが大
幅に低減される。
Since the inner wall surface 1d has a large surface area due to the minute unevenness surface 8, the reaction product 7 is firmly attached to the minute unevenness surface 8, so that a part of the reaction product 7 is peeled off. Dust falling onto the crystal substrate 4 is significantly reduced.

この際、反応管1の内壁面1dに形成した微小凹凸面8
の表面粗さは、10〜5008程度の範囲になるように
形成されている。即ち、第2図に示した実験結果から明
らかなように、内壁面1dに微小凹凸面8を形成してい
ない従来の場合は表面粗さが5S程度であるが、内壁面
1dに形成した微小凹凸面8の表面粗さがIO3程度か
ら反応生成物7が強固に付着される効果が得られる。こ
の図において、横軸は反応管1の内壁面1dに形成した
微小凹凸面8の表面粗さの大きさであり、縦軸は微小凹
凸面8の表面粗さに応じて反応生成物8が落下するまで
の時間(任意単位)を表している。尚、微小凹凸面8の
表面粗さが100S以上では反応生成物8が落下するま
での時間は略−定になるが、表面粗さが500S程度以
上になると、給気口1bから反応管1内に導入されるガ
スの流れを大幅に乱すようになるので、結晶基板4上の
結晶成長に悪影響が生じる。よって、微小凹凸面8の表
面粗さが10〜5003程度の時に反応生成物7が強固
に付着される効果が得られる。
At this time, a fine uneven surface 8 formed on the inner wall surface 1d of the reaction tube 1
The surface roughness of is formed to be in the range of about 10 to 5008. In other words, as is clear from the experimental results shown in FIG. When the surface roughness of the uneven surface 8 is about IO3, the effect that the reaction product 7 is firmly attached can be obtained. In this figure, the horizontal axis represents the surface roughness of the minutely uneven surface 8 formed on the inner wall surface 1d of the reaction tube 1, and the vertical axis represents the amount of reaction product 8 depending on the surface roughness of the minutely uneven surface 8. It represents the time (arbitrary unit) until falling. Note that when the surface roughness of the micro-asperity surface 8 is 100S or more, the time required for the reaction product 8 to fall is approximately constant, but when the surface roughness is about 500S or more, the reaction product 8 falls from the air supply port 1b to the reaction tube 1. Since the flow of gas introduced into the substrate is greatly disturbed, crystal growth on the crystal substrate 4 is adversely affected. Therefore, when the surface roughness of the finely uneven surface 8 is about 10 to 5,003, it is possible to obtain the effect that the reaction product 7 is firmly attached.

このように、反応管1の内壁面1dに微小凹凸面8を形
成したことにより、結晶基板4上に反応生成物7の粉塵
の落下が大幅に低減されるので、気相成長中の結晶基板
4の膜厚が不均一になったり、組成が変わったりするこ
とがなくなる。
In this way, by forming the minute unevenness surface 8 on the inner wall surface 1d of the reaction tube 1, the falling of the dust of the reaction product 7 onto the crystal substrate 4 is greatly reduced, so that the crystal substrate during vapor phase growth is This prevents the film thickness of No. 4 from becoming non-uniform and the composition from changing.

また、微小凹凸面8に堆積した反応生成物7の粉塵が結
晶基板4上に落下することが大幅に低減され、且つ落下
するまでの時間も大幅に長くなるので、反応管1をフラ
ンジ部1aから切り離して内壁面1dの微小凹凸面8に
堆積した反応生成物7を洗浄する回数が大幅に減ること
によって、有害な原料ガスや危険有害な薬品との接触機
会を減らすことができる。
Further, since the dust of the reaction product 7 deposited on the micro-asperity surface 8 is significantly reduced from falling onto the crystal substrate 4, and the time required for the dust to fall is also significantly lengthened, the reaction tube 1 is connected to the flange portion 1a. By significantly reducing the number of times the reaction product 7 separated from the inner wall surface 1d and deposited on the finely uneven surface 8 of the inner wall surface 1d is washed, the chances of contact with harmful raw material gases and hazardous chemicals can be reduced.

また、前期実施例では石英から成る反応管の場合であっ
たが、これに限らず反応管が金属製や他の材質の場合で
も同様に本発明を適用することができる。
Furthermore, although the previous embodiments used a reaction tube made of quartz, the present invention is not limited thereto, and the present invention can be similarly applied to cases where the reaction tube is made of metal or other materials.

[発明の効果コ 以上、実施例に基づいて具体的に説明したように本発明
によれば、反応管の内壁面に形成した微小凹凸面に反応
生成物が強固に付着されることにより、結晶基板上に反
応生成物の粉塵が落下することが大幅に低減されるので
、膜厚および組成の均一な結晶成長が可能な結晶基板を
得ることがてきる。
[Effects of the Invention] As described above in detail based on the examples, according to the present invention, the reaction product is firmly attached to the microscopic uneven surface formed on the inner wall surface of the reaction tube, so that crystals are Since the fall of reaction product dust onto the substrate is greatly reduced, a crystal substrate on which crystal growth with uniform film thickness and composition can be obtained can be obtained.

また、反応生成物の粉塵が結晶基板上に落下することが
大幅に低減され、且つ落下するまでの時間も大幅に長く
なることにより、反応管の内壁面の洗浄回数を大幅に減
らすことができるので、安全性が向上すると共に、効率
良く気相成長を行うことができる。
In addition, the amount of dust from the reaction product falling onto the crystal substrate is greatly reduced, and the time it takes for the dust to fall is also significantly extended, making it possible to significantly reduce the number of times the inner wall of the reaction tube needs to be cleaned. Therefore, safety is improved and vapor phase growth can be performed efficiently.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明に係る気相成長装置を示す断面図、第
2図は、反応管の内壁面の表面粗さと内壁面に付着した
反応生成物の粉塵が落下するまでの時間との関係を示し
た図、第3図は、従来の気相成長装置を示す断面図であ
る。 1・・・反応管    1a・・・フランジ部1b・・
・給気口   IC・・・排気口1d・・・内壁面  
 3・・・サセプタ4・・・結晶基板   6・・・高
周波コイル7・・・反応生成物  7a・・・粉塵8・
・・微小凹凸面
FIG. 1 is a cross-sectional view showing a vapor phase growth apparatus according to the present invention, and FIG. 2 is a graph showing the relationship between the surface roughness of the inner wall of the reaction tube and the time required for dust from the reaction products attached to the inner wall to fall. A diagram showing the relationship, FIG. 3, is a cross-sectional view showing a conventional vapor phase growth apparatus. 1... Reaction tube 1a... Flange part 1b...
・Air supply port IC...Exhaust port 1d...Inner wall surface
3... Susceptor 4... Crystal substrate 6... High frequency coil 7... Reaction product 7a... Dust 8...
・Minute uneven surface

Claims (2)

【特許請求の範囲】[Claims] (1)反応管内に設けたサセプタ上に結晶基板を載置し
、前記反応管のサセプタより上流側から成長ガスを導入
して前記結晶基板上に気相成長させる気相成長装置にお
いて、少なくとも前記サセプタ上に載置される結晶基板
より上流側に位置する前記反応管の内壁面の表面を他の
部分より粗くして微小凹凸面を形成したことを特徴とす
る気相成長装置。
(1) A vapor phase growth apparatus in which a crystal substrate is placed on a susceptor provided in a reaction tube, and a growth gas is introduced from the upstream side of the susceptor of the reaction tube to perform vapor phase growth on the crystal substrate. A vapor phase growth apparatus characterized in that an inner wall surface of the reaction tube located upstream of a crystal substrate placed on a susceptor is made rougher than other parts to form a finely uneven surface.
(2)前記微小凹凸面の表面粗さを10乃至500Sの
範囲に設定してなることを特徴とする請求項(1)記載
の気相成長装置。
(2) The vapor phase growth apparatus according to claim (1), wherein the surface roughness of the finely uneven surface is set in a range of 10 to 500S.
JP7550390A 1990-03-27 1990-03-27 Vapor growth apparatus Pending JPH03276717A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7550390A JPH03276717A (en) 1990-03-27 1990-03-27 Vapor growth apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7550390A JPH03276717A (en) 1990-03-27 1990-03-27 Vapor growth apparatus

Publications (1)

Publication Number Publication Date
JPH03276717A true JPH03276717A (en) 1991-12-06

Family

ID=13578120

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7550390A Pending JPH03276717A (en) 1990-03-27 1990-03-27 Vapor growth apparatus

Country Status (1)

Country Link
JP (1) JPH03276717A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5858100A (en) * 1994-04-06 1999-01-12 Semiconductor Process Co., Ltd. Substrate holder and reaction apparatus
JP2009027021A (en) * 2007-07-20 2009-02-05 Nuflare Technology Inc Vapor-phase growing device and vapor-phase growing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5858100A (en) * 1994-04-06 1999-01-12 Semiconductor Process Co., Ltd. Substrate holder and reaction apparatus
JP2009027021A (en) * 2007-07-20 2009-02-05 Nuflare Technology Inc Vapor-phase growing device and vapor-phase growing method

Similar Documents

Publication Publication Date Title
JPH0834187B2 (en) Susceptor
JPH03500064A (en) Improvements in reaction chambers and chemical vapor deposition methods
US4780174A (en) Dislocation-free epitaxial growth in radio-frequency heating reactor
JPH0758040A (en) Susceptor for phase growth apparatus
JPH03276717A (en) Vapor growth apparatus
JPH0586476A (en) Chemical vapor growth device
JPS59149020A (en) Vertical type reaction furnace
JPH0727870B2 (en) Low pressure vapor deposition method
JP3214750B2 (en) Vapor phase growth equipment
JPH03246931A (en) Susceptor
JPH04186822A (en) Vapor growth device
JP2514359Y2 (en) Vacuum baking device for susceptor purification
JPS62244123A (en) Vapor growth device
JPH04179222A (en) Vapor growth apparatus for compound semiconductor
JPH0529637B2 (en)
JPH04139816A (en) Vapor deposition method
JPH08170175A (en) Apparatus for producing thin film
JPS6372111A (en) Method for controlling temperature of semiconductor substrate
JPH01233722A (en) Semiconductor vapor growth device
JPS62167293A (en) Vapor phase crystal growing device
JPH0254520A (en) Vapor phase growth device
JPH062678U (en) Vacuum baking device for susceptor purification
JPH02174115A (en) Susceptor
JPS61164218A (en) Vapor growth apparatus
JPH04311031A (en) Chemical vapor deposition device