JPH03274499A - Irradiation device of charged particle beam - Google Patents

Irradiation device of charged particle beam

Info

Publication number
JPH03274499A
JPH03274499A JP7616490A JP7616490A JPH03274499A JP H03274499 A JPH03274499 A JP H03274499A JP 7616490 A JP7616490 A JP 7616490A JP 7616490 A JP7616490 A JP 7616490A JP H03274499 A JPH03274499 A JP H03274499A
Authority
JP
Japan
Prior art keywords
electro
irradiated
magnets
electromagnet
charged particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7616490A
Other languages
Japanese (ja)
Inventor
Susumu Nishihara
西原 進
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP7616490A priority Critical patent/JPH03274499A/en
Publication of JPH03274499A publication Critical patent/JPH03274499A/en
Pending legal-status Critical Current

Links

Landscapes

  • Particle Accelerators (AREA)

Abstract

PURPOSE:To enable sufficient irradiation of a beam to an object to be irradiated, without turning the object and also enable one single beam source for the purpose by constituting a device so as to distribute the beam to two beam paths by a switching electro-magnet and to deflect the beam to the object by deflecting electro-magnets. CONSTITUTION:An accelerator 1 accelerates charged particles to output a high energy beam and the beam is distributed to two beam paths by a switching electro-magnet 6. In other words, when a pulsating electric power source is connected to the electro-magnet 6, directions of exciting electric current can be switched thereby. In this way, the incident beam to deflecting electro-magnets 7 is discharged into different directions at every constant time interval. Each of the beam 8 is deflected by the electro-magnets 7 to get input to scanning electro-magnets 2. In this occasion, an amount of the deflection at the electro- magnets 7 is set so that the two beam 8 may have completely opposite incident directions concerning the incident directions of the beams 8. After that, each beam 8 incident on the electro-magnets 2 passes, after scanning, through a vacuum chamber 3 and irradiates an object to be irradiated, from both sides.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

この発明は、滅菌用などに用いられる荷電粒子線照射装
置に関するものである。
The present invention relates to a charged particle beam irradiation device used for sterilization and the like.

【従来の技術】[Conventional technology]

第3図は従来の荷電粒子線照射装置を示す構成図であり
、図において、1は荷電粒子を加速する加速器、2は加
速後の荷電粒子線(以下、ビームという。)の照射範囲
を広げる走査電磁石、3はビームを真空中で走行させる
ための真空チェンバ、4は真空チェンバ3からビームを
取り出すための真空窓、5は被照射物である。 次に動作について説明する。荷電粒子は、加速器1で加
速され高エネルギーの荷電粒子となる。 そして、加速器1から出力された高エネルギーのビーム
は、走査電磁石2によって、被照射′#J5の位置にお
いて平坦な強度分布になるように走査される。また、ビ
ームが空気中に出ると、散乱などによってそのエネルギ
ーが減るので、ビームは被照射物5の近くまで真空チェ
ンバ3内を走行するようにしてお(、そして、ビームは
被照射物5の近くで真空窓4がら空気中に取り出され、
被照射物5を照射する。 一般に、ビームの一例である電子線の物質中における吸
収線量の分布は、第4図(A)に示すようになっている
。そこで、被照射物5を反転させて両方向から交互にビ
ームを照射するようにすれば、吸収線量の分布は第4図
(B)に示すようになる。 つまり、被照射物5の深さ方向についてほぼ均一な分布
となり、厚みのある被照射物5に対しても十分にビーム
を照射することができる。
FIG. 3 is a configuration diagram showing a conventional charged particle beam irradiation device. In the figure, 1 is an accelerator that accelerates charged particles, and 2 is an accelerator that expands the irradiation range of the charged particle beam (hereinafter referred to as beam) after acceleration. A scanning electromagnet, 3 a vacuum chamber for causing the beam to travel in vacuum, 4 a vacuum window for taking out the beam from the vacuum chamber 3, and 5 an object to be irradiated. Next, the operation will be explained. The charged particles are accelerated by the accelerator 1 and become high-energy charged particles. The high-energy beam output from the accelerator 1 is scanned by the scanning electromagnet 2 so that it has a flat intensity distribution at the irradiated position '#J5. In addition, when the beam exits into the air, its energy decreases due to scattering, etc., so the beam is made to travel within the vacuum chamber 3 until close to the irradiated object 5 (and the beam travels close to the irradiated object 5). Nearby, the vacuum window 4 was taken out into the air,
The object to be irradiated 5 is irradiated. Generally, the absorption dose distribution of an electron beam, which is an example of a beam, in a substance is as shown in FIG. 4(A). Therefore, if the object 5 to be irradiated is inverted and beams are irradiated alternately from both directions, the absorbed dose distribution will become as shown in FIG. 4(B). In other words, the distribution becomes substantially uniform in the depth direction of the object 5 to be irradiated, and even a thick object 5 to be irradiated can be sufficiently irradiated with the beam.

【発明が解決しようとする課題】[Problem to be solved by the invention]

従来の荷電粒子線照射装置は以上のように構成されてい
るので2.被照射物5に対して一方向からしかビームを
照射できず、厚みのある被照射物5に照射するには、被
照射物5を反転させて再度ビームを照射しなければなら
ず、被照射物5に十分にビームを照射するために、長時
間を要したり余分な機構を設けたりする必要があるなど
の課題があった・ なお、上記課題に対処したものとして、実開平1124
600号公報に示されたように、ビーム源を被照射物の
両側に設けたものがある。 この発明は上記のような課題を解消するためになされた
もので、被照射物を反転させることなく、被照射物にビ
ームを十分に照射でき、また、ビーム源を単一のもので
済ますことができる荷電粒子線照射装置を得ることを目
的とする。
Since the conventional charged particle beam irradiation device is configured as described above, 2. The object 5 to be irradiated can be irradiated with the beam from only one direction, and in order to irradiate a thick object 5, the object 5 to be irradiated must be reversed and the beam must be irradiated again. In order to sufficiently irradiate the object 5 with the beam, there were problems such as the need for a long time and the need to provide an extra mechanism.
As shown in Japanese Patent No. 600, there is one in which a beam source is provided on both sides of an object to be irradiated. This invention was made to solve the above-mentioned problems, and it is possible to sufficiently irradiate a beam onto an object to be irradiated without reversing the object, and to use a single beam source. The purpose is to obtain a charged particle beam irradiation device that can perform

【課題を解決するための手段】[Means to solve the problem]

この発明に係る荷電粒子線照射装置は、荷電粒子を加速
する加速器と、この加速器から出力された高エネルギー
のビームを2つの経路に分配するスイッチング電磁石と
、2つの経路の経路上それぞれに設けられ、被照射物に
向けて相対向する方向にビームを偏向させる偏向電磁石
と、偏向されたそれぞれのビームが被照射物に当たるよ
うにビームの照射範囲を広げる走査電磁石とを備えたも
のである。
A charged particle beam irradiation device according to the present invention includes an accelerator that accelerates charged particles, a switching electromagnet that distributes a high-energy beam output from the accelerator into two paths, and a switching electromagnet that is provided on each of the two paths. , a deflecting electromagnet that deflects the beam in a direction opposite to the object to be irradiated, and a scanning electromagnet that widens the irradiation range of the beam so that each deflected beam hits the object to be irradiated.

【作用】[Effect]

この発明におけるスイッチング電磁石は加速されたビー
ムを2方向に分配し、偏向電磁石は2つのビームを被照
射物の両側から照射するように偏向させ、被照射物の両
側から均一にビームを照射させる。
The switching electromagnet in this invention distributes the accelerated beam in two directions, and the deflecting electromagnet deflects the two beams so as to irradiate the object from both sides, thereby uniformly irradiating the beam from both sides of the object.

【実施例】【Example】

以下、この発明の一実施例を図について説明する。第1
図において、6は加速器1から出力されたビームを2つ
の経路に分配するスイ・ンチング電磁石、7は2つのビ
ーム8のそれぞれを偏向させる偏向電磁石であり、その
他のものは同一符号を付して第3図に示したものと同等
のものである。 次に動作について説明する。加速器1は荷電粒子を加速
して、高エネルギーのビームを出力する。 このビームは、スイッチング電磁石6によって2つの経
路に分配される。使用するスイ・ンチング電磁石6は、
直流の電磁石でよく、一定時間ごとに励磁電流の方向を
切換えることによって、入力したビームを2方向のビー
ム8とすることができる。 例えば、第2図に示すようなパルス状の電流を発生する
パルス電源(図示せず)をスイッチング電磁石に接続す
れば励磁電流の方向を切換えることができる。このよう
にして、偏向電磁石7に入射されたビームは、一定時間
ごとに異なる方向に出射される。これらのビーム8は、
それぞれ偏向電磁石7で偏向され、走査電磁石2に入力
する。ここで、偏向電磁石7における偏向量は、ビーム
8の入射方向に対して、2つのビーム8が被照射物5に
相対向して入射する方向になるように設定されている。 そして、走査電磁石2に入力したそれぞれのビーム8は
、従来の場合と同様に走査された後、真空チェンバ3内
を通過して、被照射物5に両側から照射される。
An embodiment of the present invention will be described below with reference to the drawings. 1st
In the figure, 6 is a switching electromagnet that distributes the beam output from the accelerator 1 into two paths, 7 is a deflection electromagnet that deflects each of the two beams 8, and the other parts are given the same symbols. This is equivalent to the one shown in FIG. Next, the operation will be explained. The accelerator 1 accelerates charged particles and outputs a high-energy beam. This beam is split into two paths by a switching electromagnet 6. The switching electromagnet 6 used is
A direct current electromagnet may be used, and by switching the direction of excitation current at regular intervals, the input beam can be made into beams 8 in two directions. For example, if a pulse power source (not shown) that generates a pulsed current as shown in FIG. 2 is connected to the switching electromagnet, the direction of the excitation current can be switched. In this way, the beam incident on the bending electromagnet 7 is emitted in different directions at regular intervals. These beams 8 are
Each is deflected by a deflecting electromagnet 7 and input to the scanning electromagnet 2. Here, the amount of deflection in the deflecting electromagnet 7 is set so that the two beams 8 are incident on the object 5 facing each other with respect to the incident direction of the beam 8 . Each beam 8 input to the scanning electromagnet 2 is scanned in the same manner as in the conventional case, and then passes through the vacuum chamber 3 and is irradiated onto the object 5 from both sides.

【発明の効果】【Effect of the invention】

以上のように、この発明によれば荷電粒子線照射装置を
、スイッチング電磁石でビームを2つの経路に分配し、
偏向電磁石で被照射物ムこ向けてビームを偏向させるよ
うに構成したので、1つのビーム源を用いて被照射物の
画側からビームを照射することができ、被照射物を反転
させたりする必要がないものが得られる効果がある。
As described above, according to the present invention, the charged particle beam irradiation device distributes the beam into two paths using a switching electromagnet,
Since the beam is deflected away from the irradiated object using a deflection electromagnet, it is possible to irradiate the irradiated object with the beam from the image side using a single beam source, and the irradiated object can be reversed. It has the effect of getting something you don't need.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例による荷電粒子線照射装置
を示す構成図、第2図はスイッチング電磁石に供給され
るパルス波形の一例を示す波形図、第3図は従来の荷電
粒子線照射装置を示す構成図、第4図は被照射物におけ
る電子線の吸収線量分布を示す分布図である。 1は加速器、2は走査電磁石、5は被照射物、6はスイ
・ノチング電磁石、7は偏向電磁石。 なお、図中、同一符号は同一、又は相当部分を示す。
Fig. 1 is a configuration diagram showing a charged particle beam irradiation device according to an embodiment of the present invention, Fig. 2 is a waveform diagram showing an example of a pulse waveform supplied to a switching electromagnet, and Fig. 3 is a conventional charged particle beam irradiation device. FIG. 4 is a configuration diagram showing the apparatus, and a distribution diagram showing the absorption dose distribution of the electron beam in the irradiated object. 1 is an accelerator, 2 is a scanning electromagnet, 5 is an irradiated object, 6 is a switch notching electromagnet, and 7 is a deflection electromagnet. In addition, in the figures, the same reference numerals indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】[Claims] 荷電粒子を加速する加速器と、この加速器から出力され
た荷電粒子線を2つの経路に分配するスイッチング電磁
石と、前記2つの経路のそれぞれの経路上に設けられ、
被照射物に向けて相対向する方向に前記荷電粒子線を偏
向させる偏向電磁石と、偏向された前記荷電粒子線の照
射範囲を広げ、広がった前記荷電粒子線を前記被照射物
に向けて照射する走査電磁石とを備えた荷電粒子線照射
装置。
an accelerator that accelerates charged particles; a switching electromagnet that distributes the charged particle beam output from the accelerator into two paths; and a switching electromagnet provided on each of the two paths,
a deflecting electromagnet that deflects the charged particle beam in a direction opposite to the object to be irradiated; and a deflecting electromagnet that expands the irradiation range of the deflected charged particle beam and irradiates the expanded charged particle beam toward the object to be irradiated. A charged particle beam irradiation device equipped with a scanning electromagnet.
JP7616490A 1990-03-26 1990-03-26 Irradiation device of charged particle beam Pending JPH03274499A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7616490A JPH03274499A (en) 1990-03-26 1990-03-26 Irradiation device of charged particle beam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7616490A JPH03274499A (en) 1990-03-26 1990-03-26 Irradiation device of charged particle beam

Publications (1)

Publication Number Publication Date
JPH03274499A true JPH03274499A (en) 1991-12-05

Family

ID=13597430

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7616490A Pending JPH03274499A (en) 1990-03-26 1990-03-26 Irradiation device of charged particle beam

Country Status (1)

Country Link
JP (1) JPH03274499A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS534076A (en) * 1976-05-12 1978-01-14 Inst Yaderunoi Fuijiki Shibiru Method of irradiation of accelerated electron beam on to circular portion of cylindrical body

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS534076A (en) * 1976-05-12 1978-01-14 Inst Yaderunoi Fuijiki Shibiru Method of irradiation of accelerated electron beam on to circular portion of cylindrical body

Similar Documents

Publication Publication Date Title
RU2331163C1 (en) Extractor of x-rays of high and/or low energy
US2741704A (en) Irradiation method and apparatus
KR970030240A (en) Neutral Particle Beam Irradiation Apparatus
JPH02115800A (en) Double-side irradiator for product
KR920003415A (en) Low energy electron irradiation method and irradiation device
JPS61279100A (en) Accelerator for electron pulse outputted optically
US2866902A (en) Method of and apparatus for irradiating matter with high energy electrons
US20080067406A1 (en) Irradiating device and method for controlling the same
KR970060357A (en) Beam Exposure System with Improved Mask Device
JPH03274499A (en) Irradiation device of charged particle beam
JPH0526539B2 (en)
JP4756283B2 (en) Electron beam generation apparatus, X-ray generation apparatus, and X-ray utilization apparatus
JPS61140041A (en) Multi-spectral x-ray generating tube
US3536951A (en) Electron and heavy particle beam scanning systems
US5097178A (en) RF electron gun with cathode activating device
JPH0412497A (en) X-ray generator
JPH11142596A (en) Charged particle beam emission device
JP2004227952A (en) X-ray generator and generating method
JPH0514400B2 (en)
JPS6415604A (en) Measuring apparatus for length by electron beam
JPS63315072A (en) Radiotherapy apparatus
JPS59119666A (en) Ion beam irradiation device
JPS63225459A (en) Laser ion source device
JP4420190B2 (en) X-ray equipment
JP3023927B2 (en) Tandem accelerator