JPH03274298A - Method for controlling electrolyte in diaphragm-electrode device - Google Patents

Method for controlling electrolyte in diaphragm-electrode device

Info

Publication number
JPH03274298A
JPH03274298A JP7639090A JP7639090A JPH03274298A JP H03274298 A JPH03274298 A JP H03274298A JP 7639090 A JP7639090 A JP 7639090A JP 7639090 A JP7639090 A JP 7639090A JP H03274298 A JPH03274298 A JP H03274298A
Authority
JP
Japan
Prior art keywords
diaphragm
electrolyte
electrode
tank
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7639090A
Other languages
Japanese (ja)
Other versions
JP2621107B2 (en
Inventor
Hiroo Kaneda
金田 博夫
Etsuro Sato
悦朗 佐藤
Takazo Nonaka
野中 享三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Trinity Industrial Corp
Original Assignee
Trinity Industrial Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Trinity Industrial Corp filed Critical Trinity Industrial Corp
Priority to JP2076390A priority Critical patent/JP2621107B2/en
Publication of JPH03274298A publication Critical patent/JPH03274298A/en
Application granted granted Critical
Publication of JP2621107B2 publication Critical patent/JP2621107B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Electroplating Methods And Accessories (AREA)

Abstract

PURPOSE:To clean the periphery of a diaphragm and to efficiently and stably form a high quality coating film by keeping the conductivity of an electrolyte in a diaphragm-electrode structure at a specified value while a power is supplied to the electrode and at a value higher than the specified value when the power supply is stopped. CONSTITUTION:While electrodeposition coating is applied to an automobile body, etc., in a electrodeposition tank 1, the flow control valves 24 and 25 for the acetic acid supply tank 22 and pure water supply tank 23 are controlled by the setting device 26 of an electrolyte control unit 20 to keep the conductivity of the electrolyte in an electrolyte tank 21 at 300-800mus/cm, and the electrolyte is supplied inside the diaphragm 11 through a pipeline 30 and passed from the upper part of an electrode 18 to the lower part to form a coating film on a work. Meanwhile, when the line is stopped, the supply of the electrolyte from the unit 20 to the diaphragm-electrode structure 10 is stopped, and a concd. aq. acetic acid soln. is injected from the tank 41 of a concd. soln. injection means 40 through a pipeline 43 until the conductivity of the electrolyte in the structure 10 is controlled to >=1000mus/cm. Consequently, the concd. soln. flows from the inside of the diaphragm 11 toward its outside, the deposit is easily dropped, and the periphery of the diaphragm 11 is cleaned.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は、隔膜電極装置の極液管理方法に関する6詳し
くは、停止中に隔膜電極構造内tifl液の電導度を高
めて隔膜体の外周面を清浄するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for managing polar fluid in a diaphragm electrode device.More specifically, the present invention relates to a method for managing polar fluid in a diaphragm electrode device. It cleans the surface.

[従来の技術1 第2図に隔膜電極装置を設けた電着塗装システムを示す
[Prior Art 1] Fig. 2 shows an electrodeposition coating system equipped with a diaphragm electrode device.

図において、1はt着槽、2は自動車車体等のワーク、
3は搬送装置で、5は電源装置である。
In the figure, 1 is a T-tank, 2 is a workpiece such as an automobile body,
3 is a transport device, and 5 is a power supply device.

電着槽1には電着塗料液か液性されており、この電着塗
料液はカチオン系塗料等と酢酸水溶液等からなる溶剤組
成されている。したがって、一方電極たるワーク2と電
極18間に電源装置5を接続すればワーク表面に塗膜を
形成できる。
The electrodeposition tank 1 contains an electrodeposition paint liquid, and this electrodeposition paint liquid has a solvent composition consisting of a cationic paint and an acetic acid aqueous solution. Therefore, by connecting the power supply device 5 between the work 2, which is one electrode, and the electrode 18, a coating film can be formed on the surface of the work.

ここに、隔III電極装置(10,20+は電極18か
ら溶出した金属イオンを除去するために設けられ、例え
ば実開昭61−53767号公報に開示される如く構造
とされている。
Here, the spacer III electrode device (10, 20+) is provided to remove metal ions eluted from the electrode 18, and has a structure as disclosed in, for example, Japanese Utility Model Application No. 61-53767.

すなわち、隔膜電極装置は、電極18とこの電極18を
内蔵した隔膜ifa造(上部支持材12.隔膜体11.
下部支持材13・・・第3図参照)とからなる隔膜電極
構造10と、極液管理ユニット20とからなり、電着塗
装運転中の隔膜電極構造10内の極液性状を一定に維持
するものと形成されている6極液の性状は、電極効率の
向上とポンプ・配管等装置構成要素の腐蝕助走等との観
点から電導度を300〜800μc/cmと維持されて
いるのか一般的である。
That is, the diaphragm electrode device includes an electrode 18 and a diaphragm ifa structure (upper support member 12, diaphragm body 11.
It consists of a diaphragm electrode structure 10 consisting of a lower support member 13 (see FIG. 3) and an electrolyte management unit 20, which maintains the electrolyte properties within the diaphragm electrode structure 10 constant during electrodeposition coating operation. The properties of the hexaelectrode liquid formed with the device are generally maintained at a conductivity of 300 to 800 μc/cm from the viewpoint of improving electrode efficiency and preventing corrosion of equipment components such as pumps and piping. be.

[発明か解決しようとする課題] ところで、電S塗装中における隔IlI体11の内外に
注目すれば、その原理からして、第3図に示す如く内側
から外側には陽イオンが流れ、外側から内旧には陰イオ
ンつまり酢酸基(CH,COO−)等か電気浸透作用に
よって流れる。したかって、塗料は陽イオン帯電されワ
ーク2に吸着されることになる。
[Problem to be solved by the invention] By the way, if we pay attention to the inside and outside of the diaphragm IlI body 11 during electrosurgical coating, based on its principle, cations flow from the inside to the outside as shown in FIG. Anions, such as acetate groups (CH, COO-), etc., flow from the inside to the inside by electroosmosis. Therefore, the paint is cationically charged and adsorbed to the workpiece 2.

しかしなから、電着塗料液の組成は微妙がっ複雑である
から、なかには陰イオン帯電された塗料等100か含ま
れあるいは出現することがある。
However, since the composition of the electrodeposition coating liquid is delicate and complex, anionically charged coatings may be contained or appear in the composition.

すると、これら塗料等100は上記原則に従って電極1
8方向に流れるか、イオン交換膜、中性膜からなる隔膜
体11を通過することができない。
Then, these paints etc. 100 are applied to the electrode 1 according to the above principle.
It either flows in eight directions or cannot pass through the diaphragm body 11 consisting of an ion exchange membrane or a neutral membrane.

よって、隔膜体11の外周面に付着することになり、を
掻効率を低下させ円滑塗装を阻害し塗膜品質を劣悪化さ
せるという問題を誘発する。
Therefore, it adheres to the outer circumferential surface of the diaphragm 11, causing problems such as lowering the scraping efficiency, inhibiting smooth coating, and deteriorating the quality of the coating film.

かかる問題は、−層の高品質化が望まれる現今では無視
できない重要課題と指摘されつつある。
Such a problem is being pointed out as an important issue that cannot be ignored these days when it is desired to improve the quality of the negative layer.

本発明の目的は、上記問題点を解消するもので、隔[体
外周面の清浄を容易に行なえ、もって高能率で高品質塗
装を安定保障することのできる隔膜電極装置の極液管理
方法を提供することにある。
The purpose of the present invention is to solve the above-mentioned problems, and to provide a method for managing polar liquid in a diaphragm electrode device that can easily clean the outer circumferential surface of the diaphragm electrode device, thereby stably guaranteeing high-quality coating with high efficiency. It is about providing.

[課題を解決するための手段〕 本発明は、極液の性状と電着塗装の溶剤とに着目し、電
着塗料液等に悪影響を及ぼすことなくかつ設備的大幅改
変を加えることなく拡散作用を利用して迅速かつ容易に
隔膜体外周面の清浄を行なえる&R管理方法である。
[Means for Solving the Problems] The present invention focuses on the properties of the polar liquid and the solvent for electrodeposition coating, and achieves a diffusion effect without adversely affecting the electrodeposition coating liquid etc. and without making any major changes to the equipment. This is an &R management method that allows you to quickly and easily clean the outer peripheral surface of the diaphragm body.

すなわち、隔a楕遣内に電極を配設した隔1電極構造と
この隔膜電極構造内に極液を循環流通させる極液管理ユ
ニットとからなる隔膜電極装置の極液管理方法であって
、 前記隔膜電極構造内の極液の電導度を、前記電極に給電
している間は300〜800μs/cmに維持しかつ給
電停止時には1000μs /’ c m以上に高める
ことを特徴とする6 し作 用] 本発明によれは、電極に給電している間つまり電@塗装
運転中の極液電樺度は電極効率等から設定された300
〜800μs/cmに維持されるので所定の電着塗装か
できる。一方、給電停止時つまり電着ライン停止中には
極液型導度を1000μs/cmに高める。すると、極
液成分の拡散作用によって酢酸基が隔膜体を通して槽内
に流出するから、その外周面に付着していた塗料等異物
を排除できる。
That is, a method for managing a polar fluid in a diaphragm electrode device comprising a diaphragm electrode structure in which electrodes are arranged in a elliptical space a, and a polar fluid management unit that circulates the polar fluid within this diaphragm electrode structure, comprising: The electrical conductivity of the polar liquid in the diaphragm electrode structure is maintained at 300 to 800 μs/cm while power is being supplied to the electrode, and is increased to 1000 μs/cm or more when power supply is stopped. ] According to the present invention, the electrolytic strength of the electrolyte while power is being supplied to the electrode, that is, during the electric @ painting operation, is 300, which is set from the electrode efficiency etc.
Since the speed is maintained at ~800 μs/cm, predetermined electrodeposition coating can be performed. On the other hand, when the power supply is stopped, that is, when the electrodeposition line is stopped, the polar liquid type conductivity is increased to 1000 μs/cm. Then, the acetic acid groups flow into the tank through the diaphragm due to the diffusion effect of the polar liquid components, so that foreign substances such as paint attached to the outer peripheral surface can be removed.

この際、塗料等には電気作用か働いていないので容易に
排除でき、かつ極液成分と溶剤とは同一成分であるから
他の化学的等不都合を生じさせず再塗装運転に入れる。
At this time, since there is no electricity acting on the paint etc., it can be easily removed, and since the polar liquid component and the solvent are the same component, repainting operation can be started without causing any other chemical or other inconveniences.

[実膝例コ 以下、本発明の実施例を図面を参照して説明する。[Actual knee example Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明を実施するために好適な隔膜電極装置の
一例を示す構成図である。
FIG. 1 is a configuration diagram showing an example of a diaphragm electrode device suitable for carrying out the present invention.

この隔膜電極装置は、隔膜電極構造10と極液管理ユニ
ット20と両者10.20を連絡する配管系30とから
なり、かつ隔膜を極m造1の内に高漂度極液相当液を注
入する高濃度液注入手段40を設けた構成とされている
This diaphragm electrode device consists of a diaphragm electrode structure 10, an electrolyte management unit 20, and a piping system 30 that connects both 10. The configuration includes a highly concentrated liquid injection means 40 for injecting a high concentration liquid.

そこで、本極液管理方法の有用性を明確とするために、
はじめに隔膜電極装置自体の構成を説明する。
Therefore, in order to clarify the usefulness of this polar liquid management method,
First, the configuration of the diaphragm electrode device itself will be explained.

ます、隔膜電極′W4遺10は、電着槽1内に配設(第
1図では1ユニツトのみを図示する。)され、図示しな
い電極(ワーク)に対する対極を形成するものである。
First, the diaphragm electrode 'W4 10 is disposed in the electrodeposition tank 1 (only one unit is shown in FIG. 1), and forms a counter electrode for an electrode (workpiece) not shown.

その構造は、上部支持材12と下部支持材13とに支持
されたある種高分子材を管状に射出猛威してなる管状隔
膜体11とこの隔膜体ll内に保持された円筒形状の電
tlj!18とがらなり、上部支持材121111!:
極液供給管14を設けかつ下部支持材13の穴13Aに
′JFfl液排出管15を連絡することにより、上部か
ら下部に向う一方向の極液流れを形成するものとされて
いる。極液を一方向流れとすることにより、例えば電極
18に腐蝕穴18hか生じた場合にもバイパス(ショー
トパス)流を阻止して隔膜電極構造10内の極液停滞を
防止することかできる。
Its structure consists of a tubular diaphragm body 11 formed by injecting a certain type of polymeric material into a tubular shape supported by an upper support member 12 and a lower support member 13, and a cylindrical electric current held within this diaphragm body 11. ! 18 and the upper support material 121111! :
By providing the polar liquid supply pipe 14 and connecting the 'JFfl liquid discharge pipe 15 to the hole 13A of the lower support member 13, a unidirectional flow of the polar liquid from the top to the bottom is formed. By allowing the polar liquid to flow in one direction, even if a corrosion hole 18h occurs in the electrode 18, for example, bypass (short-pass) flow can be blocked and stagnation of the polar liquid in the diaphragm electrode structure 10 can be prevented.

また、極液排出管15は、上方に立上げるとともに水平
部15Hを設けかつ排出口15Lを大気開放と形成して
いる。したがって、配管系30の例えば逆止弁32の故
障等により、極液供給管14にサイホン作用が画いても
隔膜電[i構造10内の極液は逆流しないから、電着液
の外圧により隔膜体11が破損される心配を一掃できる
。その逆流を絶無化するために極液供給管14の供給口
14Aは、水平部15Hか規制する隔膜電極構造10内
の液面よりも上方に設けられている。さらにこの実施例
では極液の流れを一方向としながら、隔膜体11の電着
液中での伸縮を吸収するために、極液排出管15の立上
部は、貫通口17にルーズと嵌装支持されている。つま
り、ブラケット16に上下方向相対移動可能に支持され
ている。
Further, the polar liquid discharge pipe 15 is raised upward, has a horizontal portion 15H, and has a discharge port 15L open to the atmosphere. Therefore, even if a siphon effect occurs in the electrolyte supply pipe 14 due to a failure of the check valve 32 in the piping system 30, for example, the electrolyte in the structure 10 will not flow backwards, so the external pressure of the electrodeposited liquid will cause the diaphragm to This eliminates the need to worry about the body 11 being damaged. In order to eliminate the backflow, the supply port 14A of the polar liquid supply pipe 14 is provided above the liquid level in the diaphragm electrode structure 10 that regulates the horizontal portion 15H. Furthermore, in this embodiment, the rising part of the polar liquid discharge pipe 15 is loosely fitted into the through hole 17 in order to absorb the expansion and contraction of the diaphragm 11 in the electrodeposition liquid while making the flow of the polar liquid unidirectional. Supported. That is, it is supported by the bracket 16 so as to be relatively movable in the vertical direction.

次に、f!液管理ユニット20は、fi液の性状(電導
症)を一定に保持する手段である。この実施例における
電着塗料がカチオン系とされているので、酢酸水溶液の
濃度管理によって行う。電着塗装運転中における極液の
電導症は300〜800μs / c mに維持される
Next, f! The liquid management unit 20 is a means for keeping the properties (conductivity) of the fi liquid constant. Since the electrodeposition paint in this example is cationic, the concentration of the acetic acid aqueous solution is controlled. The electroconductivity of the polar liquid during electrocoating operation is maintained at 300-800 μs/cm.

すなわち、本極液管理ユニット20は、極液タンク21
.酢酸補給タンク22.純水補給タンク23、一対の流
量調整弁(24,25)、電導度検出センサ27および
設定器26から構成され、設定器26の設定値に基づい
て各流量調整弁2425をコントロールし、極液タンク
21内の極液の電導症を一定(3,OO〜800 μs
 /’ c m )に保持できるように形成されている
In other words, the polar liquid management unit 20 has the polar liquid tank 21
.. Acetic acid supply tank 22. It is composed of a pure water supply tank 23, a pair of flow rate adjustment valves (24, 25), a conductivity detection sensor 27, and a setting device 26. Each flow rate adjustment valve 2425 is controlled based on the set value of the setting device 26, and the polar liquid is The electroconductivity of the polar fluid in the tank 21 is kept constant (3,00~800 μs
/' cm ).

そして、両者10.20は、配管31.ポンプ35、逆
止弁32等並びに液受33.戻し管34等を含み形成さ
れた配管系30で連結され、これにより極液の循環系が
形成される。
Both 10.20 and 31.20 are the piping 31. Pump 35, check valve 32, etc., and liquid receiver 33. They are connected by a piping system 30 that includes a return pipe 34 and the like, thereby forming an electrolyte circulation system.

また、ポンプ35の上流側にはドレン弁36か設けられ
ている。[4タンク21内のレベル調整、極液更新等に
際し、一部または全部の極液をピット37に放出するた
めて゛ある。なお、38はフィルタである。
Further, a drain valve 36 is provided upstream of the pump 35. [4] This is to discharge some or all of the polar liquid into the pit 37 when adjusting the level in the tank 21, replacing the polar liquid, etc. Note that 38 is a filter.

かかる構成の実施例においては、設定器26に所定の電
導症を設定すれは、両流量調整弁2425がコントロー
ルされ極液タンク21中の極液電導度が一定に保持され
る。
In an embodiment with such a configuration, when a predetermined conductivity is set in the setting device 26, both flow rate regulating valves 2425 are controlled and the electroconductivity of the electrolyte in the electrolyte tank 21 is maintained constant.

ここに、隔膜電極構造10へは、設定電導度300〜8
00μs/cmの極液か供給される。そして、極液は隔
膜体11内であって電極18の内外を上方から下方に向
う一方向流となってM!液排出管15に至る。したがっ
て、電極18は極液流によって冷却される。よって、電
極18と電着槽1内の電極(ワーク)との間に所定の電
流値(例えば!A/’dm2)を安定して流せるので、
高品質塗膜を形成できる。
Here, the diaphragm electrode structure 10 has a set conductivity of 300 to 8.
00 μs/cm of polar liquid is supplied. Then, the polar liquid becomes a unidirectional flow from above to below within the diaphragm body 11 inside and outside the electrode 18, and M! The liquid discharge pipe 15 is reached. The electrode 18 is thus cooled by the polar fluid flow. Therefore, a predetermined current value (for example, !A/'dm2) can be stably passed between the electrode 18 and the electrode (workpiece) in the electrodeposition bath 1.
Can form high quality coatings.

この際、管状隔膜体11の伸縮は、貫通ロ17付のブラ
ケット16とkm排出管15との相対変位によって吸収
される。一方、隔膜電極構造10内の極液は、その水平
部15Hによって一定に規制されかつ排出口L5Lか大
気開放される、とともに極液供給管14の供給口14A
か隔膜18の上方に配設されているから、逆止弁32の
故障等により極液供給管14にサイホン作用が働いても
隔膜体11内の極液か空となる虞れが一掃される。
At this time, the expansion and contraction of the tubular diaphragm 11 is absorbed by the relative displacement between the bracket 16 with the through hole 17 and the km discharge pipe 15. On the other hand, the polar liquid in the diaphragm electrode structure 10 is regulated to a certain extent by the horizontal portion 15H, and the discharge port L5L is opened to the atmosphere, and the polar liquid supply port 14A of the polar liquid supply pipe 14 is
Since the diaphragm body 18 is disposed above the diaphragm 18, even if a siphon effect is applied to the polar liquid supply pipe 14 due to a malfunction of the check valve 32, the possibility that the polar liquid in the diaphragm body 11 becomes empty is eliminated. .

このように隔膜電極構造10等をあらゆる角度から高能
率運転と高品質塗膜形成運転を可能に横築しても、隔膜
体11の外周面に陰イオン化された塗料等が付着したの
ではその実効を期することかできない。
Even if the diaphragm electrode structure 10 etc. is installed horizontally to enable high-efficiency operation and high-quality coating film formation from all angles, if anionized paint or the like adheres to the outer peripheral surface of the diaphragm body 11, It is impossible to expect it to be effective.

ここに、本装置には上記高濃度液注入手段40が設けら
れている。この手段40は、電導症1000μs / 
c m以上の高4度酢酸水溶液を収容するタンク41と
、電極■8に給電されないつまり電着塗装運転中止中の
適時に図示しない制御手段で開放されるコントロール弁
42と、タンク41と隔膜電極構造10とを結ぶ配管4
3とから形成されている。高濃度酢酸水溶液の電導塵は
、通常使用する極液の電導塵よりも高いので弁47を設
けて極液タンク21に酢酸水溶液を補給できるようにし
ている。
Here, this apparatus is provided with the above-mentioned high concentration liquid injection means 40. This means 40 has a conductivity of 1000 μs/
A tank 41 containing a high 4 degree acetic acid aqueous solution of cm or more, a control valve 42 which is opened by a control means (not shown) at an appropriate time when the electrode 8 is not supplied with electricity, that is, the electrodeposition coating operation is stopped, and the tank 41 and the diaphragm electrode. Piping 4 connecting with structure 10
It is formed from 3. Since the conductive dust of the highly concentrated acetic acid aqueous solution is higher than that of the normally used polar liquid, a valve 47 is provided so that the polar liquid tank 21 can be replenished with the acetic acid aqueous solution.

一方、清浄化のために使用された隔1!を極横遺10内
の高濃度液は弁49.弁48を開閉することによりピッ
ト39へ排出することも、その一部または全部を極液タ
ンク21に戻すこともできる。
On the other hand, the interval 1 used for cleaning! The highly concentrated liquid in the extremely horizontal remains 10 is removed from the valve 49. By opening and closing the valve 48, it can be discharged to the pit 39, or a part or all of it can be returned to the polar liquid tank 21.

なお、第1図に2点鎖線で示したポンプ46゜弁45.
配管は、タンク41に戻して高濃度液を再循環使用する
ものである。
In addition, the pump 46° valve 45. shown by the two-dot chain line in FIG.
The piping is for recirculating the highly concentrated liquid back to the tank 41.

次に、本実施例の極液管理方法を説明する。Next, the polar liquid management method of this embodiment will be explained.

(電着塗装運転) 極液管理ユニット20によって、隔膜電極構造10内に
極液を連続流通させる。fi!液の電導塵は設定器26
でセットされた300〜800μS/cmである。
(Electrodeposition Coating Operation) The polar fluid management unit 20 causes the polar fluid to continuously flow through the diaphragm electrode structure 10 . Fi! The conductive dust in the liquid is set by the setting device 26.
It is set at 300 to 800 μS/cm.

ここに、電[!18に給電すれは、ワークには塗膜か形
成され 電着室q液中の酢酸基(CH,C00−)は電
気浸透作用によって隔りn!!電極構造10内に゛流れ
含む。
Here, electric [! When power is supplied to 18, a coating film is formed on the workpiece, and the acetate groups (CH, C00-) in the electrodeposition chamber q solution are separated by electroosmotic action n! ! Flow is included within the electrode structure 10.

この際、ある種塗料等100は第3図に示すように隔膜
体11の外周面に付着する。したがって、この付着物1
00の堆積を放置していたのでは電極効率が低下し高品
質塗膜を安定して形成することかできなくなる。
At this time, some kind of paint 100 adheres to the outer peripheral surface of the diaphragm 11 as shown in FIG. Therefore, this deposit 1
If 00 is left to accumulate, the electrode efficiency will decrease and it will be impossible to stably form a high quality coating film.

(ライン停止) tili液管理ユニット20は停止され隔膜電極構造1
0内の極液は停滞する。もとより、電極18には給電さ
れない。
(Line stop) The tili liquid management unit 20 is stopped and the diaphragm electrode structure 1
The polar fluid within 0 stagnates. Naturally, no power is supplied to the electrode 18.

ここで、コントロール弁42を開き、隔Ill 電極!
S遺10内にタンク41から高濃度液を注入する。
Now, open the control valve 42 and close the electrode!
A highly concentrated liquid is injected into the S remains 10 from the tank 41.

隔膜電極構造10内の極液型導度か1000ハS/ c
 m以上となるまで注入する。手動でも自動でもよい。
The polar liquid type conductivity in the diaphragm electrode structure 10 is 1000 S/c.
Inject until it reaches m or more. It can be done manually or automatically.

すると、隔膜電極構造10内の極液型導度は1000 
tt s / c m以上と運転中に比べ非常に高いも
のとなりかつ′tL極1極磁極磁8源装置)から遮断さ
れているので電気浸透作用は向かす拡散作用か働く。す
なわち、高濃度酢酸水溶液の酢酸基は隔膜体11を通り
電着槽内へ流出する。この場合、隔膜体IIの外周面へ
の付@物100は電気的に吸引されているわけでなく単
に機械的に引掛かってると等しい、ここに、隔膜体11
の内側から外■に向う%R中の#酸基の流れによって、
いとも簡単にその付着物100を落脱させることかでき
る6したかって、電着ライン停止中に隔膜体11の外周
面を清浄化できる。
Then, the polar liquid type conductivity in the diaphragm electrode structure 10 is 1000.
tt s/cm or more, which is much higher than that during operation, and since it is cut off from the 'tL pole single pole magnetic 8 source device), the electroosmotic action acts as a diffusion action. That is, the acetic acid groups of the highly concentrated aqueous acetic acid solution flow out through the diaphragm 11 into the electrodeposition tank. In this case, the attachment 100 attached to the outer circumferential surface of the diaphragm body II is not electrically attracted but merely mechanically hooked.Here, the diaphragm body 11
Due to the flow of # acid groups in %R from the inside to the outside ■,
Since the deposit 100 can be easily removed, the outer circumferential surface of the diaphragm 11 can be cleaned while the electrodeposition line is stopped.

(再運転) 隔膜電極構造10内の高濃度液は、ポンプ46によって
タンク41に回収し、あるいは弁48によってピット3
9へ排出すればよい。
(Restart) The highly concentrated liquid in the diaphragm electrode structure 10 is collected into the tank 41 by the pump 46 or transferred to the pit 3 by the valve 48.
You can discharge it to 9.

この際、ボン135を起動して通常#l液を上方から補
給しつつ行うのか能率的である。
At this time, it is efficient to start the bong 135 and replenish the #1 liquid from above.

これにより、隔膜電極構造10内の極液型導度は通常の
300〜800μs / c mに置換される。
This replaces the polar liquid type conductivity within the diaphragm electrode structure 10 to the usual 300-800 μs/cm.

しかして、この実線例によれば、隔膜電極構造10内の
極液型導度を電着ライン停止中に通常よりも高い100
0μs / c mに維持して隔膜体11の付着物10
0をその拡散作用を利用して排斥することかできる極液
管理方法であるから、設備的改変を行うことなく容易に
隔膜体11の清浄ができ、電極効率を最高限に維持した
高品質塗膜形成運転を安定して行える。
According to this solid line example, the polar liquid type conductivity within the diaphragm electrode structure 10 is increased to 100% higher than usual during the electrodeposition line stoppage.
The deposit 10 on the diaphragm body 11 is maintained at 0 μs/cm.
Since this is an extremely liquid management method that can eliminate 0 using its diffusion effect, the diaphragm 11 can be easily cleaned without any equipment modification, and it can be used as a high-quality coating that maintains maximum electrode efficiency. Film formation operation can be performed stably.

また、この清浄化は電着ライン停止中に行われるので生
産計画にいささかも支障とならす、かつ電極18は給電
停止されているので付着nio。
In addition, since this cleaning is performed while the electrodeposition line is stopped, it may interfere with the production plan, and since the electrode 18 is not supplied with electricity, there is no adhesion.

を容易にi[・落脱させることかできる。can be easily made to fall off.

また、注入する高濃度液は極液および電着塗料液中の溶
剤と等しい#酸水溶液であるから、装置全体に一切の化
学的変化を与えず、また塗膜品質に変質を与える不都合
はいささかも生じさせず、かつ低コストである。
In addition, since the highly concentrated liquid injected is a #acid aqueous solution that is equivalent to the polar solution and the solvent in the electrodeposition coating solution, it does not cause any chemical changes to the entire device, and there is little inconvenience that would cause changes in the quality of the coating. It does not cause any problems and is low cost.

さらに、この清浄化は電着液中で行われるので、隔膜電
極構造10を槽外に引出す作業を伴わす隔膜体11に損
傷を生じさぜないから、隔膜体11自体の寿命を実質的
に延ばすことができ経済的である。
Furthermore, since this cleaning is carried out in the electrodeposition solution, no damage is caused to the diaphragm body 11, which would require the work of pulling the diaphragm electrode structure 10 out of the tank. It can be extended and is economical.

なお、以上の実態例では給電停止中に電導塵を1000
 LLs / c mに高めるのに、高濃度液注入手段
40から高濃度液を注入するものとされていたか、給電
停止前に短時間たけ隔膜電極10内の極液流通を止める
ことによって1000μS / Cm以上に高めること
も可能である。また、電着塗料はカチオン系とされ、高
濃度液は溶剤と同じ酢酸水溶液とされていたか、溶剤か
蟻酸水溶液であるときは高濃度液を#i酸水溶液として
実施できる。
In addition, in the above example, 1000 conductive dust was collected during the power supply stop.
In order to increase the polarity to LLs/cm, it was assumed that a high concentration liquid was injected from the high concentration liquid injection means 40, or by stopping the flow of the polar liquid in the diaphragm electrode 10 for a short time before stopping the power supply to 1000 μS/cm. It is also possible to increase the value even higher. Further, the electrodeposition paint is cationic, and the high concentration liquid is an acetic acid aqueous solution, which is the same as the solvent, or if the solvent is a formic acid aqueous solution, the high concentration liquid can be used as an #i acid aqueous solution.

さらに、電着塗料がアニオン系である場合には例えはア
ミンを高濃度液とすることによりそのまま実施できる。
Furthermore, if the electrodeposition coating material is anionic, it can be carried out as it is, for example by using a highly concentrated amine solution.

[発明の効果コ 本発明によれは、隔膜電極構造内の極液型導度を電極に
給電している間は300〜800μS/cmに維持しか
つ給電停止中に1000μs / cm以上に高める極
液管理方法であるから、隔膜体の外周面に付着する塗料
等堆積物を排除する清浄化か容易に行え、もって高品質
塗膜を効率よく安定して形成させることかできるという
優れた効果を奏する。
[Effects of the Invention] According to the present invention, the polar liquid type conductivity within the diaphragm electrode structure is maintained at 300 to 800 μS/cm while power is being supplied to the electrode, and is increased to 1000 μS/cm or more while power supply is stopped. Since it is a liquid management method, it can be easily cleaned to remove deposits such as paint adhering to the outer peripheral surface of the diaphragm, and has the excellent effect of forming a high-quality paint film efficiently and stably. play.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を実施するを杵井に好適な隔膜を極装置
の一例を示す全体構成図、第2図は従来の電1gF塗装
装置を示す概略図および第3図は従来電極管理方法によ
る問題点を説明するための図である。 1・・・電着槽、 2・・・ワーク、 5・・・電源装置、 10・・・電極隔膜構造、 11・・・隔膜体、 18・・・を極、 20・・・[!液管理ユニット、 30・・・配管、 40・・・高濃度液注入手段、 41・・・タンク、 42・・・コン5トロール弁、 43・・・配管。 13 第 図 第 図
Fig. 1 is an overall configuration diagram showing an example of a diaphragm electrode device suitable for implementing the present invention, Fig. 2 is a schematic diagram showing a conventional 1gF coating equipment, and Fig. 3 is a conventional electrode management method. FIG. DESCRIPTION OF SYMBOLS 1... Electrodeposition bath, 2... Workpiece, 5... Power supply device, 10... Electrode diaphragm structure, 11... Diaphragm body, 18... Pole, 20... [! Liquid management unit, 30... Piping, 40... High concentration liquid injection means, 41... Tank, 42... Control valve, 43... Piping. 13 Figure Figure

Claims (1)

【特許請求の範囲】[Claims] (1)隔膜構造内に電極を配設した隔膜電極構造とこの
隔膜電極構造内に極液を循環流通させる極液管理ユニッ
トとからなる隔膜電極装置の極液管理方法であって、 前記隔膜電極構造内の極液の電導度を、前記電極に給電
している間は300〜800μs/cmに維持しかつ給
電停止時には1000μs/cm以上に高めることを特
徴とする隔膜電極装置の極液管理方法。
(1) A method for managing polar fluid in a diaphragm electrode device comprising a diaphragm electrode structure in which an electrode is disposed within the diaphragm structure and a polar fluid management unit that circulates the polar fluid within the diaphragm electrode structure, the diaphragm electrode comprising: A method for managing an electrolyte in a diaphragm electrode device, characterized in that the electrical conductivity of the electrolyte in the structure is maintained at 300 to 800 μs/cm while power is being supplied to the electrode, and is increased to 1000 μs/cm or more when the power supply is stopped. .
JP2076390A 1990-03-26 1990-03-26 Electrolyte management method for diaphragm electrode device Expired - Lifetime JP2621107B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2076390A JP2621107B2 (en) 1990-03-26 1990-03-26 Electrolyte management method for diaphragm electrode device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2076390A JP2621107B2 (en) 1990-03-26 1990-03-26 Electrolyte management method for diaphragm electrode device

Publications (2)

Publication Number Publication Date
JPH03274298A true JPH03274298A (en) 1991-12-05
JP2621107B2 JP2621107B2 (en) 1997-06-18

Family

ID=13603998

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2076390A Expired - Lifetime JP2621107B2 (en) 1990-03-26 1990-03-26 Electrolyte management method for diaphragm electrode device

Country Status (1)

Country Link
JP (1) JP2621107B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0651271U (en) * 1992-12-25 1994-07-12 トリニティ工業株式会社 Electro-deposition coating device
JPH0651270U (en) * 1992-12-25 1994-07-12 トリニティ工業株式会社 Electro-deposition coating device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0651271U (en) * 1992-12-25 1994-07-12 トリニティ工業株式会社 Electro-deposition coating device
JPH0651270U (en) * 1992-12-25 1994-07-12 トリニティ工業株式会社 Electro-deposition coating device

Also Published As

Publication number Publication date
JP2621107B2 (en) 1997-06-18

Similar Documents

Publication Publication Date Title
CN201144293Y (en) Rapid electrical brush plating device
JPH03274298A (en) Method for controlling electrolyte in diaphragm-electrode device
CN108707950B (en) A all-round electrophoresis application device for automobile shell production
US7108772B2 (en) Device and process for electrodialysis of ultrafiltration premeate of electrocoat paint
CN101503814A (en) Anode system for electrophoretic painting cathode
CN109594115A (en) A kind of electrophoresis line electrophoresis recyclable device
JPS5989798A (en) Electrodeposition painting device
US6264809B1 (en) Enhanced membrane electrode devices useful for electrodeposition coating
US20170137957A1 (en) Installation and method for coating objects
WO2000053827A2 (en) Electrodeposition painting systems and methods
CN206477035U (en) Electrolysis installation
CN110980837A (en) Aerobic chemical feeding pipeline additionally provided with clear water cleaning pipeline system
EP0415577A2 (en) Electrodeposition coating system
JPS61227195A (en) Ultrafilter device
CN210117413U (en) Silane pretreatment device for electrophoretic coating
US5273637A (en) Electrodeposition coating system
CN208791797U (en) A kind of bonderizing plant for cathode electro-coating
JPS6226457Y2 (en)
JP3295293B2 (en) Water quality improvement device in insulator cleaning device
JPS5929954Y2 (en) Cleaning device inside the diaphragm chamber
JPS61272399A (en) Apparatus for coating by electrodeposition
JP2965107B2 (en) Operation method of electrodeposition coating equipment
JPH0651271U (en) Electro-deposition coating device
JPH03178359A (en) Electrodeposition coating apparatus
JPH0310096A (en) Electrodeposition coating device