JP2002008694A - Mobile body equipped with fuel cell - Google Patents

Mobile body equipped with fuel cell

Info

Publication number
JP2002008694A
JP2002008694A JP2000190622A JP2000190622A JP2002008694A JP 2002008694 A JP2002008694 A JP 2002008694A JP 2000190622 A JP2000190622 A JP 2000190622A JP 2000190622 A JP2000190622 A JP 2000190622A JP 2002008694 A JP2002008694 A JP 2002008694A
Authority
JP
Japan
Prior art keywords
power
fuel cell
moving body
power generation
state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000190622A
Other languages
Japanese (ja)
Other versions
JP4670128B2 (en
Inventor
Atsushi Tabata
淳 田端
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2000190622A priority Critical patent/JP4670128B2/en
Publication of JP2002008694A publication Critical patent/JP2002008694A/en
Application granted granted Critical
Publication of JP4670128B2 publication Critical patent/JP4670128B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2045Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for optimising the use of energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2054Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed by controlling transmissions or clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/61Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles
    • B60L50/62Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles charged by low-power generators primarily intended to support the batteries, e.g. range extenders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/15Preventing overcharging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/40Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for controlling a combination of batteries and fuel cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M16/00Structural combinations of different types of electrochemical generators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0438Pressure; Ambient pressure; Flow
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04604Power, energy, capacity or load
    • H01M8/04619Power, energy, capacity or load of fuel cell stacks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/12Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/443Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/549Current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2250/00Driver interactions
    • B60L2250/26Driver interactions by pedal actuation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/20Fuel cells in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Power Engineering (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Combustion & Propulsion (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To suppress useless power generation while improving a response of a fuel cell, in a vehicle equipped with a fuel cell. SOLUTION: In the vehicle having a motor 20 as one of driving power sources, a fuel cell 54 and a battery 50 as power sources of the motor 20 are also equipped. The battery 50 is used as the power source compensating insufficiency of the power from the fuel cell 54 originated in a low response or the like. A target value of management used as a basis controlling a charging condition of the battery 50, is dynamically set up based on an operation of control components, such as an accelerator. When the operation condition is in a low running-start probability during the vehicle stops, the target value of a management is reduced. By dynamically changing the target value of management, a useless running of the fuel cell for charging the battery can be suppressed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、燃料電池を電源と
する電動機を駆動源として移動する移動体およびその制
御方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a moving body which is driven by a motor driven by a fuel cell as a power source, and a control method thereof.

【0002】[0002]

【従来の技術】近年、燃料電池を電源として走行する車
両が提案されている。燃料電池とは、水素と酸素の電気
化学反応によって発電する装置をいう。燃料電池から排
出されるのは主として水蒸気であり、有害な成分が含ま
れないため、環境性に非常に優れるという利点がある。
2. Description of the Related Art In recent years, vehicles that run using a fuel cell as a power source have been proposed. A fuel cell refers to a device that generates power by an electrochemical reaction between hydrogen and oxygen. What is discharged from the fuel cell is mainly water vapor, which does not contain harmful components, and thus has the advantage of being very environmentally friendly.

【0003】燃料電池と二次電池とを電源として併用す
る車両も提案されている(例えば、特開平11−164
402記載の車両)。この車両では、二次電池は一種の
電力バッファとして使用され、二次電池の充電状態を管
理目標値に維持しながら走行する。例えば、充電状態が
管理目標値に満たない場合には、燃料電池で発電して充
電を行う。この際、車両の運動エネルギを電動発電機で
回生することも考慮して、管理目標値を車速や運動エネ
ルギなどのパラメータによって変動させている。
A vehicle using both a fuel cell and a secondary battery as a power source has been proposed (for example, Japanese Patent Application Laid-Open No. H11-164).
402). In this vehicle, the secondary battery is used as a kind of power buffer and travels while maintaining the state of charge of the secondary battery at a management target value. For example, when the state of charge is less than the management target value, the fuel cell performs power generation for charging. At this time, the management target value is varied according to parameters such as the vehicle speed and the kinetic energy in consideration of the regeneration of the kinetic energy of the vehicle by the motor generator.

【0004】[0004]

【発明が解決しようとする課題】一般に燃料電池は、発
電要求に対する応答性が低い特性がある。燃料ガスの拡
散の低応答性が原因の一つである。燃料電池を搭載した
従来の車両では、各時点での要求動力に応じて燃料電池
の発電量が制御されていたため、運転者の操作に対する
応答性が低いという課題があった。
Generally, a fuel cell has a characteristic of low response to a power generation request. One of the causes is low response of fuel gas diffusion. In a conventional vehicle equipped with a fuel cell, the amount of power generated by the fuel cell is controlled in accordance with the required power at each point in time, and thus there is a problem that the responsiveness to a driver's operation is low.

【0005】二次電池をも電源として搭載した車両で
は、燃料電池からの不足電力を二次電池で補償すること
により、低応答性をある程度回避することが可能ではあ
った。しかしながら、この構成では、二次電池の充電状
態を管理目標値に維持するために、燃料電池の発電が無
駄に行われることがあった。特に、特開平11−164
402記載の車両では、停車中には何ら管理目標値の調
整が行われず、無駄な発電を招く可能性が高かった。こ
こでは、車両を例にとって課題を説明したが、航空機、
船舶など種々の移動体に燃料電池を搭載した場合に、同
様の課題が生じ得る状況にあった。
[0005] In a vehicle equipped with a secondary battery as a power source, it was possible to avoid low responsiveness to some extent by compensating the power shortage from the fuel cell with the secondary battery. However, in this configuration, power generation of the fuel cell may be useless in order to maintain the state of charge of the secondary battery at the management target value. In particular, JP-A-11-164
In the vehicle described in 402, no adjustment of the management target value was performed during the stop, and there was a high possibility that wasteful power generation was caused. Here, the problem was explained using a vehicle as an example, but aircraft,
When a fuel cell is mounted on various moving objects such as a ship, a similar problem may occur.

【0006】本発明は、少なくとも燃料電池を電源とし
て使用する移動体において、発電量の低応答性による影
響を抑制することを目的とする。また、および燃料電池
の無駄な発電を抑制して運転効率を高めることを目的と
する。
SUMMARY OF THE INVENTION It is an object of the present invention to suppress the influence of the low responsiveness of the power generation amount on at least a mobile body using a fuel cell as a power source. Another object of the present invention is to increase the operating efficiency by suppressing unnecessary power generation of the fuel cell.

【0007】[0007]

【課題を解決するための手段およびその作用・効果】上
述の課題を解決するために、本発明は燃料電池を電源と
する電動機を駆動源として移動する移動体において、第
1の構成として、操作部と、操作状態検出手段と、動力
変動予測手段と、発電制御手段とを備えるものとした。
ここでいう移動体には、例えば、車両、航空機、船舶が
含まれる。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention relates to a moving body that moves with a motor driven by a fuel cell as a power source as a driving source. Unit, operation state detecting means, power fluctuation predicting means, and power generation control means.
The moving object here includes, for example, a vehicle, an aircraft, and a ship.

【0008】操作部は、運転者が移動体を運転するため
のユニットである。車両について言えば、いわゆるアク
セルペダル、ブレーキペダル、変速用のシフトレバーな
どが含まれる。操作状態検出手段は、操作部の操作状態
を検出するセンサ、演算回路などである。動力変動予測
手段は、検出された操作状態に基づいて、動力の将来的
な変動を予測するユニットである。操作状態のみに基づ
いて予測するユニット、操作状態とその他のパラメータ
を総合的に考慮して予測するユニットの双方が含まれ
る。予測は、例えば、操作状態と動力変動との間で予め
設定された関係に基づいて行うことができる。発電制御
手段は、この予測結果を考慮して前記燃料電池の発電量
を制御する。予測結果のみから発電量を制御する態様、
各時点における要求電力に予測結果を反映させて発電量
を制御する態様が含まれる。
The operation unit is a unit for a driver to drive a moving body. Speaking of vehicles, it includes so-called accelerator pedals, brake pedals, shift levers for shifting, and the like. The operation state detection means is a sensor for detecting the operation state of the operation unit, an arithmetic circuit, or the like. The power fluctuation prediction unit is a unit that predicts a future fluctuation of the power based on the detected operation state. Both a unit that predicts based on only the operation state and a unit that predicts based on comprehensive consideration of the operation state and other parameters are included. The prediction can be made, for example, based on a preset relationship between the operation state and the power fluctuation. The power generation control means controls the power generation amount of the fuel cell in consideration of the prediction result. A mode of controlling the power generation amount from only the prediction result,
A mode in which the amount of power generation is controlled by reflecting the prediction result in the required power at each time point is included.

【0009】本発明の移動体によれば、動力の変動を予
測して燃料電池の発電量を制御するため、応答性を向上
することができる。例えば、移動中に加速が予想される
場合には、予め燃料電池の発電量を高くしておくことに
より、加速開始時に要求された電力を速やかに発電する
ことができる。
According to the moving body of the present invention, the responsiveness can be improved because the power generation of the fuel cell is controlled by predicting the fluctuation of the power. For example, when acceleration is expected during movement, the power required at the start of acceleration can be quickly generated by increasing the power generation amount of the fuel cell in advance.

【0010】運転者の意図は操作部の操作状態に顕著に
現れるから、本発明では、操作状態を利用することによ
り、運転者の意図を反映した的確な予測が可能となる。
一例として、車両について、走行中に運転者がブレーキ
ペダルを踏み込んで減速している場合を考える。車両が
停車していないにも関わらず、運転者がブレーキペダル
から足を離したとすれば、次にアクセルペダルが踏み込
まれ、加速が行われる可能性が非常に高い。本発明で
は、かかる判断の下、例えば、ブレーキペダルが踏み込
まれなくなったことを検出することにより、動力の増大
を予測するのである。
[0010] Since the driver's intention is conspicuously expressed in the operation state of the operation unit, the present invention makes it possible to make an accurate prediction reflecting the driver's intention by utilizing the operation state.
As an example, consider a case in which a driver depresses a brake pedal to decelerate a vehicle while traveling. If the driver releases his / her foot from the brake pedal even though the vehicle is not stopped, it is very likely that the accelerator pedal will be depressed next and acceleration will be performed. In the present invention, an increase in power is predicted based on such a determination, for example, by detecting that the brake pedal is no longer depressed.

【0011】動力変動予測手段および発電制御手段は、
該移動体の停止時に機能する手段とすることもできる。
例えば、停止中に電力を必要とする補機の動作状態を予
測して発電量を制御してもよい。移動体が移動を開始す
るか否かを予測して発電量を制御してもよい。車両の場
合、シフトポジションが移動中に使用されない位置にあ
るか否か、ブレーキペダルが踏み込まれているか否かな
どの操作状態によって移動の開始を予測することができ
る。
The power fluctuation predicting means and the power generation controlling means include:
It may be a means that functions when the moving body stops.
For example, the power generation amount may be controlled by predicting the operation state of the auxiliary machine that requires power during stoppage. The power generation amount may be controlled by predicting whether or not the moving object starts moving. In the case of a vehicle, the start of the movement can be predicted based on whether the shift position is in a position not used during the movement, whether the brake pedal is depressed, and the like.

【0012】本発明は、電源として利用可能かつ前記燃
料電池から充電可能に接続された蓄電器と、その充電状
態を検出する充電状態検出手段とを備える移動体に適用
することもできる。蓄電器は、二次電池、キャパシタな
どを利用できる。
The present invention can also be applied to a moving object including a power storage unit that can be used as a power supply and is connected to be chargeable from the fuel cell, and charging state detecting means for detecting the charging state. As the battery, a secondary battery, a capacitor, or the like can be used.

【0013】この場合、発電制御手段は、予想結果に応
じて蓄電器の充電状態の管理目標値を設定する管理目標
値設定手段と、蓄電器の充電状態が管理目標値となるよ
う燃料電池の発電を制御する充電制御手段とを備える手
段とすることができる。管理目標値を予測結果に応じて
変動させることにより、間接的に燃料電池の運転に予測
結果を反映させる態様に相当する。動力の予測に応じて
管理目標値を変動させるため、極端な過不足のない充電
状態を維持することができる。また、無用に高い充電状
態を維持するために、燃料電池が発電することを抑制で
きる。
In this case, the power generation control means includes management target value setting means for setting a management target value of the state of charge of the battery according to the expected result, and power generation of the fuel cell so that the state of charge of the battery becomes the management target value. And charging control means for controlling the charging. By changing the management target value according to the prediction result, this corresponds to a mode in which the prediction result is indirectly reflected in the operation of the fuel cell. Since the management target value is changed in accordance with the prediction of the power, it is possible to maintain a charged state with no extreme excess or shortage. In addition, in order to maintain an unnecessarily high state of charge, it is possible to suppress the fuel cell from generating power.

【0014】蓄電器を備える構成においては、動力の増
大が所定値以下と予測された場合には、蓄電器の充電状
態に関わらず前記燃料電池の発電を停止する発電停止手
段を備えるものとしてもよい。動力の増大、即ち、要求
される電力の増大の可能性が低い場合には、燃料電池の
応答遅れに起因する電力不足が生じる可能性も低い。か
かる場合に発電を停止するものとすれば、燃料電池の無
駄な発電を抑えることができる。
[0014] In the configuration including the battery, the power generation stopping means may be configured to stop the power generation of the fuel cell regardless of the state of charge of the battery when the increase in power is predicted to be equal to or less than the predetermined value. When the possibility of increasing the power, that is, increasing the required power is low, the possibility of power shortage due to a delay in response of the fuel cell is low. If power generation is stopped in such a case, useless power generation of the fuel cell can be suppressed.

【0015】この構成は、特に移動体の停止時に有効で
ある。一般に停止時は、蓄電器の電力の消費が緩やかで
あり、管理目標値を維持する必要性が低い場合がある。
充電状態が管理目標値に満たない場合でも燃料電池の発
電を停止しても差し支えないことが多い。従って、上記
制御を停止時に適用することにより、無駄な発電を抑制
することができる。発電停止手段は、例えば、管理目標
値を、各時点における蓄電器の充電状態よりも低い値に
強制的に設定することによって実現してもよい。
This configuration is particularly effective when the moving body is stopped. Generally, at the time of stoppage, power consumption of the battery is slow, and there is a case where the necessity to maintain the management target value is low.
Even when the state of charge is less than the management target value, it is often safe to stop the power generation of the fuel cell. Therefore, wasteful power generation can be suppressed by applying the above control at the time of stop. The power generation stopping means may be realized, for example, by forcibly setting the management target value to a value lower than the state of charge of the battery at each time.

【0016】移動体が、燃料電池用の燃料(以下、「F
C燃料」と呼ぶ)の残量を検出する残燃料検出手段を備
える場合には、検出されたFC燃料の残量が所定値以上
の時に発電制御手段を機能させても良い。FC燃料が十
分に残っている場合に、動力変動の予測結果を反映した
運転を行う態様に相当する。FC燃料が不足していると
きは、燃料電池の運転を完全に停止するか、所定の電力
範囲に抑制する。こうすることにより、FC燃料の不足
時には、予測結果に関わらず発電を抑制することがで
き、FC燃料の浪費を回避することができる。
The moving object is a fuel for a fuel cell (hereinafter referred to as “F”).
In the case where a remaining fuel detecting means for detecting the remaining amount of fuel (hereinafter referred to as "C fuel") is provided, the power generation control means may be operated when the detected remaining amount of the FC fuel is equal to or more than a predetermined value. When the FC fuel remains sufficiently, this corresponds to a mode in which the operation reflecting the prediction result of the power fluctuation is performed. When the FC fuel is insufficient, the operation of the fuel cell is completely stopped or suppressed to a predetermined electric power range. By doing so, when the FC fuel is insufficient, power generation can be suppressed regardless of the prediction result, and waste of the FC fuel can be avoided.

【0017】この場合、駆動源として熱機関を備える場
合には、FC燃料の残量が所定値に満たない時には、燃
料電池の発電量の少なくとも一部を代替するように熱機
関を運転することも望ましい。こうすれば、動力変動の
予測結果を反映しつつ、燃料電池による電動機と熱機関
という二つの駆動源を使い分けることができる。熱機関
の動力は、そのまま移動体の移動に用いるものとしても
よいし、発電機に入力し蓄電器の充電に利用するものと
してもよい。
In this case, when a heat engine is provided as a drive source, when the remaining amount of FC fuel is less than a predetermined value, the heat engine is operated so as to substitute at least a part of the power generation amount of the fuel cell. Is also desirable. In this way, it is possible to properly use the two driving sources, that is, the motor driven by the fuel cell and the heat engine while reflecting the prediction result of the power fluctuation. The power of the heat engine may be used as it is for moving the moving body, or may be input to a generator and used for charging a battery.

【0018】さらに、移動体が熱機関用の燃料の残量を
検出する熱機関残燃料検出手段を備える場合には、熱機
関用の燃料残量が所定値以上の場合に、熱機関を運転さ
せるものとしてもよい。熱機関の燃料が不足していると
きは、その運転を抑制し、燃料の浪費を抑制することが
できる。
Further, when the moving body is provided with a heat engine remaining fuel detecting means for detecting the remaining amount of fuel for the heat engine, when the remaining fuel amount for the heat engine is equal to or more than a predetermined value, the heat engine is operated. It is good also as what makes it. When the fuel of the heat engine is insufficient, the operation of the heat engine can be suppressed, and the waste of fuel can be suppressed.

【0019】本発明は、第2の構成として、熱機関と燃
料電池とを駆動源とする移動体において、該駆動源を利
用するための操作部と、該操作部の操作状態を検出する
操作状態検出手段と、検出された操作状態に基づいて、
前記駆動源の将来的な出力を予測する出力予測手段と、
該予測結果を考慮して前記燃料電池の発電量を制御する
発電制御手段とを備える構成とすることもできる。移動
に要する動力の予測のみならず、その他の利用も含めて
駆動源に要求される出力に基づいて燃料電池の発電量を
制御する態様である。例えば、電気機器を使用可能にす
るためにアウトレット、コンセントを備え、駆動源がそ
の電源に使用される移動体において、電力に利用可否を
操作するスイッチの状態に応じて発電制御を行ってもよ
い。例えば、このスイッチがオンとなっている場合には
電力が抽出される可能性が高いと予測し、発電量を増や
す制御を行うことができる。その他、移動体の照明装
置、空調機器その他の電力機器のスイッチに応じて出力
の予測を行ってもよい。かかる構成の移動体において
も、蓄電器を備えることができ、その管理目標値に応じ
た充電制御手段を適用すること、その他第1の構成で説
明した種々の構成要素の適用が可能である。
According to a second aspect of the present invention, there is provided a moving body using a heat engine and a fuel cell as driving sources, an operation unit for utilizing the driving source, and an operation for detecting an operation state of the operation unit. Based on the state detection means and the detected operation state,
Output prediction means for predicting the future output of the drive source,
Power generation control means for controlling the power generation amount of the fuel cell in consideration of the prediction result. This is a mode in which the power generation amount of the fuel cell is controlled based on the output required for the drive source including not only the prediction of the power required for movement but also other uses. For example, an outlet and an outlet may be provided to enable use of an electric device, and power generation control may be performed according to a state of a switch for operating availability of power in a moving body whose driving source is used as its power source. . For example, when this switch is on, it is predicted that there is a high possibility that power is extracted, and control to increase the amount of power generation can be performed. In addition, the output may be predicted according to a switch of a lighting device of a moving object, an air conditioner, or another power device. The mobile body having such a configuration can also include a battery, and can apply a charging control unit according to the management target value, and can apply various components described in the first configuration.

【0020】本発明は、移動体としての構成の他、移動
体の駆動装置として構成してもよい。また、移動体の制
御方法、駆動方法、燃料電池の運転の制御方法など、種
々の態様で構成可能である。
The present invention may be configured as a driving device for the moving body, in addition to the structure as the moving body. Further, it can be configured in various modes such as a control method of a moving body, a driving method, and a control method of operation of a fuel cell.

【0021】[0021]

【発明の実施の形態】本発明の実施の形態について、ハ
イブリッド車両に適用した実施例を、以下の項目に分け
て説明する。 A.装置の構成: B.一般的動作: C.停止時充電制御: C1.管理目標値の設定: C2.充電制御処理: D.走行時充電制御: E.走行時発電制御:
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention applied to a hybrid vehicle will be described in the following sections. A. Device configuration: General operation: Stop charging control: C1. Setting of management target value: C2. Charge control processing: D. Traveling charge control: Running power generation control:

【0022】A.装置の構成:図1は実施例としてのハ
イブリッド車両の概略構成図である。本実施例のハイブ
リッド車両の動力源は、エンジン10とモータ20であ
る。図示する通り、本実施例のハイブリッド車両の動力
系統は、上流側からエンジン10、入力クラッチ18、
モータ20、トルクコンバータ30、および変速機10
0を直列に結合して構成されている。変速機100の出
力軸15はディファレンシャルギヤ16を介して車軸1
7に結合されている。入力クラッチ18は、エンジン1
0のクランクシャフト12とモータ20間の動力の伝達
を断続する機構である。
A. FIG. 1 is a schematic configuration diagram of a hybrid vehicle as an embodiment. The power sources of the hybrid vehicle of this embodiment are the engine 10 and the motor 20. As illustrated, the power system of the hybrid vehicle according to the present embodiment includes an engine 10, an input clutch 18,
Motor 20, torque converter 30, and transmission 10
0 are connected in series. The output shaft 15 of the transmission 100 is connected to the axle 1 via a differential gear 16.
7. The input clutch 18 is connected to the engine 1
0 is a mechanism for intermittently transmitting power between the crankshaft 12 and the motor 20.

【0023】エンジン10は種々の熱機関を適用でき
る。本実施例では通常のガソリンエンジンとした。モー
タ20は、直流モータ、交流モータのいずれも適用でき
る。本実施例では、三相の同期モータを用いた。トラン
ジスタインバータとして構成された駆動回路52で生成
される三相交流によってモータ20は回転する。モータ
20の電源としては、バッテリ50と燃料電池54とが
備えられている。主電源は燃料電池54であり、バッテ
リ50は燃料電池54の発電が不十分な状況下でこれを
補償する電源として使用される。バッテリ50の電力
は、制御ユニット70や、照明装置などの電力機器に主
として供給される。
The engine 10 can use various heat engines. In this embodiment, a normal gasoline engine was used. As the motor 20, any of a DC motor and an AC motor can be applied. In this embodiment, a three-phase synchronous motor is used. The motor 20 is rotated by the three-phase AC generated by the drive circuit 52 configured as a transistor inverter. As a power source for the motor 20, a battery 50 and a fuel cell 54 are provided. The main power source is the fuel cell 54, and the battery 50 is used as a power source for compensating for the insufficient power generation of the fuel cell 54. The power of the battery 50 is mainly supplied to the control unit 70 and power devices such as lighting devices.

【0024】トルクコンバータ30はいわゆる流体継手
である。変速機100は、前進5段、後進1段の有段変
速機を用いた。変速機100の変速段の切り替えは、油
圧制御部104がポンプ102から変速機100への油
圧系統を切り替えることにより実現される。なお、運転
者がシフトレバーを操作することによって変速段の切り
替え範囲を調整することができる。シフトレバーは、パ
ーキング(P)、リバース(R)、ニュートラル
(N)、ドライブポジション(D)、および4ポジショ
ン〜Lポジションの各ポジションを選択可能である。変
速段は、各シフトポジションに応じて予め設定された範
囲で行われる。
The torque converter 30 is a so-called fluid coupling. As the transmission 100, a stepped transmission having five forward steps and one reverse step was used. Switching of the shift speed of the transmission 100 is realized by the hydraulic control unit 104 switching the hydraulic system from the pump 102 to the transmission 100. The shift range of the gear can be adjusted by the driver operating the shift lever. The shift lever can select any of parking (P), reverse (R), neutral (N), drive position (D), and 4 to L positions. The shift speed is set in a range set in advance according to each shift position.

【0025】車軸17への動力伝達系統の他に、エンジ
ン10には補機駆動装置82が結合されている。補機に
は、エアコンのコンプレッサやパワーステアリング用の
ポンプ、燃料電池54の冷却用のポンプなどが含まれ
る。ここでは、エンジン10の動力を利用して駆動され
る補機類をまとめて補機駆動装置82として示した。補
機駆動装置82は、具体的にはエンジン10のクランク
シャフトに補機クラッチ19を介して設けられたプーリ
にベルトを介して結合されており、クランクシャフトの
回転動力によって駆動される。
In addition to the power transmission system to the axle 17, the engine 10 is connected to an auxiliary drive 82. The auxiliary equipment includes a compressor for an air conditioner, a pump for power steering, a pump for cooling the fuel cell 54, and the like. Here, the accessories driven using the power of the engine 10 are collectively shown as an accessory drive 82. The accessory drive device 82 is specifically connected via a belt to a pulley provided on the crankshaft of the engine 10 via the accessory clutch 19, and is driven by the rotational power of the crankshaft.

【0026】補機駆動装置82には、補機駆動用モータ
80も結合されている。補機駆動用モータ80は、直流
モータ、交流モータのいずれも適用できる。本実施例で
は、三相同期モータとした。補機駆動用モータ80は、
トランジスタインバータとして構成された駆動回路56
で、バッテリ50および燃料電池54を電源として生成
された三相交流により回転する。エンジン10が運転を
停止している時は、補機駆動用モータ80により、補機
駆動装置82を駆動することができる。このときは、負
荷軽減のため、クラッチ19が解放される。補機駆動用
モータ80は、エンジン10の動力によって発電する発
電機としても機能する。こうして発電された電力は、バ
ッテリ50に充電することができる。
An accessory driving motor 80 is also connected to the accessory driving device 82. As the accessory driving motor 80, any of a DC motor and an AC motor can be applied. In this embodiment, a three-phase synchronous motor is used. The auxiliary drive motor 80 is
Drive circuit 56 configured as a transistor inverter
, And is rotated by the three-phase AC generated using the battery 50 and the fuel cell 54 as power sources. When the operation of the engine 10 is stopped, the accessory driving device 82 can be driven by the accessory driving motor 80. At this time, the clutch 19 is released to reduce the load. The accessory drive motor 80 also functions as a generator that generates power by the power of the engine 10. The electric power thus generated can charge the battery 50.

【0027】駆動回路52、56と各電源との間には、
接続状態を3カ所に切り替え可能な切替スイッチ51,
55が設けられている。切替スイッチ55の動作によ
り、燃料電池54は、駆動回路56に接続された状態
(図中の回路a)、駆動回路52に接続された状態(図
中の回路b)、バッテリ50に接続された状態(図中の
回路c)の3通りの接続状態を実現することができる。
同様に、切替スイッチ51の動作により、バッテリ50
は、選択先を駆動回路56、駆動回路52、燃料電池5
4の3通りに切り替えることができる。
Between the driving circuits 52 and 56 and each power supply,
A changeover switch 51 capable of switching the connection state to three positions,
55 are provided. By the operation of the changeover switch 55, the fuel cell 54 is connected to the drive circuit 56 (circuit a in the figure), connected to the drive circuit 52 (circuit b in the figure), and connected to the battery 50. It is possible to realize three types of connection states (circuit c in the figure).
Similarly, the operation of the changeover switch 51 causes the battery 50
Indicates the selection of the drive circuit 56, the drive circuit 52, the fuel cell 5
4 can be switched.

【0028】上述した各ユニットの動作は、制御ユニッ
ト70により制御される。制御ユニットは、内部にCP
U、メモリ等を備えたマイクロコンピュータとして構成
されている。制御ユニット70には、制御の実行上必要
となる種々の信号が入力される。入力される信号として
は、例えば、アクセルペダル、ブレーキペダル、シフト
レバー、パーキングブレーキなどの操作部74の各操作
状態を検出する操作状態センサ73からの信号、エンジ
ン10用の燃料タンクEGのガソリン残量を検出する残
量センサ75、燃料電池54用の燃料タンクFCのFC
燃料残量を検出する残量センサ76などが挙げられる。
その他種々のセンサからの信号が制御ユニット70に入
力されるが、ここでは図示を省略した。
The operation of each unit described above is controlled by the control unit 70. The control unit has a CP inside
It is configured as a microcomputer having a U, a memory, and the like. Various signals necessary for performing the control are input to the control unit 70. The input signal includes, for example, a signal from an operation state sensor 73 that detects each operation state of an operation unit 74 such as an accelerator pedal, a brake pedal, a shift lever, and a parking brake, and a gasoline remaining amount in a fuel tank EG for the engine 10. The remaining amount sensor 75 for detecting the amount, the FC of the fuel tank FC for the fuel cell 54
A remaining amount sensor 76 for detecting the remaining amount of fuel is exemplified.
Signals from other various sensors are input to the control unit 70, but are not shown here.

【0029】制御ユニット70には、制御を実現するた
めの種々の機能ブロックが用意されている。図1中に
は、本実施例に特徴的な機能ブロックとして、負荷変動
予測部71と発電制御部72を示した。負荷変動予測部
71は、操作部74の操作状態に基づいて、将来的に要
求される動力を予測する機能を奏する。発電制御部72
は、この結果を受け、予測通りの動力が要求された場合
に、遅れなくモータ20から動力を出力できるよう燃料
電池54の発電状態を制御する機能を奏する。これらの
機能ブロックにより実現される制御処理については、後
に詳述する。本実施例では、これらの機能ブロックは、
ソフトウェア的に構成されているが、もちろん、ハード
ウェア的に構築しても構わない。
The control unit 70 is provided with various functional blocks for realizing control. FIG. 1 shows a load fluctuation prediction unit 71 and a power generation control unit 72 as functional blocks characteristic of the present embodiment. The load fluctuation prediction unit 71 has a function of predicting the power required in the future based on the operation state of the operation unit 74. Power generation control unit 72
Has a function of controlling the power generation state of the fuel cell 54 so that the power can be output from the motor 20 without delay when the predicted power is requested in response to the result. Control processing realized by these functional blocks will be described later in detail. In this embodiment, these functional blocks are:
Although it is configured as software, it is needless to say that it may be configured as hardware.

【0030】B.一般的動作:本実施例のハイブリッド
車両は、車速およびトルクに応じて2つの動力源、即ち
エンジン10とモータ20を使い分けて走行する。両者
の使い分けは予めマップとして設定され、制御ユニット
70内のROMに記憶されている。
B. General operation: The hybrid vehicle of the present embodiment travels by using two power sources, that is, the engine 10 and the motor 20, according to the vehicle speed and the torque. The proper use of the two is set in advance as a map and stored in the ROM in the control unit 70.

【0031】図2は車両の走行状態と動力源との関係を
示す説明図である。図中の領域MGはモータ20を動力
源として走行(以下「EV走行」と呼ぶ)する領域であ
る。領域MGの外側の領域、即ちEG領域は、エンジン
10を動力源として走行(以下、「エンジン走行」と呼
ぶ)する領域である。本実施例の車両は、エンジン10
とモータ20の双方を動力源として走行することも可能
ではあるが、かかる運転モードは原則的には使用しない
ものとした。
FIG. 2 is an explanatory diagram showing the relationship between the running state of the vehicle and the power source. A region MG in the figure is a region where the vehicle runs (hereinafter, referred to as “EV traveling”) using the motor 20 as a power source. The area outside the area MG, that is, the EG area is an area in which the engine 10 travels (hereinafter, referred to as “engine traveling”) as a power source. The vehicle of this embodiment has an engine 10
It is possible to run using both the motor and the motor 20 as a power source, but such an operation mode is not used in principle.

【0032】本実施例のハイブリッド車両は、入力クラ
ッチ18をオフにしてまずEV走行で発進する。車速お
よびアクセル開度が、領域MGと領域EGの境界近傍の
走行状態に達すると、制御ユニット70は、入力クラッ
チ18をオンにするとともに、エンジン10を始動す
る。その後は、エンジン10のみを動力源として走行す
る。エンジン走行中は、モータ20は単に空回りした状
態となる。
The hybrid vehicle of this embodiment starts with EV running with the input clutch 18 turned off. When the vehicle speed and the accelerator opening reach the running state near the boundary between the area MG and the area EG, the control unit 70 turns on the input clutch 18 and starts the engine 10. Thereafter, the vehicle runs using only the engine 10 as a power source. While the engine is running, the motor 20 simply turns idle.

【0033】制御ユニット70は、動力源の使い分けと
ともに、変速段の切り替え制御も行う。変速段の切り替
えは、車両の走行状態に予め設定されたマップに基づい
てなされる。図2にはDポジションにおけるマップを示
した。図示するように制御ユニット70は、車速が増す
につれて変速比が小さくなるように変速段の切り替えを
実行する。
The control unit 70 controls the switching of the shift speed as well as the proper use of the power source. The shift speed is switched based on a map set in advance in the running state of the vehicle. FIG. 2 shows a map at the D position. As shown in the figure, the control unit 70 switches the gear so that the gear ratio decreases as the vehicle speed increases.

【0034】C.停止時充電制御:燃料電池54は出力
の応答性が低い特性がある。本実施例では、バッテリ5
0が燃料電池54の電力不足を補償する。従って、バッ
テリ50には、この補償に足る電力が確保されている必
要がある。その一方で、常にバッテリ50の充電状態を
高く維持しようとすれば、燃料電池54で頻繁に発電を
行ってバッテリ50を充電する必要が生じる。本実施例
では、動力変動の予測に基づいてバッテリ50に確保さ
れるべき電力、即ちバッテリ50の管理目標値を動的に
変化させることにより、燃料電池54の無駄な発電を抑
制しつつ、必要な電力の確保を図っている。
C. Stop charging control: The fuel cell 54 has a characteristic of low output responsiveness. In this embodiment, the battery 5
0 compensates for the power shortage of the fuel cell 54. Therefore, it is necessary for the battery 50 to secure sufficient power for this compensation. On the other hand, if the state of charge of the battery 50 is to be constantly maintained at a high level, the fuel cell 54 must frequently generate power to charge the battery 50. In the present embodiment, the power to be secured in the battery 50 based on the prediction of the power fluctuation, that is, the management target value of the battery 50 is dynamically changed, so that the unnecessary power generation of the We are trying to secure sufficient power.

【0035】C1.管理目標値の設定:図3は充電状態
の管理目標値の動的な設定例を示す説明図である。停車
中の設定例を示した。管理目標値は3つのパラメータ、
即ち走行開始確率、電気負荷、電気負荷の予測値から定
まる。走行開始確率は、動力変動の予測に相当するパラ
メータである。停車中から走行が開始される確率が高い
程、将来的に要求される動力が大きくなると予測される
ことを意味する。図3(c)から図3(a)の順に走行
開始確率が高い場合に相当する。図示する通り、走行開
始確率が大きくなるにつれて管理目標値も高くなる。
C1. Setting of management target value: FIG. 3 is an explanatory diagram showing an example of dynamically setting the management target value of the state of charge. An example of setting during a stop is shown. The management target value has three parameters,
That is, it is determined from the running start probability, the electric load, and the predicted value of the electric load. The running start probability is a parameter corresponding to prediction of power fluctuation. This means that the higher the probability that the vehicle will start running from a stopped state, the higher the power required in the future will be. This corresponds to the case where the traveling start probabilities are higher in the order from FIG. 3 (c) to FIG. 3 (a). As illustrated, the management target value increases as the traveling start probability increases.

【0036】本実施例では、操作部の操作状態に対応付
けて3段階の走行開始確率を設定した。シフトポジショ
ンがNまたはPポジションにある場合やパーキングブレ
ーキが引かれている場合には、走行開始確率は「小」で
ある。これらの操作部は、走行可能な状態にあるが、ブ
レーキペダルが踏み込まれている場合には、走行開始確
率は、「中」である。ブレーキペダルが踏み込まれてお
らず、アクセルペダルも踏み込まれていない場合には、
走行開始確率は、「大」である。走行開始確率と操作状
態との関係は、これに限定されず種々の設定が可能であ
る。
In this embodiment, three stages of running start probabilities are set in association with the operating state of the operating section. When the shift position is in the N or P position or when the parking brake is applied, the traveling start probability is “small”. These operation units are in a state where traveling is possible, but when the brake pedal is depressed, the traveling start probability is “medium”. If the brake pedal is not depressed and the accelerator pedal is not depressed,
The running start probability is “large”. The relationship between the traveling start probability and the operation state is not limited to this, and various settings are possible.

【0037】電気負荷とは、各時点でバッテリ50に要
求されている電力をいう。停車中に補機の駆動や照明、
空調などの電力機器によって消費されるバッテリ50の
電力に相当する。電気負荷の予測値とは、過去の電気負
荷の経緯から将来の変動を予測した値である。停車中に
電気負荷が増大しつつあるときには、その予測値は、現
時点の電気負荷よりも1〜2段階高い値となる。管理目
標値は、電気負荷およびその予測値の増大とともに高く
なる。これらのパラメータ値が大きいときは、バッテリ
50の電力消費が激しいことを意味するから、十分な電
力を確保するために管理目標値を高くするのである。逆
に、これらのパラメータ値が小さいときは、燃料電池5
4の無駄な発電を抑制するため、管理目標値を低くす
る。なお、本実施例では、電気負荷および予測値を3段
階ずつ設定しているが、電力値の関数として管理目標値
を連続的に設定してもよい。
The electric load is the electric power required of the battery 50 at each time. Drive and lighting of auxiliary equipment while stopped,
This corresponds to the power of the battery 50 consumed by a power device such as an air conditioner. The predicted value of the electric load is a value obtained by predicting a future change from the history of the electric load in the past. When the electric load is increasing while the vehicle is stopped, the predicted value is one or two levels higher than the current electric load. The management target value increases as the electric load and its predicted value increase. When these parameter values are large, it means that the power consumption of the battery 50 is severe. Therefore, the management target value is increased to secure sufficient power. Conversely, when these parameter values are small, the fuel cell 5
In order to suppress the wasteful power generation of No. 4, the management target value is lowered. In this embodiment, the electric load and the predicted value are set in three steps, but the management target value may be set continuously as a function of the power value.

【0038】C2.充電制御処理:図3に示した管理目
標値を用いた充電制御は、次の処理により実現される。
図4は停車時の充電制御のフローチャートである。制御
ユニット70のCPUが他の制御処理とともに繰り返し
実行する処理である。主として図1中に示した負荷変動
予測部71、発電制御部72によって実現される処理に
相当する。
C2. Charge control processing: The charge control using the management target values shown in FIG. 3 is realized by the following processing.
FIG. 4 is a flowchart of charging control when the vehicle is stopped. This is a process that the CPU of the control unit 70 repeatedly executes together with other control processes. This mainly corresponds to the processing realized by the load fluctuation prediction unit 71 and the power generation control unit 72 shown in FIG.

【0039】この処理では、車両が停車中か(ステップ
S10)、ガソリン残量が所定の値FLより多いか(ス
テップS12)が判断され、双方が共に満たされる時
に、動的に設定された管理目標値による制御が行われ
る。停車中でない場合、またはガソリンが所定値FL以
下である場合のいずれかに該当する場合には、かかる制
御の解除、即ち、管理目標値Lo1を標準値であるDefa
ultに設定し、必要に応じて燃料電池54を運転してバ
ッテリ50の充電を行う(ステップS16)。なお、所
定値FLは、制御内容の切り替えとなる基準値であり、
任意に設定可能である。
In this process, it is determined whether the vehicle is stopped (step S10) or whether the gasoline remaining amount is larger than a predetermined value FL (step S12). When both are satisfied, dynamically set management is performed. Control based on the target value is performed. When the vehicle is not stopped or when the gasoline is below the predetermined value FL, the control is released, that is, the management target value Lo1 is changed to the standard value Defa.
ult, and the fuel cell 54 is operated as needed to charge the battery 50 (step S16). Note that the predetermined value FL is a reference value for switching control contents,
It can be set arbitrarily.

【0040】停車中かつガソリンが十分に残っている場
合には、CPUは、シフトポジションがNポジションま
たはPポジションか否かを判定する(ステップS1
4)。これらのシフトポジションにあるときは、車両は
走行できないため、CPUは車両の走行開始確率が非常
に低いものと判断する。従って、モータ20から出力す
べき動力の変動、ひいては消費電力が急激に増大する可
能性は低いと判断し、燃料電池54によるバッテリ50
の充電を停止する(ステップ18)。バッテリ50の充
電状態が現時点の管理目標値に満たない場合でも、充電
を停止する。走行確率が非常に低い場合には、バッテリ
50の充電状態を管理目標値に維持する必然性が低いか
らである。但し、その後の走行に支障が生じる程、電力
が消費されるのを避けるため、バッテリ50の充電状態
が非常に低く設定された所定値以下の場合や、電力の消
費率が所定値以上の激しい状態にある場合には、充電を
行うものとしてもよい。
When the vehicle is stopped and gasoline is sufficiently remaining, the CPU determines whether the shift position is the N position or the P position (step S1).
4). When the vehicle is in these shift positions, the vehicle cannot travel, and thus the CPU determines that the traveling start probability of the vehicle is extremely low. Therefore, it is determined that the fluctuation of the power to be output from the motor 20 and, consequently, the power consumption is unlikely to increase rapidly, and
Is stopped (step 18). Even when the state of charge of the battery 50 is less than the current management target value, the charging is stopped. This is because when the traveling probability is very low, it is not necessary to maintain the state of charge of the battery 50 at the management target value. However, in order to avoid power consumption so as to hinder subsequent traveling, the state of charge of the battery 50 is very low or lower than a predetermined value, or the power consumption rate is extremely high and higher than the predetermined value. When in the state, charging may be performed.

【0041】NポジションまたはPポジションでない場
合(ステップS14)には、バッテリ50の管理目標値
Lo1を設定する(ステップS20)。本実施例では、
先に図3で示した管理目標値をテーブルとして予め記憶
しておき、これを参照して設定するものとした。管理目
標値Lo1の設定に必要なパラメータ、即ち走行開始確
率、電気負荷、電気負荷の予測値は、ステップS0また
はそれに先だって入力された種々のセンサ信号に基づい
て判断される。こうして動力の変動予測を反映した管理
目標値Lo1が設定される。
If the position is not the N position or the P position (step S14), the control target value Lo1 of the battery 50 is set (step S20). In this embodiment,
The management target values shown in FIG. 3 are stored in advance as a table, and are set with reference to the table. The parameters required for setting the management target value Lo1, that is, the running start probability, the electric load, and the predicted value of the electric load are determined based on step S0 or various sensor signals input prior thereto. In this way, the management target value Lo1 reflecting the power fluctuation prediction is set.

【0042】CPUは、バッテリ50の充電量SOCが
管理目標値Lo1となるよう、燃料電池54とエンジン
10で駆動される補機駆動用モータ80とを使い分けて
充電を行う。バッテリ50の充電量SOCが管理目標値
Lo1以上である場合には(ステップS22)、それ以
上の充電は不要であるため、CPUは充電を停止、即ち
燃料電池の発電またはエンジン10の運転を停止する
(ステップS24)。
The CPU performs charging by selectively using the fuel cell 54 and the accessory driving motor 80 driven by the engine 10 so that the charge amount SOC of the battery 50 becomes the management target value Lo1. If the state of charge SOC of the battery 50 is equal to or more than the management target value Lo1 (step S22), the CPU stops charging, that is, stops power generation of the fuel cell or operation of the engine 10 because further charging is unnecessary. (Step S24).

【0043】充電量SOCが管理目標値Lo1に満たな
い場合には(ステップS22)、バッテリ50の充電を
行う。FC燃料が予め設定した所定値FCLより多いと
きは、燃料電池54を利用して充電し(ステップS2
8)、そうでない場合には、エンジン10で補機駆動用
モータ80を運転して充電する(ステップS30)。F
CLは、充電時のFC燃料の浪費を避ける観点に基づき
任意の値に設定可能である。
If the state of charge SOC is less than the management target value Lo1 (step S22), the battery 50 is charged. When the FC fuel is larger than the predetermined value FCL set in advance, charging is performed using the fuel cell 54 (step S2).
8) If not, the engine 10 drives the accessory driving motor 80 to charge the battery (step S30). F
CL can be set to an arbitrary value from the viewpoint of avoiding waste of FC fuel during charging.

【0044】以上の処理を繰り返し実行することによ
り、CPUは、バッテリ50の充電状態を動力の変動予
測を反映した値に維持することができる。
By repeatedly executing the above processing, the CPU can maintain the state of charge of the battery 50 at a value reflecting the predicted fluctuation of the power.

【0045】D.走行時充電制御:動力変動の予測を反
映した充電制御は、走行時にも適用可能である。図5は
走行時充電制御処理のフローチャートである。制御ユニ
ット70のCPUが繰り返し実行する処理である。走行
時の制御処理なので、停車中の場合には(ステップS4
0)、CPUは、何も処理を行わずにこの制御処理を完
了する。
D. Traveling charge control: The charge control that reflects the prediction of power fluctuations can also be applied during traveling. FIG. 5 is a flowchart of the running-time charging control process. This is a process repeatedly executed by the CPU of the control unit 70. Since it is a control process during traveling, when the vehicle is stopped (step S4
0), the CPU completes this control processing without performing any processing.

【0046】走行中においては、CPUは走行状態から
MG領域に該当するか否かを判定する(ステップS4
2)。MG領域でない場合、つまりEG領域である場合
には、エンジン10の動力によって走行しているから、
バッテリ50の充電もその動力を利用して行う(ステッ
プS56)。EG領域内でも、燃料電池54の電力によ
るアシストを行う場合には、ステップS42による判定
を省略してもよい。
During the running, the CPU determines whether or not the running state corresponds to the MG area (step S4).
2). When the vehicle is not in the MG region, that is, when the vehicle is in the EG region, the vehicle is driven by the power of the engine 10.
The battery 50 is also charged using the power (step S56). When assisting with the electric power of the fuel cell 54 even in the EG region, the determination in step S42 may be omitted.

【0047】次に、CPUは操作部の操作状態に基づい
て動力変動を予測する。走行中の動力変動は、車両の加
減速に相当する。本実施例では、アクセルペダル、ブレ
ーキペダル、シフトポジションより段階的に加速確率を
求めるものとした(ステップS44)。例えば、車両が
加速中にアクセルペダルの開度が小さくなれば、加速確
率は小さいと判断される。車両が減速中にブレーキペダ
ルの踏み込み量が0となれば、次にアクセルペダルが踏
み込まれて加速に移行する可能性が大きいと判断され
る。車両の加速または巡行中にシフトダウンが行われれ
ば、加速の可能性が高いと判断される。操作状態と加速
可能性との関係は、これらに限らず種々設定可能であ
る。
Next, the CPU predicts a power fluctuation based on the operation state of the operation unit. Power fluctuations during traveling correspond to acceleration and deceleration of the vehicle. In the present embodiment, the acceleration probability is obtained stepwise from the accelerator pedal, the brake pedal, and the shift position (step S44). For example, if the accelerator pedal opening decreases while the vehicle is accelerating, the acceleration probability is determined to be low. If the amount of depression of the brake pedal becomes 0 while the vehicle is decelerating, it is determined that there is a high possibility that the accelerator pedal will be depressed next and the vehicle will shift to acceleration. If a downshift is performed during acceleration or cruising of the vehicle, it is determined that the possibility of acceleration is high. The relationship between the operation state and the acceleration possibility is not limited to these, and various settings can be made.

【0048】CPUは、こうして予測された加速確率に
基づいて、バッテリ50の管理目標値Lo1を設定する
(ステップS48)。管理目標値Lo1の設定方法は、
停車時と同様である。つまり、走行時の制御用に図3に
示した形式のテーブルが予め記憶されており、これを参
照することによって管理目標値Lo1が設定される。図
3における、走行開始確率に変えて、加速確率をパラメ
ータとして用いる点で相違する。
The CPU sets a management target value Lo1 for the battery 50 based on the acceleration probability predicted in this manner (step S48). The method of setting the management target value Lo1 is as follows.
It is the same as when stopping. That is, a table in the format shown in FIG. 3 is stored in advance for control during traveling, and the management target value Lo1 is set by referring to the table. 3 in that the acceleration probability is used as a parameter instead of the travel start probability.

【0049】こうして管理目標値Lo1が設定される
と、CPUは停止時と同じく燃料電池54とエンジン1
0とを使い分けてバッテリ50の充電を行う(ステップ
S48〜S56)。燃料電池54はFC燃料の残量が所
定値FCLよりも多い時に使用される(ステップS5
2,S54)。この判断基準となる値FCLは停車時と
同じ値でもよいし、異なる値としてもよい。車速等に応
じて変動する値としてもよい。
When the control target value Lo1 is set in this way, the CPU operates the fuel cell 54 and the engine
The battery 50 is charged by selectively using 0 (steps S48 to S56). The fuel cell 54 is used when the remaining amount of FC fuel is larger than a predetermined value FCL (step S5).
2, S54). The value FCL serving as this criterion may be the same value as when stopping, or may be a different value. It may be a value that varies according to the vehicle speed or the like.

【0050】E.走行時発電制御:動力変動の予測を、
充電に関わらず走行時の燃料電池の運転制御に反映する
こともできる。図6は走行時の運転制御処理のフローチ
ャートである。MG領域において、燃料電池54とエン
ジン10とを動力源として使い分けて走行する際の制御
処理に相当する。
E. Driving power generation control:
This can be reflected in the operation control of the fuel cell during traveling regardless of the charge. FIG. 6 is a flowchart of an operation control process during traveling. In the MG region, this corresponds to a control process when the vehicle travels while using the fuel cell 54 and the engine 10 as power sources.

【0051】CPUは、停車中と判断される場合には何
も行わずにこの処理を終了する(ステップS60)。走
行している場合において、走行状態がMG領域でないと
判断される場合には(ステップS62)、エンジン10
を動力源として走行する(ステップS72)。
When it is determined that the vehicle is stopped, the CPU terminates this processing without performing anything (step S60). If it is determined that the traveling state is not in the MG area while the vehicle is traveling (step S62), the engine 10
(Step S72).

【0052】MG領域においては、CPUは操作部の操
作状態から加速確率を算出し(ステップS64)、将来
の電力予想値を設定する(ステップS66)。加速確率
の算出方法は、走行時の充電制御(図5)と同じであ
る。電力予想値は、現在の走行状態において要求されて
いる要求電力に加速確率を反映することによって求めら
れる。例えば、加速確率に応じて設定された電力を要求
電力に加えるものとしてもよいし、加速確率に応じた係
数を要求電力に乗じてもよい。
In the MG area, the CPU calculates an acceleration probability from the operation state of the operation unit (step S64), and sets a predicted power value in the future (step S66). The method of calculating the acceleration probability is the same as the charge control during traveling (FIG. 5). The estimated power value is obtained by reflecting the acceleration probability in the required power required in the current driving state. For example, the power set according to the acceleration probability may be added to the required power, or the required power may be multiplied by a coefficient corresponding to the acceleration probability.

【0053】次に、CPUはFC燃料と所定値FCLと
を比較して動力源の使い分けを行う。つまり、FC燃料
が所定値FCLよりも多い場合には(ステップS6
8)、燃料電池54を動力源として使用する(ステップ
S70)。このとき、燃料電池54は、電力予想値を指
令値として運転される。例えば、加速確率が高い場合に
は、電力予想値、即ち指令値は要求電力よりも高くな
る。指令値を予め高めておくことにより、加速時には必
要な電力を速やかに出力することができる。FC燃料が
書体値FCLに満たない場合には(ステップS68)、
MG領域であってもエンジン10を動力源として走行す
る(ステップS72)。
Next, the CPU compares the FC fuel with the predetermined value FCL to selectively use the power source. That is, when the FC fuel is larger than the predetermined value FCL (step S6).
8) The fuel cell 54 is used as a power source (step S70). At this time, the fuel cell 54 is operated with the predicted power value as the command value. For example, when the acceleration probability is high, the predicted power value, that is, the command value is higher than the required power. By increasing the command value in advance, it is possible to quickly output necessary power during acceleration. If the FC fuel is less than the font value FCL (step S68),
The vehicle travels using the engine 10 as a power source even in the MG region (step S72).

【0054】以上で説明した本実施例のハイブリッド車
両によれば、操作部の操作状態によって予測される動力
変動を見込んで充電制御を行うことができる。従って、
バッテリ50の充電量を適切な状態に維持しつつ、燃料
電池54の無駄な発電を抑制することができる。従っ
て、FC燃料の浪費を避けることができるようになる。
結果として、車両の運転効率を向上することができる。
また、走行時の発電制御に動力変動を見込むことによっ
て、燃料電池54の低応答性による影響を緩和すること
ができる。これらの動力変動は、操作部の操作状態に基
づいて予測されるため、運転者の意図に沿った制御を実
現しやすい利点もある。
According to the hybrid vehicle of the present embodiment described above, charging control can be performed in anticipation of power fluctuation predicted by the operation state of the operation unit. Therefore,
It is possible to suppress wasteful power generation of the fuel cell 54 while maintaining the charge amount of the battery 50 in an appropriate state. Therefore, waste of FC fuel can be avoided.
As a result, the driving efficiency of the vehicle can be improved.
In addition, by considering power fluctuation in power generation control during traveling, the influence of the low responsiveness of the fuel cell 54 can be reduced. Since these power fluctuations are predicted based on the operation state of the operation unit, there is an advantage that control according to the driver's intention can be easily realized.

【0055】実施例では、ハイブリッド車両への適用例
を示したが、本発明は、モータ20のみを動力源とする
電気自動車に適用してもよい。実施例では、FC燃料に
応じて燃料電池とエンジンとの使い分けを実現している
が(図4のステップS25,図5のステップS52,図
6のステップS68)、電気自動車への適用時には、こ
の処理を省略することができる。
In the embodiment, an example of application to a hybrid vehicle has been described. However, the present invention may be applied to an electric vehicle using only the motor 20 as a power source. In the embodiment, the fuel cell and the engine are selectively used depending on the FC fuel (step S25 in FIG. 4, step S52 in FIG. 5, step S68 in FIG. 6). The processing can be omitted.

【0056】更に、バッテリ50を省略した構成に適用
してもよい。走行時の運転制御処理(図6)は、バッテ
リ50が搭載されていない場合でも、そのまま適用可能
である。バッテリ50とエンジン10の双方共に省略し
た構成では、図6において、ステップS68,S72の
処理を省略すればよい。
Further, the present invention may be applied to a configuration in which the battery 50 is omitted. The operation control process during traveling (FIG. 6) can be applied as it is even when the battery 50 is not mounted. In the configuration in which both the battery 50 and the engine 10 are omitted, the processes in steps S68 and S72 may be omitted in FIG.

【0057】停止時の充電制御(図4)においては、特
定のシフトポジションで充電停止する処理(ステップS
14,S18)を省略してもよい。また、ガソリン不足
時における動力変動の予測を反映した制御の解除処理
(ステップS12,S16)も省略しても構わない。以
上、本発明の種々の実施例について説明したが、本発明
はこれらの実施例に限定されず、その趣旨を逸脱しない
範囲で種々の構成を採ることができることはいうまでも
ない。例えば、以上の制御処理はソフトウェアで実現す
る他、ハードウェア的に実現するものとしてもよい。実
施例では、車両の移動に要する動力の予測に応じた発電
制御を例示したが、その他の電力機器、外部への電力出
力用のアウトレットなどに対応したスイッチの状態に基
づいて要求電力を予測し、発電制御を行ってもよい。
In the charging control at the time of stopping (FIG. 4), the charging is stopped at a specific shift position (step S).
14, S18) may be omitted. Further, the control release processing (steps S12 and S16) reflecting the prediction of the power fluctuation when the gasoline is insufficient may be omitted. Although various embodiments of the present invention have been described above, the present invention is not limited to these embodiments, and it goes without saying that various configurations can be adopted without departing from the spirit of the present invention. For example, the above-described control processing may be realized by software or by hardware. In the embodiment, the power generation control according to the prediction of the power required for the movement of the vehicle is exemplified.However, the required power is predicted based on the state of a switch corresponding to another power device, an outlet for power output to the outside, and the like. Alternatively, power generation control may be performed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例としてのハイブリッド車両の概略構成図
である。
FIG. 1 is a schematic configuration diagram of a hybrid vehicle as an embodiment.

【図2】車両の走行状態と動力源との関係を示す説明図
である。
FIG. 2 is an explanatory diagram illustrating a relationship between a traveling state of a vehicle and a power source.

【図3】充電状態の管理目標値の動的な設定例を示す説
明図である。
FIG. 3 is an explanatory diagram showing an example of dynamically setting a management target value of a state of charge.

【図4】停車時の充電制御のフローチャートである。FIG. 4 is a flowchart of charging control when the vehicle is stopped.

【図5】走行時充電制御処理のフローチャートである。FIG. 5 is a flowchart of a running-time charging control process.

【図6】走行時の運転制御処理のフローチャートであ
る。
FIG. 6 is a flowchart of an operation control process during traveling.

【符号の説明】[Explanation of symbols]

10…エンジン 12…クランクシャフト 15…出力軸 16…ディファレンシャルギヤ 17…車軸 18…入力クラッチ 19…補機クラッチ 19…クラッチ 20…モータ 30…トルクコンバータ 50…バッテリ 51,55…切替スイッチ 52、56…駆動回路 54…燃料電池 70…制御ユニット 71…負荷変動予測部 72…発電制御部 73…操作状態センサ 74…操作部 75、76…残量センサ 80…補機駆動用モータ 82…補機駆動装置 100…変速機 102…ポンプ 104…油圧制御部 DESCRIPTION OF SYMBOLS 10 ... Engine 12 ... Crankshaft 15 ... Output shaft 16 ... Differential gear 17 ... Axle 18 ... Input clutch 19 ... Auxiliary clutch 19 ... Clutch 20 ... Motor 30 ... Torque converter 50 ... Battery 51, 55 ... Changeover switches 52, 56 ... Drive circuit 54 ... Fuel cell 70 ... Control unit 71 ... Load fluctuation prediction unit 72 ... Power generation control unit 73 ... Operation state sensor 74 ... Operation unit 75,76 ... Remaining amount sensor 80 ... Auxiliary device driving motor 82 ... Auxiliary device driving device 100: transmission 102: pump 104: hydraulic control unit

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01M 8/00 H01M 8/00 Z ZHV ZHV ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H01M 8/00 H01M 8/00 Z ZHV ZHV

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 燃料電池を電源とする電動機を駆動源と
して移動する移動体であって、 該移動体を運転するための操作部と、 該操作部の操作状態を検出する操作状態検出手段と、 検出された操作状態に基づいて、動力の将来的な変動を
予測する動力変動予測手段と、 該予測結果を考慮して前記燃料電池の発電量を制御する
発電制御手段とを備える移動体。
1. A moving body that moves using a motor driven by a fuel cell as a power source, an operation unit for driving the moving body, and operation state detecting means for detecting an operation state of the operation unit. A moving object comprising: power fluctuation prediction means for predicting a future fluctuation of power based on a detected operation state; and power generation control means for controlling a power generation amount of the fuel cell in consideration of the prediction result.
【請求項2】 前記動力変動予測手段および発電制御手
段は、該移動体の停止時に機能する手段である請求項1
記載の移動体。
2. The power fluctuation predicting means and the power generation control means function when the moving body is stopped.
The moving body described.
【請求項3】 前記動力変動予測手段は、停止時に該移
動体が移動を開始するか否かを予測する手段である請求
項2記載の移動体。
3. The moving body according to claim 2, wherein said power fluctuation predicting means is means for predicting whether or not said moving body starts moving when stopped.
【請求項4】 請求項1記載の移動体であって、 前記電源として利用可能かつ前記燃料電池から充電可能
に接続された蓄電器と、 該蓄電器の充電状態を検出する充電状態検出手段とを備
え、 前記発電制御手段は、 前記予想結果に応じて前記蓄電器の充電状態の管理目標
値を設定する管理目標値設定手段と、 前記蓄電器の充電状態が該管理目標値となるよう前記燃
料電池の発電を制御する充電制御手段とを備える手段で
ある移動体。
4. The moving body according to claim 1, further comprising: a power storage unit that can be used as the power supply and is connected to be chargeable from the fuel cell; and a charging state detecting unit that detects a charging state of the storage unit. A control target value setting unit configured to set a management target value of a state of charge of the battery according to the expected result; and a power generation of the fuel cell such that the state of charge of the battery becomes the management target value. And a charging control unit for controlling the vehicle.
【請求項5】 請求項4記載の移動体であって、 前記動力の増大が所定値以下と予測された場合には、前
記蓄電器の充電状態に関わらず前記燃料電池の発電を停
止する発電停止手段を備える移動体。
5. The power generation stop according to claim 4, wherein when the increase in the power is predicted to be equal to or less than a predetermined value, the power generation of the fuel cell is stopped regardless of the state of charge of the battery. A moving object provided with means.
【請求項6】 請求項1記載の移動体であって、 前記燃料電池用の燃料残量を検出する残燃料検出手段
と、 検出された燃料残量が所定値以上の時に前記発電制御手
段を機能させる機能制御手段とを備える移動体。
6. The moving body according to claim 1, wherein the remaining fuel detecting means for detecting a remaining fuel amount for the fuel cell, and the power generation controlling means when the detected remaining fuel amount is equal to or more than a predetermined value. A moving body comprising: a function control unit that functions.
【請求項7】 請求項6記載の移動体であって、 前記駆動源として熱機関を備え、 前記機能制御手段は、検出された燃料残量が前記所定値
に満たない時には、前記燃料電池の発電量の少なくとも
一部を代替するように前記熱機関を運転する手段である
移動体。
7. The moving body according to claim 6, further comprising: a heat engine as the drive source, wherein the function control unit determines whether or not the detected remaining fuel amount is less than the predetermined value. A moving body that is means for operating the heat engine so as to substitute at least a part of the power generation amount.
【請求項8】 請求項7記載の移動体であって、 前記熱機関用の燃料の残量を検出する熱機関残燃料検出
手段を備え、 前記機能制御手段は、該熱機関用の燃料残量が所定の値
以上の場合に機能する手段である移動体。
8. The moving body according to claim 7, further comprising: a heat engine remaining fuel detecting unit that detects a remaining amount of the fuel for the heat engine, wherein the function control unit includes a fuel remaining for the heat engine. A moving body that functions when the amount is equal to or more than a predetermined value.
【請求項9】 熱機関と燃料電池とを駆動源とする移動
体であって、 該駆動源を利用するための操作部と、 該操作部の操作状態を検出する操作状態検出手段と、 検出された操作状態に基づいて、前記駆動源の将来的な
出力を予測する出力予測手段と、 該予測結果を考慮して前記燃料電池の発電量を制御する
発電制御手段とを備える移動体。
9. A moving body using a heat engine and a fuel cell as drive sources, an operation unit for using the drive source, operation state detection means for detecting an operation state of the operation unit, and detection. A mobile body comprising: an output prediction unit that predicts a future output of the drive source based on the operated state, and a power generation control unit that controls a power generation amount of the fuel cell in consideration of the prediction result.
【請求項10】 移動体の駆動源への電源として搭載さ
れた燃料電池の運転を制御する制御方法であって、 (a) 該移動体を運転するための操作部の操作状態を
検出する工程と、 (b) 検出された操作状態に基づいて、動力の将来的
な変動を予測する工程と、 (c) 該予測結果を前記燃料電池の運転に反映する工
程とを備える制御方法。
10. A control method for controlling the operation of a fuel cell mounted as a power supply to a driving source of a moving body, comprising: (a) detecting an operation state of an operation unit for driving the moving body. A control method comprising: (b) predicting a future change in power based on the detected operation state; and (c) reflecting the prediction result in the operation of the fuel cell.
JP2000190622A 2000-06-26 2000-06-26 Mobile body with fuel cell Expired - Lifetime JP4670128B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000190622A JP4670128B2 (en) 2000-06-26 2000-06-26 Mobile body with fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000190622A JP4670128B2 (en) 2000-06-26 2000-06-26 Mobile body with fuel cell

Publications (2)

Publication Number Publication Date
JP2002008694A true JP2002008694A (en) 2002-01-11
JP4670128B2 JP4670128B2 (en) 2011-04-13

Family

ID=18690062

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000190622A Expired - Lifetime JP4670128B2 (en) 2000-06-26 2000-06-26 Mobile body with fuel cell

Country Status (1)

Country Link
JP (1) JP4670128B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005093120A (en) * 2003-09-12 2005-04-07 Toyota Motor Corp Control device and control method of fuel cell
JP2007155188A (en) * 2005-12-02 2007-06-21 Tokyo Gas Co Ltd Heat pump type heat source device using solid oxide fuel cell as power source to carry out driving, and its operating method
JP2007258061A (en) * 2006-03-24 2007-10-04 Denso Corp Vehicular power generation system
JP2008130424A (en) * 2006-11-22 2008-06-05 Toyota Motor Corp Fuel cell system
JP2008154387A (en) * 2006-12-19 2008-07-03 Toyota Motor Corp Movable body
US7576512B2 (en) 2005-01-28 2009-08-18 Denso Corporation Secondary battery charging system capable of preventing drop of charged electric power
WO2011070746A1 (en) * 2009-12-10 2011-06-16 パナソニック株式会社 Fuel cell system, and electronic device
WO2013061122A2 (en) 2011-10-25 2013-05-02 Toyota Jidosha Kabushiki Kaisha Vehicle including secondary battery and control method for vehicle including secondary battery
JP2013224056A (en) * 2012-04-19 2013-10-31 Toyota Motor Corp Engine system
CN106642803A (en) * 2017-01-24 2017-05-10 武汉地质资源环境工业技术研究院有限公司 High-temperature heat supply system for proton exchange membrane fuel cell
CN106642802A (en) * 2017-01-24 2017-05-10 武汉地质资源环境工业技术研究院有限公司 High-temperature heat pump hot water system driven by proton exchange membrane fuel cell
JP2022026272A (en) * 2020-07-30 2022-02-10 株式会社東芝 Fuel cell system
JP2022026271A (en) * 2020-07-30 2022-02-10 株式会社東芝 Fuel cell system and fuel cell ship
CN114132225A (en) * 2020-09-04 2022-03-04 本田技研工业株式会社 Power generation control system, power generation control method, and storage medium

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03195305A (en) * 1989-12-20 1991-08-26 Shinnenshiyou Syst Kenkyusho:Kk Vehicle driven through diesel engine and motor
JPH03276573A (en) * 1990-03-26 1991-12-06 Fuji Electric Co Ltd Control system for on-vehicle fuel cell
JPH07240213A (en) * 1994-02-24 1995-09-12 Aqueous Res:Kk Hybrid electric power source device
JPH08126116A (en) * 1994-10-25 1996-05-17 Aqueous Res:Kk Hybrid vehicle
JPH08322107A (en) * 1995-05-24 1996-12-03 Nippondenso Co Ltd Controller of hybrid vehicle
JPH10150701A (en) * 1996-09-17 1998-06-02 Toyota Motor Corp Power output device
JPH11164402A (en) * 1997-11-28 1999-06-18 Aisin Aw Co Ltd Controller and controlling method for hybrid vehicle
WO2000019084A1 (en) * 1998-09-30 2000-04-06 Hitachi, Ltd. Fuel cell system and vehicle using the system
JP2001069614A (en) * 1999-08-30 2001-03-16 Yamaha Motor Co Ltd Hybrid drive moving body
JP2001095110A (en) * 1999-09-21 2001-04-06 Yamaha Motor Co Ltd Method for supplying electric power to hybrid-driven mobile

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03195305A (en) * 1989-12-20 1991-08-26 Shinnenshiyou Syst Kenkyusho:Kk Vehicle driven through diesel engine and motor
JPH03276573A (en) * 1990-03-26 1991-12-06 Fuji Electric Co Ltd Control system for on-vehicle fuel cell
JPH07240213A (en) * 1994-02-24 1995-09-12 Aqueous Res:Kk Hybrid electric power source device
JPH08126116A (en) * 1994-10-25 1996-05-17 Aqueous Res:Kk Hybrid vehicle
JPH08322107A (en) * 1995-05-24 1996-12-03 Nippondenso Co Ltd Controller of hybrid vehicle
JPH10150701A (en) * 1996-09-17 1998-06-02 Toyota Motor Corp Power output device
JPH11164402A (en) * 1997-11-28 1999-06-18 Aisin Aw Co Ltd Controller and controlling method for hybrid vehicle
WO2000019084A1 (en) * 1998-09-30 2000-04-06 Hitachi, Ltd. Fuel cell system and vehicle using the system
JP2001069614A (en) * 1999-08-30 2001-03-16 Yamaha Motor Co Ltd Hybrid drive moving body
JP2001095110A (en) * 1999-09-21 2001-04-06 Yamaha Motor Co Ltd Method for supplying electric power to hybrid-driven mobile

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005093120A (en) * 2003-09-12 2005-04-07 Toyota Motor Corp Control device and control method of fuel cell
US7576512B2 (en) 2005-01-28 2009-08-18 Denso Corporation Secondary battery charging system capable of preventing drop of charged electric power
JP2007155188A (en) * 2005-12-02 2007-06-21 Tokyo Gas Co Ltd Heat pump type heat source device using solid oxide fuel cell as power source to carry out driving, and its operating method
JP2007258061A (en) * 2006-03-24 2007-10-04 Denso Corp Vehicular power generation system
JP2008130424A (en) * 2006-11-22 2008-06-05 Toyota Motor Corp Fuel cell system
JP2008154387A (en) * 2006-12-19 2008-07-03 Toyota Motor Corp Movable body
WO2011070746A1 (en) * 2009-12-10 2011-06-16 パナソニック株式会社 Fuel cell system, and electronic device
JPWO2011070746A1 (en) * 2009-12-10 2013-04-22 パナソニック株式会社 Fuel cell system and electronic device
WO2013061122A2 (en) 2011-10-25 2013-05-02 Toyota Jidosha Kabushiki Kaisha Vehicle including secondary battery and control method for vehicle including secondary battery
US9096142B2 (en) 2011-10-25 2015-08-04 Toyota Jidosha Kabushiki Kaisha Vehicle including secondary battery and control method for vehicle including secondary battery
JP2013224056A (en) * 2012-04-19 2013-10-31 Toyota Motor Corp Engine system
CN106642803A (en) * 2017-01-24 2017-05-10 武汉地质资源环境工业技术研究院有限公司 High-temperature heat supply system for proton exchange membrane fuel cell
CN106642802A (en) * 2017-01-24 2017-05-10 武汉地质资源环境工业技术研究院有限公司 High-temperature heat pump hot water system driven by proton exchange membrane fuel cell
JP2022026272A (en) * 2020-07-30 2022-02-10 株式会社東芝 Fuel cell system
JP2022026271A (en) * 2020-07-30 2022-02-10 株式会社東芝 Fuel cell system and fuel cell ship
JP7372884B2 (en) 2020-07-30 2023-11-01 株式会社東芝 fuel cell system
CN114132225A (en) * 2020-09-04 2022-03-04 本田技研工业株式会社 Power generation control system, power generation control method, and storage medium

Also Published As

Publication number Publication date
JP4670128B2 (en) 2011-04-13

Similar Documents

Publication Publication Date Title
EP2402195B1 (en) Indication apparatus for hybrid vehicle
US9923490B2 (en) Vehicle
JP4306085B2 (en) Vehicle equipped with fuel cell and control method thereof
US7957856B2 (en) Control device and control method of hybrid vehicle
JP4315094B2 (en) Hybrid vehicle engine start control device
JP5725037B2 (en) Vehicle and vehicle control method
JP5991441B2 (en) Control device for hybrid vehicle
JP4670128B2 (en) Mobile body with fuel cell
JPH1169509A (en) Transmission controlling device for hybrid vehicle
US9242577B2 (en) Vehicle including regeneration level selector for motor
JP2010201987A (en) Drive control device of hybrid vehicle
JP2007022118A (en) Control unit of hybrid vehicle
JP2006275019A (en) Control device for hybrid vehicle
JP2007230431A (en) Drive control device for vehicle
JP3601508B2 (en) Hybrid vehicle with stepped transmission
JP2004242450A (en) Controller for hybrid vehicle
JP2006254553A (en) Vehicle controller
JP2001211506A (en) Driving control equipment for parallel hybrid vehicle
JP2005120907A (en) Shift control device for hybrid vehicle
JP2002081331A (en) Moving body having hybrid driving source
JPH1014010A (en) Generation control device of hybrid vehicle
JP4007127B2 (en) Drive torque control device for hybrid vehicle
JPH07231506A (en) Controller for hybrid vehicle
JP2002051406A (en) Controller for vehicle
JP4123691B2 (en) Mobile body having a hybrid drive source using a fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070510

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100518

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100708

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101221

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110103

R151 Written notification of patent or utility model registration

Ref document number: 4670128

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140128

Year of fee payment: 3

EXPY Cancellation because of completion of term