JPS61272399A - Apparatus for coating by electrodeposition - Google Patents

Apparatus for coating by electrodeposition

Info

Publication number
JPS61272399A
JPS61272399A JP11727185A JP11727185A JPS61272399A JP S61272399 A JPS61272399 A JP S61272399A JP 11727185 A JP11727185 A JP 11727185A JP 11727185 A JP11727185 A JP 11727185A JP S61272399 A JPS61272399 A JP S61272399A
Authority
JP
Japan
Prior art keywords
electrode
diaphragm
tank
electrodeposition
electric conductivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11727185A
Other languages
Japanese (ja)
Inventor
Akito Inoue
昭人 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PORITETSUKUSU KK
Poly Techs Inc
Original Assignee
PORITETSUKUSU KK
Poly Techs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PORITETSUKUSU KK, Poly Techs Inc filed Critical PORITETSUKUSU KK
Priority to JP11727185A priority Critical patent/JPS61272399A/en
Publication of JPS61272399A publication Critical patent/JPS61272399A/en
Pending legal-status Critical Current

Links

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

PURPOSE:To save pure water for neutralization and to prevent the sticking of sludge to a diaphragm by placing a diaphragm electrode mechanism surrounding a counter electrode which confronts a body to be coated and a means of setting the electric conductivity of an electrolytic soln. in the mechanism at a certain value or above. CONSTITUTION:Water paint 3 is filled into a tank 2 for coating by electrodeposition, and an electrode 4 as a body to be coated and a counter electrode 5 which confronts the electrode 4 are arranged in the tank 2 so that the electrode 5 is put in a diaphragm electrode mechanism 10 having a diaphragm 8. An electrolytic soln. is circulated between the mechanism 10 and an electrolytic soln, tank 16. An electric conductivity sensor 26 is laced above the tank 16 to measure the concn. of acetic acid. A rise in the concn. of acetic acid is inputted in a control circuit 27 as a change in electric conductivity, and a solenoid valve 28 is operated so that the electric conductivity of the electrolytic soln, in the mechanism 10 is kept at >=1,000 microsiemens/cm by feeding pure water or suspending the feed. By this structure, the electric resistance of the diaphragm is increased with the lapse of time, so satisfactory coating by electrodeposition is carried out.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、電着塗装装置に係り、とくに、中和剤濃度を
調整するための隔膜を用いた電着塗装装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an electrodeposition coating apparatus, and particularly to an electrodeposition coating apparatus using a diaphragm for adjusting the concentration of a neutralizing agent.

〔従来の技術〕[Conventional technology]

電着塗装は、塗膜が均一で密着性に優れ自動化・省力化
が容易で且つ公害の発生が少ないことから、金属塗装の
下塗り、1コート仕上げ等に好適なものとして、例えば
自動車ボデーの塗膜処理等に広(利用されている。電着
塗装に用いられる塗料は、基本組成の樹脂が酸基(例、
カルボキシル基)を有するアニオン形塗料と、塩基(例
、アミン基)を有するカチオン形塗料とに二大別される
が、いずれも単独では水中での溶解度が極めて低く、こ
のため、アニオン形塗料では、例えばトリエチルアミン
等のアルカリ性中和剤を混入し、カチオン形塗料の場合
は酢酸等の酸性中和剤を混入し、それぞれ中和せしめて
塩とし、これによって水中での溶解度の増大を図ったも
のが使用されている。
Electrodeposition coating has a uniform coating film with excellent adhesion, is easy to automate and save labor, and generates little pollution, so it is suitable for undercoating metal coatings, one-coat finishing, etc. For example, it is used for coating automobile bodies. It is widely used for film processing, etc.The paint used for electrodeposition coating has a basic composition of resin that contains acid groups (e.g.
There are two main types of paints: anionic paints with carboxyl groups) and cationic paints with bases (e.g. amine groups), but both have extremely low solubility in water when used alone. For example, in the case of cationic paints, an alkaline neutralizer such as triethylamine is mixed in, and in the case of cationic paints, an acidic neutralizer such as acetic acid is mixed in to neutralize them into salts, thereby increasing their solubility in water. is used.

このように、塗料の樹脂成分の性質に応じて中和剤が混
入されるが、被塗物の電着処理が進むと水溶液中の樹脂
成分が減少するので外部から順次前記塗料を補給しなけ
ればならない。この際、前述した塗料水溶液中には中和
剤としてのアミン又は酢酸が連続的に蓄積されてPHが
漸次変化し、塗面の再溶解若しくはピンホールの発生等
の現象が生じる。このため昨今に於ては、一方の電極と
しての被塗物から隔膜によって他方の電極を分離し、水
溶液中からアミン又は酢酸を電気的に浸透抽出して当該
水溶液中の中和剤の増加を防止するという所謂PH管理
がなされ、その実効が図られている。
In this way, a neutralizing agent is mixed in depending on the nature of the resin component of the paint, but as the electrodeposition process of the object to be coated progresses, the resin component in the aqueous solution decreases, so the paint must be replenished from the outside. Must be. At this time, amine or acetic acid as a neutralizing agent is continuously accumulated in the above-mentioned aqueous paint solution, and the pH gradually changes, causing phenomena such as re-dissolution of the painted surface or generation of pinholes. For this reason, in recent years, one electrode is separated from the other electrode by a diaphragm, and the amine or acetic acid is electrically extracted from the aqueous solution to increase the neutralizing agent in the aqueous solution. So-called PH management has been implemented to prevent this, and efforts are being made to make it effective.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

前記隔膜としては、従来より、中性膜とイオン交換膜と
が使用されている。この場合、例えば極液中の酸濃度が
高くなると電極の消耗が激しくなるとの立場から、当該
極液は、その濃度が電導度で300〜600 〔マイク
ロ・シーメンス/c11〕程度に抑えられていた。この
ため、従来例においては、極液濃度を比較的低い値に常
に保持しなければならず、これがため極液槽の外に酸を
取り出すのに多量の純水を必要とするという不都合があ
り、一方、当該隔膜には重金属その他の無機物質や有機
物のスラッジが付着し易く且つそれが経時的に成長して
当該隔膜部分の電気抵抗を上昇せしめるという事態が生
じ、これがため、通電電流が減少して所定の塗膜厚さが
得られなくなるという不都合が生じていた。
Conventionally, neutral membranes and ion exchange membranes have been used as the diaphragm. In this case, for example, the concentration of the electrode was kept to about 300 to 600 [micro-Siemens/C11] in terms of conductivity, since the higher the acid concentration in the electrode, the greater the wear on the electrode. . For this reason, in the conventional example, the concentration of the polar solution must always be maintained at a relatively low value, which has the disadvantage of requiring a large amount of pure water to take the acid out of the polar solution tank. On the other hand, heavy metals, other inorganic substances, and organic sludge tend to adhere to the diaphragm, and this sludge grows over time and increases the electrical resistance of the diaphragm, which reduces the current flow. This has caused the inconvenience that a predetermined coating film thickness cannot be obtained.

〔発明の目的〕[Purpose of the invention]

本発明は、かかる従来例の有する不都合を改善し、特に
当該隔膜部分の電気抵抗の増加を排除し、これによって
、常に予め設定した均一厚さの塗膜を得ることのできる
電着塗装装置を提供することを、その目的とする。
The present invention improves the disadvantages of the conventional example, and in particular eliminates the increase in electrical resistance of the diaphragm portion, thereby providing an electrodeposition coating apparatus that can always obtain a coating film with a preset uniform thickness. Its purpose is to provide.

〔問題点を解決するための手段〕[Means for solving problems]

そこで、本発明では、一方の電極を成す被塗物に対応し
て電着塗装槽の塗料水溶液中に浸漬され配設される他方
の電極と、この他方の電極を囲んで設けられた中和剤除
去用の隔膜とを備え、この隔膜内の極液の電導度を10
00 (マイクロ・シーメンス/C11)以上に常時設
定するという構成を採り、これによって前記目的を達成
しようとするものである。
Therefore, in the present invention, the other electrode is immersed in an aqueous paint solution in an electrodeposition coating tank corresponding to the object to be coated, and a neutralizer is provided surrounding the other electrode. It is equipped with a diaphragm for removing the agent, and the conductivity of the polar liquid in this diaphragm is 10
00 (Micro Siemens/C11) or higher at all times, and thereby attempts to achieve the above objective.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例をカチオン型塗料を用いた場合
を例にとり、添付図面に基づいて説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the accompanying drawings, taking as an example a case in which a cationic paint is used.

この添付図面において、■は電着塗装装置全体を示し、
2は電着塗装槽を示し、16は極液槽を示す。
In this attached drawing, ■ indicates the entire electrocoating device;
2 shows an electrodeposition coating tank, and 16 shows an electrolyte tank.

前記電着塗装槽(以下、単にrED槽」という)2内に
は、塗料水溶液3のほか、被塗物である一方の電極4と
これに対応して設けられた他方の電極5とが、各々所定
の間隔をおいて配設装備されている。この内、他方の電
極5は、本実施例では円筒状に形成された隔膜電極機構
10内に収納されている。
In the electrodeposition coating tank (hereinafter simply referred to as rED tank) 2, in addition to the aqueous paint solution 3, there are one electrode 4, which is the object to be coated, and the other electrode 5, which is provided correspondingly. They are arranged and equipped at predetermined intervals. Of these, the other electrode 5 is housed in a diaphragm electrode mechanism 10 formed in a cylindrical shape in this embodiment.

この隔膜電極機構10は、円筒状の隔膜8と、この隔膜
8の図における上下端部に装着された隔膜支持部材7A
、7Bと、内部に配設された前記他方の電極5とにより
形成されている。この内、前記隔膜8は、本実施例では
平均穴径が0.001〜0.01μのポリエチレン膜(
中性膜)が使用されているが、他の一般的な中性膜であ
るポリエチレン膜又はアクリル膜或いはイオン交換膜を
使用したものであってもよい。
This diaphragm electrode mechanism 10 includes a cylindrical diaphragm 8 and diaphragm support members 7A attached to the upper and lower ends of the diaphragm 8 in the figure.
, 7B, and the other electrode 5 disposed inside. In this embodiment, the diaphragm 8 is a polyethylene film (with an average hole diameter of 0.001 to 0.01μ)
Although a neutral membrane (neutral membrane) is used, other common neutral membranes such as a polyethylene membrane, an acrylic membrane, or an ion exchange membrane may also be used.

前記隔膜電極機構10には、前記電着塗装槽2の外に施
設された極液排出用配管13が連結されている。
An electrodeposition pipe 13 installed outside the electrodeposition coating tank 2 is connected to the diaphragm electrode mechanism 10 .

一方、極液槽16から隔膜電極機構10への流入ライン
15には、循環ポンプ17が設けられており、この流入
ライン15と循環ポンプ17とにより極液再搬入手°段
が構成されている。そして、極液槽16からバルブ25
を経て隔膜電極機構10内へ流入した液に押されて極液
11が流出ライン14を経て前記極液槽16へ流出され
、所定の循環がなされるようになっている。
On the other hand, a circulation pump 17 is provided in the inflow line 15 from the polar liquid tank 16 to the diaphragm electrode mechanism 10, and this inflow line 15 and the circulation pump 17 constitute a polar liquid re-introduction means. . Then, from the polar liquid tank 16 to the valve 25
The polar liquid 11 is pushed by the liquid flowing into the diaphragm electrode mechanism 10 through the outflow line 14 and flows out into the polar liquid tank 16, so that a predetermined circulation is performed.

前記極液槽16には電導度センサー26が設けられてお
り、所定の電導度に達するとセンサー26がこれを検出
し制御回路27へ送出する。一方、外部より純水を導入
し極液槽16内の極液をうすめて極液の電導度を所定の
範囲に保つために、電磁弁28を経て極液槽16へ至る
側路ライン29が設けられている。前記制御回路27は
、センサー26から検出信号を入力すると、前記電磁弁
28へ開弁信号を送出し該電磁弁28を開弁せしめる。
The polar liquid tank 16 is provided with a conductivity sensor 26, and when a predetermined conductivity is reached, the sensor 26 detects this and sends it to the control circuit 27. On the other hand, in order to introduce pure water from the outside to dilute the polar liquid in the polar liquid tank 16 and maintain the electrical conductivity of the polar liquid within a predetermined range, a bypass line 29 leading to the polar liquid tank 16 via a solenoid valve 28 is installed. It is provided. When the control circuit 27 receives a detection signal from the sensor 26, it sends a valve opening signal to the electromagnetic valve 28 to open the electromagnetic valve 28.

この電磁弁28の開弁で外部より純水が極液槽16へ流
入されるようになっている。29はこの場合の純水導入
管を示す。
When the electromagnetic valve 28 is opened, pure water is allowed to flow into the polar liquid tank 16 from the outside. 29 indicates a pure water introduction pipe in this case.

次に上記実施例の全体的動作を説明する。Next, the overall operation of the above embodiment will be explained.

まず、中和剤としての酢酸で中和して成るカチオン形塗
料の水溶液3で満たされたED槽2に、被塗物4と隔膜
電極機構10を配設し、被塗物4を負極、他方の電極5
を正極として直流電源6と接続し直流電圧を印加すると
直ちに電着塗装が開始され、水溶液中で正に帯電した樹
脂成分と顔料のコロイド分子が負極の被塗物4に向って
移動し、被塗物4の表面に付着して放電したのち塗料の
固形物が凝集して塗膜が形成されるカ 一方、水溶液中で負に帯電した酢酸は、他方の電極5に
向かって移動しこの際隔膜8により水溶液中から抽出さ
れて他方の電極5で放電し酸が生じる。そして、隔膜電
極機構10の極液に集積した酢酸は、循環ポンプ17の
働きによって極液槽16へ取り出される。このため、極
液槽16の電導度は酢酸濃度の上昇とともに次第に上昇
していくが、センサー26が常時この濃度を計測してお
り、電導度の変化として制御回路27に電気信号の形で
入力している。そして、電導度が、予め制御回路27に
設定しである値(2000マイクロ・シーメンス/cm
)に達すると、信号を電磁弁28に送りこれを開いて外
部より純水を極液槽16に導入する。極液槽16内の極
液はうすめられながらオーバーフロー配管13より外部
に排出される。
First, an object to be coated 4 and a diaphragm electrode mechanism 10 are placed in an ED tank 2 filled with an aqueous solution 3 of a cationic paint neutralized with acetic acid as a neutralizing agent. the other electrode 5
When the electrode is connected to the DC power source 6 as the positive electrode and a DC voltage is applied, electrodeposition coating starts immediately, and the colloidal molecules of the resin component and pigment, which are positively charged in the aqueous solution, move toward the object to be coated 4 at the negative electrode. After adhering to the surface of the coating material 4 and discharging, the solid matter of the coating material aggregates to form a coating film.On the other hand, the negatively charged acetic acid in the aqueous solution moves toward the other electrode 5, and at this time It is extracted from the aqueous solution by the diaphragm 8 and discharged at the other electrode 5 to generate acid. Then, the acetic acid accumulated in the polar liquid of the diaphragm electrode mechanism 10 is taken out to the polar liquid tank 16 by the action of the circulation pump 17. Therefore, the electrical conductivity of the polar liquid tank 16 gradually increases as the acetic acid concentration increases, but the sensor 26 constantly measures this concentration and inputs it as an electrical signal to the control circuit 27 as a change in electrical conductivity. are doing. Then, the conductivity is set in advance in the control circuit 27 to a certain value (2000 micro-Siemens/cm
), a signal is sent to the electromagnetic valve 28 to open it and introduce pure water into the polar liquid tank 16 from the outside. The polar liquid in the polar liquid tank 16 is diluted and discharged to the outside through the overflow pipe 13.

極液槽16内の極液がうすめられて電導度が下がってい
くが、この値があらかじめ制御回路27に設定された値
(1500マイクロ・シーメンス/ω〕に達すると電磁
弁28を閉じて純水の供給を止める。従来はこの上限下
限の設定が300〜600 (マイクロ・シーメンス/
c111〕で管理されているが、本実施例ではこれを1
500〜2000  (マイクロ・シーメンス/cff
i)  (場合によっては1000〜2000マイクロ
・シーメンス/am)としであるため、極液中の中和剤
濃度は従来法に比べて5倍以上となっている(注:電導
度と濃度との関係は直線的でないので電導・度が3倍程
度でも濃度は5倍以上になる)。一方、このことは、極
液排出配管13より排出される極液の酸濃度が5倍であ
るため必要純水量は115と少なくなる。
The polar fluid in the polar fluid tank 16 is diluted and its conductivity decreases, but when this value reaches a value preset in the control circuit 27 (1500 micro-Siemens/ω), the electromagnetic valve 28 is closed and the electrical conductivity is reduced. Stop the water supply. Conventionally, the upper and lower limits were set at 300 to 600 (Micro Siemens/
c111], but in this example, this is managed by 1
500~2000 (Micro Siemens/cff
i) (in some cases 1000 to 2000 microSiemens/am), so the concentration of neutralizing agent in the polar solution is more than 5 times that of the conventional method (Note: The relationship between conductivity and concentration The relationship is not linear, so even if the conductivity is about 3 times higher, the concentration will be more than 5 times higher.) On the other hand, since the acid concentration of the polar liquid discharged from the polar liquid discharge pipe 13 is five times higher, the required amount of pure water is reduced to 115.

このようにして、前記隔膜電極機構10内に抽出された
酢酸は極液排出配管13によって外部に排出されるので
、電着作業の進行で塗料がED槽2に補給されても該E
D槽槽内内中和剤濃度が一定に保たれることになり、従
って良好な塗膜形成を行なうことができ、同時に極液濃
度が比較的高(設定されていることから、この酸の溶解
作用により、隔膜に重金属その他の無機物や有機物のス
ラッジが付着するのを排除することができ、これがため
、電極(他方の)を必要に応じて交換す、ることにより
電気抵抗の増加を有効に抑えることができるという利点
が生じる。
In this way, the acetic acid extracted into the diaphragm electrode mechanism 10 is discharged to the outside through the electrolyte discharge pipe 13, so that even if paint is replenished into the ED tank 2 as the electrodeposition work progresses, the acetic acid extracted into the diaphragm electrode mechanism 10 is
The concentration of the neutralizing agent in tank D is kept constant, so a good coating film can be formed, and at the same time, the concentration of the polar solution is relatively high (as it is set, The dissolving action eliminates the adhesion of heavy metals, other inorganic and organic sludge to the diaphragm, and this makes it possible to increase the electrical resistance by replacing the (other) electrode as necessary. This has the advantage that it can be kept to a minimum.

尚、上記実施例に於ては電着塗料にカチオン形塗料を用
いた場合につき説明したが、本発明は何らこれに限定さ
れるものではなく、アニオン形塗料を用いる場合にも同
様に適用することができる。
Although the above embodiments have been explained using cationic paints as electrodeposition paints, the present invention is not limited to this in any way, and is equally applicable to cases where anionic paints are used. be able to.

また、上記実施例において極液の酸濃度を20000 
Cマイクロ・シーメンス/cm)前後に設定した場合を
例示したが、本発明は必ずしもこれに限定するものでは
なく、スラッジを溶かす濃度2例えば略1000  (
マイクロ・シーメンス/国〕以上であればよい。
In addition, in the above example, the acid concentration of the polar liquid was set to 20,000
Although the example is exemplified where the setting is around 1,000 micro Siemens/cm), the present invention is not necessarily limited to this.
Micro Siemens/Country] or above is sufficient.

〔発明の効果〕〔Effect of the invention〕

本発明は以上のように構成され機能するので、極液の酸
濃度をうすめるために従来より必要としていた純水を大
幅(従来の略1/4〜115以下)に節約することがで
き、極液濃度が比較的高い値に設定されていることから
、従来生じていた隔膜への重金属その他の無機物や有機
物のスラッジの付着を排除することができ、従って、当
該隔膜の電気抵抗が経時的に増加して通電電流が減少し
所定の塗膜の厚さが得られないという従来例の有する不
都合を略完全に排除し得る、という従来にない優れた電
着塗装装置を提供することができる。
Since the present invention is configured and functions as described above, the amount of pure water that was conventionally required to dilute the acid concentration of the polar liquid can be significantly saved (approximately 1/4 to 115 times less than the conventional amount). Since the liquid concentration is set to a relatively high value, it is possible to eliminate the adhesion of heavy metals, other inorganic substances, and organic sludge to the diaphragm, which conventionally occurs, and therefore the electrical resistance of the diaphragm decreases over time. It is possible to provide an unprecedented and excellent electrodeposition coating apparatus that can almost completely eliminate the disadvantages of the conventional example in that the applied current decreases and a predetermined coating thickness cannot be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

添付図面は本発明の一実施例を示す系統図である。 2−・・−電着塗装槽、4−・−=−一一方の電極、5
−・−・・−・他方の電極、8・・−−−−一隔膜。
The accompanying drawing is a system diagram showing one embodiment of the present invention. 2-...-electrodeposition coating tank, 4---=-one electrode, 5
−・−・・−・Other electrode, 8・・−−−One diaphragm.

Claims (1)

【特許請求の範囲】[Claims] (1)、一方の電極を成す被塗物に対応して電着塗装槽
の塗料水溶液中に浸漬され配設される他方の電極と、こ
の他方の電極を囲んで設けられた中和剤除去用の隔膜と
を備え、この隔膜内の極液の電導度を1000〔マイク
ロ・シーメンス/cm〕以上に常時設定することを特徴
とした電着塗装装置。
(1) The other electrode is immersed and arranged in the paint aqueous solution in the electrocoating tank corresponding to the object to be coated, which forms one electrode, and the neutralizing agent installed surrounding the other electrode is removed. 1. An electrodeposition coating apparatus comprising a diaphragm for use in the diaphragm, and the electrical conductivity of the polar liquid within the diaphragm is always set to 1000 [micro-Siemens/cm] or more.
JP11727185A 1985-05-29 1985-05-29 Apparatus for coating by electrodeposition Pending JPS61272399A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11727185A JPS61272399A (en) 1985-05-29 1985-05-29 Apparatus for coating by electrodeposition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11727185A JPS61272399A (en) 1985-05-29 1985-05-29 Apparatus for coating by electrodeposition

Publications (1)

Publication Number Publication Date
JPS61272399A true JPS61272399A (en) 1986-12-02

Family

ID=14707625

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11727185A Pending JPS61272399A (en) 1985-05-29 1985-05-29 Apparatus for coating by electrodeposition

Country Status (1)

Country Link
JP (1) JPS61272399A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02163399A (en) * 1988-12-16 1990-06-22 Tokuyama Soda Co Ltd Electrode device for dialysis
JPH03125071U (en) * 1990-03-27 1991-12-18
CN103382570A (en) * 2012-05-04 2013-11-06 北汽福田汽车股份有限公司 Anode circulating system, electrophoretic coating device and application method of anode circulating system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5541976A (en) * 1978-09-20 1980-03-25 Mazda Motor Corp Supply system for neutralizing agent at electrodeposition coating

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5541976A (en) * 1978-09-20 1980-03-25 Mazda Motor Corp Supply system for neutralizing agent at electrodeposition coating

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02163399A (en) * 1988-12-16 1990-06-22 Tokuyama Soda Co Ltd Electrode device for dialysis
JPH03125071U (en) * 1990-03-27 1991-12-18
CN103382570A (en) * 2012-05-04 2013-11-06 北汽福田汽车股份有限公司 Anode circulating system, electrophoretic coating device and application method of anode circulating system
CN103382570B (en) * 2012-05-04 2016-05-04 北汽福田汽车股份有限公司 The using method of anode circulation system, electrophoretic painting equipment and anode circulation system

Similar Documents

Publication Publication Date Title
JPS61272399A (en) Apparatus for coating by electrodeposition
JPS5989798A (en) Electrodeposition painting device
US5047128A (en) Electrodialysis cell for removal of excess electrolytes formed during electrodeposition of photoresists coatings
DE102014001799B3 (en) Plant for coating objects
US3935085A (en) Composition control of an electrocoating bath
EP1704270B1 (en) Method and system for determining the thickness of a layer of lacquer
CN101503814A (en) Anode system for electrophoretic painting cathode
US4643815A (en) Electrocoating method and apparatus
US5827416A (en) Process for control of electrodeposition utilizing cathodic and anodic flushable electrodes
JP2621107B2 (en) Electrolyte management method for diaphragm electrode device
MXPA01004708A (en) Electrodeposition painting systems and methods.
EP0415577B1 (en) Electrodeposition coating system
JPH01108398A (en) Method for controlling diaphragm anode water in continuous electrodeposition coating
CA1044642A (en) Electrocoating of metallic sheet or strip
DE2319968A1 (en) ELECTROPHORETIC COATING METHOD AND DEVICE FOR IMPLEMENTING IT
RU2092457C1 (en) Method of thickening of flowing sewage sediment
JPS596399A (en) Cationic electrodeposition painting method
JPH0519332Y2 (en)
DE1921982C3 (en) Process for the electrophoretic coating of the surface of an electrical conductor with a polymeric product
JPH05214592A (en) Electrodeposition coating device
AT308266B (en) Method and device for the electrocoating of conductive material
HU181668B (en) Method and apparatus for treating and staailizing cathodic dye bath
Lovell Electrocoat Basics
HU181867B (en) Method and apparatus for forming cataphoretic paint coat
JPH05195293A (en) Electrodeposition coating device