JPH03276573A - Control system for on-vehicle fuel cell - Google Patents

Control system for on-vehicle fuel cell

Info

Publication number
JPH03276573A
JPH03276573A JP2076202A JP7620290A JPH03276573A JP H03276573 A JPH03276573 A JP H03276573A JP 2076202 A JP2076202 A JP 2076202A JP 7620290 A JP7620290 A JP 7620290A JP H03276573 A JPH03276573 A JP H03276573A
Authority
JP
Japan
Prior art keywords
fuel cell
vehicle
load command
battery
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2076202A
Other languages
Japanese (ja)
Inventor
Osamu Yamamoto
修 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2076202A priority Critical patent/JPH03276573A/en
Publication of JPH03276573A publication Critical patent/JPH03276573A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/30Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To reduce the capacity of a backup battery by calculating the proper feed quantity of the reaction gas based on the running load command fed to the accelerator of a vehicle for feed-forward control. CONSTITUTION:When the depression quantity of an accelerator pedal 5 is adjusted to change the running load command of a vehicle, the depression quantity of the accelerator pedal 5 is converted into an electric signal and inputted to an arithmetic unit 12. The arithmetic unit 12 adds the signal from a battery residual capacity meter 11 to the load command and calculates the required feed quantity of the reaction gas fed to a fuel cell 1. A controller 7 outputs a control command to a flow control servo valve 13 and an air blower 10 based on the calculated result and feed-forward-controls the feed quantity of the reaction gas to the fuel cell 1. The capacity of a backup battery is reduced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、電気自動車を対象として車両に搭載した燃料
電池の発電出力で車両モータを駆動する燃料電池の制御
方式に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a fuel cell control method for driving a vehicle motor using the generated output of a fuel cell mounted on an electric vehicle.

〔従来の技術〕[Conventional technology]

昨今では、自動車の排気ガス公害防止の面から車両にバ
ッテリを搭載した電気自動車の普及化が進み、かつ最近
になりバッテリとして燃料電池を搭載した車両の開発も
進められている。
BACKGROUND ART Recently, electric vehicles equipped with batteries have become popular in order to prevent automobile exhaust gas pollution, and recently, vehicles equipped with fuel cells as batteries have also been developed.

ここで、従来における車両搭載用の燃料電池発電システ
ムを第5図に示す。図において、1は燃料電池、2はチ
タフパ、3は起動時の補機電源。
Here, a conventional fuel cell power generation system mounted on a vehicle is shown in FIG. In the figure, 1 is the fuel cell, 2 is the Chitafupa, and 3 is the auxiliary power source at startup.

およびピーク負荷のバックアップ用電源として機能する
バッテリ、4は車輪4aを駆動する車両モータ、5はア
クセレータとしてのアクセルペダル、6は機械的変位置
を電気信号に変換するボテンシッメータ、7は制御器、
8は燃料ガス圧力ボンベ、9は圧力調整弁、10は空気
ブロアである。
and a battery that functions as a backup power source for peak loads; 4 is a vehicle motor that drives the wheels 4a; 5 is an accelerator pedal as an accelerator; 6 is a potentiometer that converts mechanical position displacement into an electrical signal; 7 is a controller;
8 is a fuel gas pressure cylinder, 9 is a pressure regulating valve, and 10 is an air blower.

ここで、燃料電池1は周知のように燃料ガス。Here, the fuel cell 1 uses fuel gas as is well known.

空気をそれぞれアノード、カソードに供給して発電する
ものであり、その出力はチョッパ2を介して車両モータ
4に給電される。
Electric power is generated by supplying air to the anode and cathode, respectively, and the output is supplied to the vehicle motor 4 via the chopper 2.

そして、車両の走行時には、アルセルペダル5の踏込み
量により負荷指令を制御器7に与え、チョッパ2の出力
を変化させて車両モータ4の速度制御を行う、また、車
両を急速加速走行するなどの負荷急増時には、燃料電池
1の出力不足分をバッテリ2の電力でバンクアップする
とともに、軽負荷時には燃料電池1の余剰電力バッテリ
3を充電する。なお、圧力調整弁10は、燃料電池1で
の燃料ガス消費量の増減に伴うガスラインの圧力変化を
感知して作動し、燃料電池に供給する燃料ガスの圧力を
一定に保つように機能する。
When the vehicle is running, a load command is given to the controller 7 based on the amount of depression of the Arcel pedal 5, and the output of the chopper 2 is changed to control the speed of the vehicle motor 4. When the load suddenly increases, the insufficient output of the fuel cell 1 is compensated for by the power of the battery 2, and when the load is light, the battery 3 is charged with surplus power of the fuel cell 1. Note that the pressure regulating valve 10 operates by sensing pressure changes in the gas line due to increases and decreases in fuel gas consumption in the fuel cell 1, and functions to maintain a constant pressure of the fuel gas supplied to the fuel cell. .

(発明が解決しようとする課題〕 ところで、前記した従来の方式では次記のような問題点
がある。
(Problems to be Solved by the Invention) By the way, the above-described conventional system has the following problems.

(1)バックアップ用バッテリ3の容量が十分大であれ
ば、負荷の急増時にも不足なく必要な電力を車両モータ
4に給電できるので、燃料電池は反応ガス供給量の不足
による出力低下が発生しない。
(1) If the capacity of the backup battery 3 is sufficiently large, the necessary power can be supplied to the vehicle motor 4 even when the load suddenly increases, so that the fuel cell will not experience a drop in output due to insufficient supply of reactant gas. .

しかしながら、大容量のバッテリはサイズ、重量が非常
に大となるので、車両に搭載するには実用面で不適であ
る。
However, a large-capacity battery is very large in size and weight, so it is not suitable for practical use in a vehicle.

(2)シたがって、バックアップ用バッテリの容量を小
さくするには、その分だけ燃料電池の負荷追随性を高め
る必要がある。しかして、第5図のように圧力調整弁9
で燃料ガスの供給を調整する方式では、負荷変動に伴う
反応ガス供給の応答に大きな遅れが生しることが避けら
れない、このために、特に負荷の急増時には一次的に燃
料ガス不足の状態となって燃料電池の出力が低下するの
で、燃料電池に十分な負荷追随性を持たせることができ
ない。
(2) Therefore, in order to reduce the capacity of the backup battery, it is necessary to increase the load followability of the fuel cell accordingly. Therefore, as shown in Fig. 5, the pressure regulating valve 9
In this method, it is inevitable that a large delay will occur in the response of the reactant gas supply due to load fluctuations, and this will cause a temporary fuel gas shortage, especially when the load suddenly increases. As a result, the output of the fuel cell decreases, making it impossible to provide the fuel cell with sufficient load followability.

本発明は上記の点にかんがみなされたものであり、負荷
増減に伴う燃料電池への反応ガス供給の応答性を高めて
燃料ガス不足による燃料電池出力の過渡的な低下を防ぎ
、これによりバックアップ用バッテリの容量を低減でき
るようにした車両搭載用燃料電池の制御方式を提供する
ことを目的とする。
The present invention has been made in consideration of the above points, and improves the responsiveness of reactant gas supply to the fuel cell as the load increases and decreases, thereby preventing a transient decrease in the fuel cell output due to fuel gas shortage, thereby providing a backup An object of the present invention is to provide a control method for a vehicle-mounted fuel cell that can reduce battery capacity.

[l!題を解決するための手段〕 上記111Mを解決するために、本発明は、燃料電池に
供給する反応ガス供給量の演算、制御手段を備え、車両
のアクセレータに与えた走行上の負荷指令を基に、該負
荷指令に相応した反応ガスの適正供給量を演算してフィ
ードフォワード制御するようにしたものである。
[l! Means for Solving the Problem] In order to solve the above problem 111M, the present invention is provided with a calculation and control means for the amount of reactant gas supplied to the fuel cell, and a means for calculating and controlling the amount of reactant gas supplied to the fuel cell based on the running load command given to the accelerator of the vehicle. In addition, feedforward control is performed by calculating the appropriate supply amount of the reaction gas corresponding to the load command.

また、前記の制御方式において、その制御性をより一層
高めるためには、バッテリの残存容量をパラメータとす
る信号を負荷指令に加算して反応ガス供給量を演算する
、ないしは車両の加速走行時に、車両の加速負荷パター
ンに見合った係数を負荷指令に乗じて反応ガス供給量を
演算するなどの手段を加えるのがよい。
In addition, in order to further improve the controllability of the above-mentioned control method, it is possible to add a signal that uses the remaining capacity of the battery as a parameter to the load command to calculate the reaction gas supply amount, or to calculate the amount of reactant gas supplied when the vehicle is accelerating. It is preferable to add means such as calculating the reaction gas supply amount by multiplying the load command by a coefficient suitable for the acceleration load pattern of the vehicle.

〔作用〕[Effect]

上記により、車両の走行中に例えば車両を加速するよう
に車両の運転者がアクセレータであるアクセルペダルを
踏み込むと、その踏込み量が電気信号に変換され、走行
の負荷指令として演算器に与えられる。そして、演算器
はアルセルペダルの踏込み量に見合った適正な反応ガス
供給量を演算し、制御器を介して燃料電池の反応ガス供
給系の補機(燃料ガスラインに接続した流量制御サーボ
弁、空気ラインに接続した空気ブロア)をフィードフォ
ワード制御する。なお、制御器は同時に負荷指令に応じ
てチョッパの出力も制御する。したがって、燃料電池は
応答遅れなしに負荷変動に追随して出力が増大する。な
お、車両の走行速度を低めるようにアクセルペダルの踏
込み量を浅くすれば、前記とは逆に反応ガス供給量を絞
って燃料電池の出力を減少させる。
According to the above, when the driver of the vehicle depresses the accelerator pedal, which is an accelerator, while the vehicle is running, for example, to accelerate the vehicle, the amount of depression is converted into an electrical signal and given to the computing unit as a load command for traveling. Then, the calculator calculates the appropriate amount of reactant gas to be supplied according to the amount of depression of the Arcel pedal, and the controller calculates the appropriate amount of reactant gas to be supplied to the reactor gas supply system of the fuel cell (the flow control servo valve connected to the fuel gas line, Feedforward control of the air blower (air blower connected to the air line). Note that the controller simultaneously controls the output of the chopper according to the load command. Therefore, the output of the fuel cell increases by following load fluctuations without response delay. Note that if the amount of depression of the accelerator pedal is reduced to reduce the traveling speed of the vehicle, the amount of reactant gas supplied will be throttled and the output of the fuel cell will be reduced, contrary to the above.

また、バッファとして機能するバッテリの残存容量を常
時監視しておき、その残存容量をパラメータとして前記
した負荷指令に加算して反応ガス供給量を決めることで
より一層きめ細かな制御が可能となる。
Further, by constantly monitoring the remaining capacity of the battery that functions as a buffer, and adding the remaining capacity as a parameter to the load command described above to determine the reactant gas supply amount, more fine-grained control becomes possible.

さらに、車両を加速走行させる際に、その加速負荷パタ
ーンに見合った係数(係数値:l〜2)を所定の時間(
数秒程度)だけ負荷指令に乗じて演算して反応ガス供給
量を増量することにより、車両の加速性能がより一層向
上する。
Furthermore, when accelerating the vehicle, a coefficient (coefficient value: l to 2) corresponding to the acceleration load pattern is applied for a predetermined period of time (
The acceleration performance of the vehicle is further improved by increasing the amount of reactant gas supplied by multiplying the load command by a fraction of a few seconds).

〔実施例〕〔Example〕

以下本発明の実施例を図面に基づいて説明する。 Embodiments of the present invention will be described below based on the drawings.

なお、第5図に対応する同一機器には同じ符号が付しで
ある。
Note that the same equipment corresponding to FIG. 5 is given the same reference numeral.

まず、第1図の回路では、燃料電池の制御系としてバッ
テリ3の残存容量を監視するバッテリ残存容量計11、
演算器12が第5図の回路に新た追加装備され、さらに
燃料ガスラインには制御器7の指令を受けて弁開度を増
減する流量制御サーボ弁13が第5図における圧力調整
弁に代えて接続されている。
First, in the circuit of FIG. 1, a battery remaining capacity meter 11 that monitors the remaining capacity of the battery 3 as a control system of the fuel cell;
A computing unit 12 is newly added to the circuit shown in Fig. 5, and a flow rate control servo valve 13 that increases/decreases the valve opening in response to commands from the controller 7 is installed in the fuel gas line instead of the pressure regulating valve shown in Fig. 5. connected.

かかる制御回路で、アクセルペダル5の踏込み量を加減
して車両走行の負荷指令を変化させると、アクセルペダ
ルの踏込み量は電気信号に変換して演算器12に入力さ
れる。一方、演算器12では前記の負荷指令にバッテリ
残存容量計11からの信号を加算した上で、燃料電池l
へ供給する反応ガスの必要供給量を演算する。つまり、
バッテリ3の残存容量が少ない状態では燃料電池lの出
力を負荷指令以上に高め、バッテリの残存容量が100
%に近い状態では逆に燃料電池の出力増加を抑えるよう
に調整する。また、この演算結果を基に、制御器7は流
量制御サーボ弁13.空気ブロア10に制御指令を出力
して燃料電池への反応ガス供給量をフィードフォワード
制御する。同時に制御器7はチゴッパ2の出力を制御し
て車両モータ4の速度制御を行う。
When such a control circuit adjusts the amount of depression of the accelerator pedal 5 to change the load command for running the vehicle, the amount of depression of the accelerator pedal is converted into an electrical signal and input to the calculator 12. On the other hand, the arithmetic unit 12 adds the signal from the battery remaining capacity meter 11 to the load command and adds the signal from the fuel cell l
Calculate the required supply amount of reactant gas to be supplied to. In other words,
When the remaining capacity of the battery 3 is low, the output of the fuel cell 1 is increased above the load command, and the remaining capacity of the battery is reduced to 100.
%, on the other hand, adjustments are made to suppress the increase in fuel cell output. Based on this calculation result, the controller 7 also controls the flow rate control servo valve 13. A control command is output to the air blower 10 to perform feedforward control of the amount of reactant gas supplied to the fuel cell. At the same time, the controller 7 controls the output of the chigoppa 2 to control the speed of the vehicle motor 4.

ここで、アクセルペダル5の踏込み量と燃料ガスライン
に接続した流量制御サーボ弁13の弁開度。
Here, the amount of depression of the accelerator pedal 5 and the opening degree of the flow rate control servo valve 13 connected to the fuel gas line.

および燃料電池lの出力との関係は、例えば第2図のよ
うに設定されている。なお図中のAはアイドリング相当
するバイアス分である。
The relationship between this and the output of the fuel cell l is set as shown in FIG. 2, for example. Note that A in the figure is a bias amount corresponding to idling.

一方、アクセルペダル5を踏み込んで車両を加速させる
ためには、車両モータ4に対して過渡的にピーク負荷が
加わる。したがって、このような車両の加速走行に伴う
ピーク負荷に対して燃料電池の出力を追随させるように
するには、第3図のように負荷指令を受けた時点から所
定時間(例えば7秒程度)だけ車両の加速負荷パターン
に見合った係数(係数値:1〜2)を負荷指令に乗じ、
これを基に反応ガス供給量、並びに車両モータ4をチジ
ッパ制御することにより良好に対応できる。
On the other hand, in order to accelerate the vehicle by depressing the accelerator pedal 5, a peak load is transiently applied to the vehicle motor 4. Therefore, in order to make the output of the fuel cell follow the peak load that occurs when the vehicle accelerates, it is necessary to wait for a predetermined period of time (for example, about 7 seconds) from the time the load command is received, as shown in Figure 3. The load command is multiplied by a coefficient (coefficient value: 1 to 2) corresponding to the acceleration load pattern of the vehicle.
Based on this, the reactant gas supply amount and the vehicle motor 4 can be appropriately controlled.

なお、第4図は前記の制御を表したタイムチャートであ
る。
Incidentally, FIG. 4 is a time chart showing the above control.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本発明の制御方式により次記の効果
を奏する。
As described above, the control method of the present invention provides the following effects.

(1)燃料電池に供給する反応ガス供給量の演算制御手
段を備え、車両のアクセレータに与えた走行上の負荷指
令を基に、該負荷指令に相応した反応ガスの適正供給量
を演算してフィードフォワード制御することにより、負
荷変動に対する燃料電池出力の追随性を従来と比べて大
幅に向上させることができる。
(1) Equipped with a calculation control means for the amount of reactive gas supplied to the fuel cell, which calculates an appropriate amount of reactive gas to be supplied corresponding to the load command given to the accelerator of the vehicle based on the load command for running. By performing feedforward control, the followability of the fuel cell output to load fluctuations can be significantly improved compared to the conventional method.

(2) したがって、反応ガス不足に起因する燃料電池
の出力低下もなく、これにより燃料電池に組合わせたバ
ンクアップ用バッテリの容量を縮減して大幅な小型、コ
ンパクト化が図れ、車両搭載用の電源として極めて有利
である。
(2) Therefore, there is no reduction in the output of the fuel cell due to a shortage of reactant gas, and as a result, the capacity of the bank-up battery combined with the fuel cell can be reduced, making it significantly smaller and more compact. It is extremely advantageous as a power source.

(3)さらに、燃料電池への反応ガス供給制御に際して
、バッテリの残存容量をパラメータとする信号を負荷指
令に加算して反応ガス供給量を演算する、ないしは車両
の加速走行時に、車両の加速負荷パターンに見合った係
数を負荷指令に乗じて反応ガス供給量を演算するなどの
手段を加えることによりより一層きめ細かな制御が達成
できる。
(3) Furthermore, when controlling the reactant gas supply to the fuel cell, the reactant gas supply amount is calculated by adding a signal that uses the battery's remaining capacity as a parameter to the load command, or when the vehicle is accelerating, the acceleration load of the vehicle is calculated. More fine control can be achieved by adding means such as calculating the amount of reactant gas supplied by multiplying the load command by a coefficient appropriate to the pattern.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明実施例の回路図、第2図はアクセルペダ
ルの踏込み量と燃料電池出力、流量制御サーボ弁開度と
の関係図、第3図は車両加速時に負荷指令に乗じる係数
のパターン図、第4図は第1図による制御動作を表した
タイムチャート図、第5図は従来における燃料電池搭載
車両の運転回路図である0図において、 1:燃料電池、2:チッッパ、3:バッテリ、4:車両
モータ、5:アクセルペダル(アクセレータ)、7:制
御器、11:バッテリ残存容量計、12二演算器、13
:流量制御サーボ弁、    /スン、第3図 第4図
Figure 1 is a circuit diagram of an embodiment of the present invention, Figure 2 is a diagram of the relationship between the accelerator pedal depression amount, fuel cell output, and flow rate control servo valve opening, and Figure 3 is a diagram of the coefficient by which the load command is multiplied during vehicle acceleration. In the pattern diagram, Fig. 4 is a time chart diagram showing the control operation according to Fig. 1, and Fig. 5 is an operating circuit diagram of a conventional fuel cell-equipped vehicle. : Battery, 4: Vehicle motor, 5: Accelerator pedal (accelerator), 7: Controller, 11: Battery remaining capacity meter, 12 Two computing units, 13
:Flow control servo valve, /Sung, Fig. 3 Fig. 4

Claims (1)

【特許請求の範囲】 1)車両に搭載した燃料電池にバッテリを組合わせて車
両モータを駆動する燃料電池の制御方式であって、燃料
電池に供給する反応ガス供給量の演算制御手段を備え、
車両のアクセレータに与えた走行上の負荷指令を基に、
該負荷指令に相応した反応ガスの適正供給量を演算して
フィードフォワード制御することを特徴とする車両搭載
用燃料電池の制御方式。 2)請求項1に記載の制御方式において、バッテリの残
存容量をパラメータとする信号を負荷指令に加算して反
応ガス供給量を演算することを特徴とする車両搭載用燃
料電池の制御方式。 3)請求項1に記載の制御方式において、車両の加速走
行時に、車両の加速負荷パターンに見合った係数を負荷
指令に乗じて反応ガス供給量を演算することを特徴とす
る車両搭載用燃料電池の制御方式。
[Claims] 1) A fuel cell control method for driving a vehicle motor by combining a fuel cell mounted on a vehicle with a battery, comprising calculation control means for the amount of reactant gas supplied to the fuel cell,
Based on the driving load command given to the vehicle's accelerator,
A control method for a vehicle-mounted fuel cell, characterized in that feedforward control is performed by calculating an appropriate supply amount of a reactant gas corresponding to the load command. 2) A control method for a vehicle-mounted fuel cell according to claim 1, characterized in that the reactant gas supply amount is calculated by adding a signal having the remaining capacity of the battery as a parameter to the load command. 3) In the control method according to claim 1, when the vehicle is running under acceleration, the amount of reactant gas supplied is calculated by multiplying the load command by a coefficient commensurate with the acceleration load pattern of the vehicle. control method.
JP2076202A 1990-03-26 1990-03-26 Control system for on-vehicle fuel cell Pending JPH03276573A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2076202A JPH03276573A (en) 1990-03-26 1990-03-26 Control system for on-vehicle fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2076202A JPH03276573A (en) 1990-03-26 1990-03-26 Control system for on-vehicle fuel cell

Publications (1)

Publication Number Publication Date
JPH03276573A true JPH03276573A (en) 1991-12-06

Family

ID=13598575

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2076202A Pending JPH03276573A (en) 1990-03-26 1990-03-26 Control system for on-vehicle fuel cell

Country Status (1)

Country Link
JP (1) JPH03276573A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0775214A (en) * 1993-07-08 1995-03-17 Daimler Benz Ag Method and device for regulating output dynamically in travelling vehicle provided with fuel cell
EP0771688A1 (en) * 1995-11-02 1997-05-07 Daimler-Benz Aktiengesellschaft Method for setting dynamic power of a vehicle with a fuel cell
US5631532A (en) * 1994-02-24 1997-05-20 Kabushikikaisha Equos Research Fuel cell/battery hybrid power system for vehicle
US5658681A (en) * 1994-09-30 1997-08-19 Kabushikikaisha Equos Research Fuel cell power generation system
US6255008B1 (en) 1998-07-16 2001-07-03 Toyota Jidosha Kabushiki Kaisha Fuel cell system capable of reducing electric power loss
WO2001089015A1 (en) * 2000-05-15 2001-11-22 Toyota Jidosha Kabushiki Kaisha Supply of electric power using fuel cell and chargeable/dischargeable storage
JP2002008694A (en) * 2000-06-26 2002-01-11 Toyota Motor Corp Mobile body equipped with fuel cell
JP2002141092A (en) * 2000-11-01 2002-05-17 Equos Research Co Ltd Control method of fuel cell device
JP2006202683A (en) * 2005-01-24 2006-08-03 Nissan Motor Co Ltd Fuel cell system control device and fuel cell system control method
EP1332912A3 (en) * 2002-02-05 2006-08-23 Honda Giken Kogyo Kabushiki Kaisha Vehicle with electric motor mounted thereon
JP2006302886A (en) * 2005-04-21 2006-11-02 Samsung Sdi Co Ltd Electric power supply device using fuel cell, control method of electric power supply device, and computer readable recording medium
WO2007069484A1 (en) * 2005-12-15 2007-06-21 Toyota Jidosha Kabushiki Kaisha Fuel cell system and mobile body
JP2011223870A (en) * 2011-04-28 2011-11-04 Toyota Motor Corp Supply of power using fuel cell and power storage part capable of charging and discharging
WO2013075778A1 (en) * 2011-11-23 2013-05-30 Audi Ag Method for controlling the operation of an arrangement of at least two electric machines, and motor vehicle
KR20190001929A (en) * 2017-06-28 2019-01-07 도요타지도샤가부시키가이샤 Method of designing machine

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0775214A (en) * 1993-07-08 1995-03-17 Daimler Benz Ag Method and device for regulating output dynamically in travelling vehicle provided with fuel cell
US5646852A (en) * 1993-07-08 1997-07-08 Daimler-Benz Aktiengesellschaft Method and device for vehicle fuel cell dynamic power control
US5631532A (en) * 1994-02-24 1997-05-20 Kabushikikaisha Equos Research Fuel cell/battery hybrid power system for vehicle
US5658681A (en) * 1994-09-30 1997-08-19 Kabushikikaisha Equos Research Fuel cell power generation system
EP0771688A1 (en) * 1995-11-02 1997-05-07 Daimler-Benz Aktiengesellschaft Method for setting dynamic power of a vehicle with a fuel cell
US5780981A (en) * 1995-11-02 1998-07-14 Daimler-Benz Ag Process for dynamically adjusting the power for a vehicle having a fuel cell
US6255008B1 (en) 1998-07-16 2001-07-03 Toyota Jidosha Kabushiki Kaisha Fuel cell system capable of reducing electric power loss
WO2001089015A1 (en) * 2000-05-15 2001-11-22 Toyota Jidosha Kabushiki Kaisha Supply of electric power using fuel cell and chargeable/dischargeable storage
JP2001325976A (en) * 2000-05-15 2001-11-22 Toyota Motor Corp Power supply using fuel cell and chargeable/ dischargeable storage part
US7301302B2 (en) 2000-05-15 2007-11-27 Toyota Jidosha Kabushiki Kaisha Supply of electric power using fuel cell and chargeable/dischargeable storage
US7583052B2 (en) 2000-05-15 2009-09-01 Toyota Jidosha Kabushiki Kaisha Supply of power utilizing fuel cell and rechargeable storage portion
JP2002008694A (en) * 2000-06-26 2002-01-11 Toyota Motor Corp Mobile body equipped with fuel cell
JP4670128B2 (en) * 2000-06-26 2011-04-13 トヨタ自動車株式会社 Mobile body with fuel cell
JP2002141092A (en) * 2000-11-01 2002-05-17 Equos Research Co Ltd Control method of fuel cell device
US7174977B2 (en) 2002-02-05 2007-02-13 Honda Giken Kogyo Kabushiki Kaisha Vehicle with electric motor mounted thereon
EP1332912A3 (en) * 2002-02-05 2006-08-23 Honda Giken Kogyo Kabushiki Kaisha Vehicle with electric motor mounted thereon
JP2006202683A (en) * 2005-01-24 2006-08-03 Nissan Motor Co Ltd Fuel cell system control device and fuel cell system control method
JP2006302886A (en) * 2005-04-21 2006-11-02 Samsung Sdi Co Ltd Electric power supply device using fuel cell, control method of electric power supply device, and computer readable recording medium
WO2007069484A1 (en) * 2005-12-15 2007-06-21 Toyota Jidosha Kabushiki Kaisha Fuel cell system and mobile body
JP2011223870A (en) * 2011-04-28 2011-11-04 Toyota Motor Corp Supply of power using fuel cell and power storage part capable of charging and discharging
WO2013075778A1 (en) * 2011-11-23 2013-05-30 Audi Ag Method for controlling the operation of an arrangement of at least two electric machines, and motor vehicle
US9007008B2 (en) 2011-11-23 2015-04-14 Audi Ag Method for controlling the operation of an arrangement of at least two electric machines, and motor vehicle
KR20190001929A (en) * 2017-06-28 2019-01-07 도요타지도샤가부시키가이샤 Method of designing machine

Similar Documents

Publication Publication Date Title
US5771476A (en) Power control system for a fuel cell powered vehicle
JPH03276573A (en) Control system for on-vehicle fuel cell
CN101238006B (en) Fuel cell vehicle
US5646852A (en) Method and device for vehicle fuel cell dynamic power control
US6701229B2 (en) Vehicle drive system
US6908162B2 (en) Vehicle regenerative braking apparatus
US7473206B2 (en) Engine controller and control method
CN101490882B (en) Fuel cell system and fuel cell vehicle
US5877600A (en) Process for determining a desired load value for a load-dependent current generating system in an electric vehicle
CA2336422A1 (en) Brake device for car
KR100992164B1 (en) Mobile body
CN109130882A (en) Goods vehicle and be equipped on goods vehicle traveling drive motor control method
JP3376918B2 (en) Constant-speed cruise control system for vehicles
US6875531B2 (en) Fuel cell power supply device
CN102470768B (en) Fuel cell system and motor drive method
US6680592B2 (en) Method and apparatus for producing current values dependent on the position of the accelerator pedal for the purpose of controlling the power of one or more drives in a mobile device with a fuel cell for supplying energy
US6452352B1 (en) Method of current interaction in an electric motor drive system having a load-dependent current generating system
KR20070106334A (en) Control method of air supplier fuel cell system
JPH03284104A (en) Movable power supply vehicle
US6795755B2 (en) Method for operating a load-dependent power-generating system in a vehicle
US7084589B1 (en) Vehicle and method for controlling power to wheels in a vehicle
JP2000348748A (en) Power generation control method of fuel cell
JP3882693B2 (en) Fuel cell system
JP3399299B2 (en) Series hybrid generator control system
KR100857658B1 (en) Torque control method of hybrid electric vehicle